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During the last decade, control of complex irregular dynamics has evolved as
one of the central issues in applied nonlinear science. The number of papers
published in this field has been steadily growing since the first pioneering pa-
pers appeared in 1990, and has reached an annual number between 600 and
700 during the past few years.

The seminal article by Ott, Grebogi, and Yorke (1990), in which they demon-
strated that small time-dependent changes in the control parameters of a non-
linear system can turn a previously chaotic trajectory into a stable periodic mo-
tion, alone was cited much more than 2000 times. Nowadays the notion of
chaos control has been extended to a much wider class of problems involving
stabilization of unstable periodic or stationary states in nonlinear dynamic sys-
tems. Within the last few years major progress has been made in this field, in
particular with respect to

� extending the methods of chaos control to spatiotemporal patterns;
� extending the methods of control of deterministic dynamic systems to sto-

chastic and noise-mediated systems;
� development of novel control schemes;
� deepened understanding and analytic insight into different control schemes;
� applications to various areas, e.g., biological, medical, technological systems.

Since its first publication in 1999, the Handbook of Chaos Control has become
the standard reference in this field. Eight years after the first edition, there is
need to present the new material which has been accumulated, and to set new
trends and identify new promising directions of research.

The present volume is the second completely revised and enlarged edition,
and includes only articles which have been newly written for this volume. It
aims at presenting a comprehensive overview of the state-of-the-art in this grow-
ing field; containing chapters written by the leading scientists who are active in
this area. The focus is put on recent developments like novel control schemes,
analytical insights, control of chaotic space–time patterns, control of noisy non-
linear systems and noise-induced dynamics, secure communication with chaos,
and applications of chaos control to physics, chemistry, biology, medicine, and
engineering. Furthermore, the overlap of chaos control with the traditional field
of control theory in the engineering community is identified.
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The chapters of the book are state-of-the-art review articles and should be of
interest to graduate students and researchers; theoretical and experimental
physicists, applied mathematicians, electronic engineers, nonlinear scientists
from interdisciplinary fields, e.g., chemistry, biology, medicine, control theory,
and engineering. The 36 chapters are grouped into nine parts, where the first
four parts deal with basic aspects and extension of methods; controlling space–
time chaos; controlling noisy motion; communicating with chaos and chaos
synchronization, and the last five parts contain applications to optics, to elec-
tronic systems, to chemical reaction systems, to biology and medicine, and to
engineering. Among the topics are, for instance, secure communication with
chaotic semiconductor lasers, control of communication networks, noninvasive
time-delayed feedback control of laser diodes, electronic circuits, and semicon-
ductor nanostructures, control of chemical turbulence and electrochemical oscil-
lators, suppression of synchronization as therapeutic tools for neural diseases
like Parkinson and epilepsy, and control of cardiac dynamics.

We hope that this volume will stimulate further developments in this still
thrilling area which is centered on the overlap of basic research and far-reaching
applications.

We would like to thank all authors who have contributed to this volume as
well as the publishers for their excellent cooperation. Special thanks are due to
Philipp Hövel for his technical assistance.

Berlin and Kiel, June 2007 Eckehard Schöll and Heinz G. Schuster
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Part I
Basic Aspects and Extension of Methods





Elbert E.N. Macau and Celso Grebogi

1.1
Introduction

The concept of “control” is associated with the idea of implementing actions to
guarantee that a system behaves as desired. Nature is prodigal in presenting so-
phisticated control strategies that regulated phenomena that take place in all
scales of time and space [13, 18, 35, 49]. These mechanisms reach the ultimate
level of efficacy and refinement on biological systems in which they are respon-
sible for the emergence of the sustainable phenomenon of life. A careful and
systematic investigation performed on mechanisms Nature uses for system con-
trol uncover that they are based on the following concepts: stability, feedback,
and flexibility.

Stability can be defined as the system’s ability for keeping itself working prop-
erly even when perturbations act on it. This is the main goal to be achieved by
the control strategy that is embedded in the system. Every system is supposed
to operate properly inside well-defined regions. During its lifetime operation, a
system suffers all kinds of internal and external perturbations. In order to con-
tinue its appropriate operation, a system must be stable enough to those pertur-
bations. This ability can be seen around us in natural processes and is closely
related to the concept of feedback [18, 49], which can be defined as the mecha-
nism whereby part of the system output is returned (back) to be used as input
of the control strategy, providing self-regulation. Through this mechanism, a
system regulates itself by monitoring its own output to keep it stable and oper-
ating properly. To accomplish that, control strategies presented in Nature exploit
another key property of the Nature: flexibility. The idea behind this concept is
that it is not necessary to stress the system and drive it brutally to the desired
operation point immediately or directly. In contrast, it is more efficient, reliable,
and realizable to control the system by letting it to fluctuate and eventually
change its dynamics as little as possible to drive it to the desired state without
applying intense forces. An excess of control may result in energy waste and
eventually could imply in system damage. Thus, the concepts of stability, feed-
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back and flexibility are wisely combined and exploited by Nature through con-
trol strategies that allow it to opportunistically accomplish its process with re-
markable efficiency.

Let us now explore how this scenario, inspired from Nature, fits on the con-
cept of chaos control [21, 22, 33, 39]. At first, it is necessary to properly under-
stand the meaning of chaotic dynamics [2, 14]. The sensitive dependence on ini-
tial condition is the main characteristic of chaotic behavior. It means that two
trajectories that are initialized very close to each other separate exponentially in
time. Because of this typical behavior, which is known as the “butterfly effect,”
long time prediction of a chaotic trajectory based on finite precision measure-
ments is impossible. However, this characteristic also implies that a chaotic tra-
jectory is extremely sensitive to the effect of perturbations. As so, just a small
perturbation applied at a given time is enough to change the trajectory’s future
evolution, directing its way to other regions of the chaotic invariant set [25]. An-
other key characteristic of the chaotic system is that there are an infinite variety
of behaviors embedded on it. A chaotic system contains a dense orbit on the in-
variant set, which is a chaotic trajectory that recurrently passes infinitely close
to any point of that set. A third characteristic is that the chaotic invariant set
contains an infinite number of unstable periodic orbits of all periods, which co-
exist with the chaotic motion. These orbits are unstable in the sense that small
deviation from the periodic orbit grows exponentially rapidly in time, and the
system quickly moves away from the periodic orbit in a chaotic trajectory. The
combination of these three characteristics makes chaotic systems as one of the
most flexible systems that can be found in Nature. It is exactly these characteris-
tics that are explored in the scenario of chaos control.

Chaos control is based on the idea of exploiting the key dynamical character-
istics just presented to control the system as desired [21, 22, 33, 39]. As so, the
sensitive dependence on the initial condition is used both to stabilize chaotic be-
havior in periodic orbits [21, 22, 33, 39] and to direct trajectories to a desired
state [30, 34, 44–46]. Small perturbations applied to control parameters can be
used to stabilize chaos, keeping the parameters in the neighborhood of their
nominal values. This idea that came about in the context of the OGY method of
control of chaos [39] and its feasibility has been experimentally demonstrated in
several experiments [1, 4, 5, 8, 15, 17, 26, 37, 41]. Besides, a carefully chosen se-
quence of small perturbations applied to some control parameter can also be
used to rapidly direct trajectories to some desired final state [44–46]. This strat-
egy of guiding trajectories in chaotic systems, called targeting, also had its feasi-
bility experimentally demonstrated [7]. On both these approaches we can verify
how the fundamental idea of the chaos control is applicable: the system flexibil-
ity is paramount and opportunistically exploited so that the perturbations do not
significantly change the system dynamics, but just enable the intrinsic system
dynamics to accomplish the desired control task. In some sense, the control of
chaos mimics the way that Nature implements its control strategy to opportu-
nistically accomplish its goals. Furthermore, to extremely exploit the flexibility
presented on chaotic systems, the controller that implements the chaos control
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strategy must preserve the chaotic dynamics at all time. As so, the feedback
concept, when used, is applied just locally, in the neighborhood of a specific
chaotic trajectory, and implemented so that just small perturbations are applied
on the chaotic trajectory with the goal of keeping the whole system stable and
operating properly.

Over the years, the concept of control of chaos has been successfully applied
on a variety of systems and on a multitude of circumstances. However, the hori-
zon of applicability is still wider. In a typical application, we see a control of
chaos strategy applied in a situation in which the chaotic dynamics develops on
a chaotic attractor. However, chaotic dynamics are present not only on chaotic
attractors [25, 48], but also on nonattracting chaotic sets, giving rise to impor-
tant phenomena with remarkable physical consequences for the dynamical sys-
tem in which they are present. These are the cases of chaotic transients [24, 28],
chaotic scattering [9, 27], and fractal basing boundaries [20, 23]. In these phe-
nomena, a typical trajectory presents over time different behaviors in which a
chaotic behavior is followed by a nonchaotic one. The dynamics is understood
by the presence of chaotic saddles. A chaotic saddle is an invariant chaotic set
that can be envisioned as the intersection of its stable and unstable manifolds,
where the stable and unstable manifolds each consist of a Cantor set of sur-
faces. As so, it is a fractal object and it has chaotic trajectories that never leave
the set. It can be understood by the horseshoe model, introduced by Smale [48],
who, by using symbolic dynamics, showed that this invariant set has a dense or-
bit, exhibits the sensitivity to initial condition property, and embedded in it
there is a countable infinity set of unstable periodic orbits of arbitrary high peri-
ods. Let us consider a system in which a nonattracting chaotic saddle � coexists
in the phase space with others nonchaotic attractors. As there are other attrac-
tors in the phase space, all initial conditions, except for a set of measure zero
made up of the chaotic saddle � and its stable manifold, generate trajectories
that asymptote to one of the attractors. Trajectories starting from random initial
conditions may wander near the chaotic saddle � for a finite time before set-
tling down into one of the attractors. During the time interval in which a trajec-
tory suffers the influence of the chaotic saddle, it behaves as a chaotic trajectory.
Furthermore, the closer the initial condition of a trajectory to the stable mani-
fold of �, longer the trajectory stays near the chaotic saddle, exhibiting a chaot-
ic-like behavior.

If we have a chaotic system whose dynamics is governed by a chaotic saddle,
control of chaos strategy can be combined with classic control methods to give
rise to a powerful control approach that exploits the flexibility that the combined
methods can offer. It can be accomplished as follows: for an ordinary trajectory,
whenever it behaves as a chaotic one, a control of chaos strategy is applied. As
soon as the trajectory leaves the region of the phase space in which it behaves
as a chaotic one, control of chaos is switched off and a classic control mecha-
nism starts to be in effect. With this approach that we could call as opportunistic
chaos control, we have the most effective control approach in action for each of
the conceivable dynamical behaviors that a system may present. In fact, this hy-
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pothetical situation is very common in Nature and in technological systems. In
this chapter, we present some key examples that show the efficiency of this
approach. Therefore, we proceed as follows. In the next two sections, we review
the OGY method of chaos control as it was originally proposed and our target-
ing strategy that can be applied even to higher dimensional systems. After that,
we show an application example where a classic control method is used in asso-
ciation with the OGY to properly control an electronic system. In the subse-
quent section, our targeting method is associated with the classic control meth-
od to efficiently control a system with a very elaborated dynamics. Finally, we
end this chapter with remarks about the concept of control of chaos.

1.2
The OGY Chaos Control

The key ingredient for the control of chaos [38, 39] is the observation that a
chaotic invariant set has embedded on it an infinite and enumerable set of un-
stable periodic orbits of all periods. Counting on ergodicity [25], another intrin-
sic property of the chaotic behavior, we wait for a natural passage of the chaotic
trajectory close to the desired periodic behavior and then a small judiciously
chosen controlling perturbation is applied. This small perturbation is enough to
stabilize the system in the desired periodic behavior. Through this mechanism,
the system can operate on a large number of different set points (theoretically,
an infinite number of them), with a great flexibility in switching among them.

In this section, we review the main points related to the originally proposed
algorithm. As so, our scenario is a chaotic dynamical system whose attractor is
a three-dimensional state space. A Poincaré section [2] can be introduced trans-
versal to the chaotic flow so that the system dynamics on this Poincaré section
can be described by a two-dimensional invertible map as

xn�1 � F�xn� p�� �1�1�

where xn � R2, F is a smooth function of its variables, and p � R is an exter-
nally accessible control parameter. Following the idea of using small perturba-
tions to control the system, parameter allowed variations must be small,

�p	 �p� � �� �1�2�

where �p is the nominal parameter value, and �
 1 defines the allowable range
of parameter variation. We wish to program the parameter p so that a chaotic
trajectory is stabilized when it enters in a neighborhood of the target periodic
orbit.

Let xF��p� be one of the fixed points of the map (1.1) at the nominal parameter
value �p that we wish to stabilize. (The extension of the method for unstable per-
iodic points of period larger than 1 is straightforward.) The location of the fixed
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point in the phase space depends on the control parameter p. Upon application
of small perturbation �p, we have p � �p� �p. Since �p is small, we expect
xF�p� to be close to xF��p�. We write

xF�p� � xF��p� � g�p� �1�3�

where the vector g is given by

g � �xF

�p
�p��p �

xF�p� 	 xF��p�
�p

� �1�4�

The system dynamics of any smooth nonlinear system is approximately linear
in a small �-neighborhood of a fixed point. Thus, near xF��p�, we can use the lin-
ear approximation for the map:

xn�1 	 xF�p�� � MxF�p�� � xn 	 xF�p��� �1�5�

where MxF�p�� is the 2� 2 Jacobian matrix of the map F�x� p� evaluated at the
fixed point xF�p�, which is defined as follows:

MxF�p�� � �F
�x
�xF�p� � MxF��p�� � �M

�p
�p��p�p� �1�6�

Note that �p � � and �xn 	 xF�p��� � �, where � is the size of the small neigh-
borhood in which the linear approximation (1.5) is valid. Writing
xF�p� � xF��p� � g�p (from Eq. (1.4)), substituting this relation and Eq. (1.6) into
Eq. (1.5), and keeping only terms which are first order in �, we obtain

xn�1 	 xF��p� � g�p�MxF��p�� � xn 	 xF��p� 	 g�p�� �1�7�

In Eq. (1.7), the Jacobian matrix M is evaluated at the fixed point xF��p� of the
unperturbed system, which is the one to be stabilized. Since xF��p� is embedded
in the chaotic attractor, it is unstable and it has one stable and one unstable di-
rection [4]. Let es and eu be the stable and unstable unit eigenvectors at xF��p�,
respectively, and let fs and fu be two unit vectors that satisfy fs � es � fu � eu � 1
and fs � eu � fu � es � 0, which are the relations by which the vectors fs and fu
can be determined from the eigenvectors es and eu. The vectors fs and fu are
contravariant basis vectors associated with the eigenspace es and eu. The Jaco-
bian matrix MxF��p�� can then be written as:

MxF��p�� � �ueufu � �sesfs� �1�8�

where �s and �u are the stable and unstable eigenvalues in the eigendirections
es and eu, respectively.

When the trajectory point xn falls into small �-neighborhood of the desired
fixed point xF��p� so that Eq. (1.5) applies, a small parameter perturbation �pn is
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applied at time n to make the fixed point shift slightly so that at the next itera-
tion �n� 1�, xn�1 falls on the stable direction of xF��p�. Thus, we choose the
parameter control �pn such that

fu � xn�1 	 xF��p�� � 0� �1�9�

If xn�1 falls on the stable direction of xF��p), we can then set the control pertur-
bation to zero, and the trajectory for subsequent time will approach the fixed
point at the geometrical rate �s. Thus for sufficiently small xn 	 xF��p��, we can
substitute Eq. (1.7) into Eq. (1.9) to obtain �pn � cn:

cn � �ufu � xn 	 xF��p��
��u 	 1�fug � Cxn 	 xF��p��� �1�10�

We assume in the above that the generic condition g � fu �� 0 is satisfied so that
cn � �xn 	 xF��p��, which is small. The considerations above apply only to a local
small neighborhood of xF��p�. Globally, we can specify the parameter perturba-
tion �pn by setting �pn � 0 if �cn� is too large, since the range of the parameter
perturbation is limited by Eq. (1.2). Thus, practically, we can take �pn to be
given by

�pn � cn if �cn� � �
0 if �cn� � ��

�
�1�11�

where in the definition of cn in Eq. (1.10), it is not necessary to restrict the
quantity �xn 	 xF��p�� to be small.

This method can be extended to higher dimensional systems.

1.3
Targeting–Steering Chaotic Trajectories

The inherent exponential sensitivity of chaotic time evolution to perturbations
can be intelligently exploited to direct the dynamics of the system to some de-
sired state using a carefully chosen sequence of small perturbations to some
system parameter. This approach, which is of fundamental interest for the con-
trol system, is called targeting [45].

The targeting idea came about as a way to get around an excessive transient
time associated with the use of the OGY method of chaos control to higher di-
mensional systems. As we saw in the previous section, this method relies on
the topological transitivity of the system on the invariant set � to bring a chaot-
ic orbit close enough to a neighborhood of the periodic orbit on which we want
to stabilize the system. This procedure works. Nevertheless, it presents a signifi-
cant problem: the transport time can be excessively long. Besides, this time de-
pends sensitively on the initial conditions and on the system’s dimension. In
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dissipative chaotic systems, for randomly chosen initial conditions, the average
transport time is typically �	D, where � is the linear dimension of the neighbor-
hood about the periodic orbit, and D is the pointwise dimension at the periodic
point [29]. For low values of D, this time can be acceptably small. However, for
systems of higher dimension, it may have a prohibitively large value.

Let us consider a discrete time dynamical system,

Xi�1 � F�Xi� p�� �1�12�

where Xi � �n, p � � is an externally controllable parameter that can be exter-
nally modified, and F is a smooth function in both variables. The nominal value
of the parameter is p � �p, for which F is chaotic on a compact, invariant set
� � �n. Suppose we have two points Xs and Xt in �. Consider B��Xs� a ball of
radius � around Xs, and another ball B��Xt� of radius � about Xt. The targeting
goal is to find a constructive orbit that goes from a point pXs

� B��Xs� to a point
pXt

� B��Xt�. Through that constructive orbit, the inherent exponential sensitiv-
ity of a chaotic time evolution to perturbations is intelligently exploited to direct
trajectories to a desired state in the shortest possible time, by the use of a care-
fully chosen sequence of small perturbation to some control parameter. Further-
more, since these perturbations are sufficiently small, they do not significantly
change the system’s dynamics, but enable the intrinsic system dynamics to drive
the trajectory to the desired state.

Our technique is subdivided into two sequential parts [34]. In the first one,
we find the previously described points pXs

and pXt
so that there is an orbit

(real) that goes from pXs
to pXt

.
In the second part, this orbit is used to build a constructive orbit (virtual) that

allows the transport from pXs
to pXt

using smaller number of elements, i.e., of
real orbits. In this process, small perturbations to the control parameter are
used to move among the real orbits. The effect of these perturbations is to
change the system’s evolution from one real orbit to another, resulting in a con-
structive orbit that allows the transfer from pXs

to pXt
in a faster time. Thus, the

overall effect of this procedure is to produce a suboptimal solution that is gotten
by the elimination of parts of the orbit where recurrences occur with the use of
small perturbations.

1.3.1
Part I: Finding a Proper Trajectory

The main idea of the first part of our technique is as follows [45, 46]: consider a
line segment a1b1 � B��Xs�, so that Xs is its middle point. To find pXs

, a1b1 is
iterated in the forward direction, while the region B��xt� is iterated in the back-
ward direction, until the forward iterated segment intersect the backward iter-
ated region at the point pI. It is important to say that it is again the transitivity
of a chaotic system that assures that pI will be found. When the intersection is
found, there is a trajectory that goes from pXs

� a1b1 to B��Xt� through the in-
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tersection pI. Note that pXs
can be found by iterating F in the backward direc-

tion from pI. The point pXs
is then used to determine the value �p of the param-

eter that must be applied to the system to bring it from Xs to pXs
. The following

algorithm describes how that technique can be implemented:
Step 1: Define a direction � in space and using this direction construct a

line segment a1b1 � B��Xs�, so that Xs is its middle point. Call a1 as
c0, and b1 as cnp .

Step 2: Generate N random points �dj�N
j�1 inside B��Xt�.

Step 3: Create a partition of np subsets in c0cnp using a sequence of np 	 1
interior points �cj�np	1

j�1 .
Step 4: Using �dj�N

j�1, construct a Delaunay triangulation (Watson 1981;
Varosi et al. 1987) T , which has the sequence of cells �Fj�M

j�1.
Step 5: Iterate in the forward direction �cj�np	1

j�1 and use linear interpolation
to approximate the resultant curve delimited by each pair of iterated
points.

Step 6: Iterate in the backward direction �dj�N
j�1 and use linear interpolation

to approximate the iterated cells of the Delaunay triangulation T .
Step 7: Continue the iteration described in steps 5 and 6 until finding the in-

tersection pI between Fl�ck�Fl�ck�1� and F	l�Fh�, where this one is
the backward iterated cell found by linear interpolation of the back-
ward iteration of the points that delineate the cell Fh.

Step 8: Consider the middle point cmd of the segment ckck�1. Identify if the
intersecting segment is ckcmd or cmdck�1. In the first case, assign the
value of cmd to ck�1; otherwise, assign the value of cmd to ck. Applying
a similar procedure, find a new cell Fh which is smaller than the pre-
vious one, but still contains in its face pxt .

Step 9: If dck� ck�1� � �l, where �l is a specified limit on the precision, then
repeat step 8. Otherwise, pXs

is equal to ck.
Step 10: Using pXs

, determine the value of �p that drives the system from Xs to
pXs

. When the system gets pXs
, return the parameter to its nominal

value, i.e., p. From there, the system dynamics will conduct the sys-
tem evolution to a point pXt

� B��xt� in 2 � l iterates.

With the use of this procedure, the average transport time to go from the
source point to the target point typically scales logarithmically with the inverse
of the size of the target region [45], which contrasts with the exponential in-
creasing that takes place if this algorithm is not used.

1.3.2
Part II: Finding a Pseudo-Orbit Trajectory

Part I of our method produces an orbit that goes from pXs
to pXt

. Let us repre-
sent that orbit by the following sequence of points �Xi�N

i�0 in �n, where
X0 � pxs

, and XN � pXt
. As that orbit belongs to a chaotic trajectory in a com-

pact invariant set �, it might have recurrent points [10, 11, 32, 34]. In Part II,
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we look for those recurrent points by using a sequential search [31]. If Xr is a
recurrent point, it means that it belongs to a sequence of points
�� � � �Xr �Xr�1� � � � �Xr�n� � � �� such that dXr �Xr�n� � �, making up a kind of loop.
If none of the points inside the loop is located in B��Xt�, that loop does not ef-
fectively conduct the trajectory to the targeting point. Thus, after being identi-
fied, our method replaces that loop by a smaller orbit that is backward asympto-
tic to Xr and forward asymptotic to Xr�n [6, 29]. By creating patches like that to
the recurrent points of the original orbit, we build a constructive orbit or a pseu-
do-orbit that allows the transportation from pXs

to pXt
with considerably less

iterations than the original orbit. However, to accomplish that, perturbations
must be introduced in order to switch the trajectory along the pseudo-orbits, as
described next [10, 11, 32, 34].

In a hyperbolic situation, it is known that if the distance between Xr and
Xr�n is sufficiently small, say less than �lim, then the unstable manifold of Xr ,
Wu

� �Xr� and the stable manifold or Xr�n, Ws
��Xr�n� intersect each other in a

point q. This fact can be exploited to accomplish our goal if a proper perturba-
tion is applied to the sequence of points of the original orbit that passes
through Xr . In fact, according to the theorem of Hirsh and Pugh (Arrowsmith
1994), q � Wu

� �Xr� �Ws
��Xr�n� implies that forward iterations of q converge

to forward iterations of Xr�n, i.e., limk�� dFk�q��Fk�Xr�n�� � 0, and
backward iterations of q converges to backward iterations of Xr , i.e.,
limk�� dF	k�q��F	k�Xr�� � 0. Thus, if we consider a point Xr	m that precedes
Xr in the original trajectory, and a point Xr�n�t that succeeds Xr�n

in the original trajectory, we have dFt�q�� Ft�Xr�n�� � �r�n�t, and
dF	m�q��F	m�Xr�� � �r	m. Furthermore, as Wu

� �Xr� can be locally approximated
by Eu

Xr
, which is the unstable subspace of the tangent space at Xr , while

Ws
��Xr�n� can be locally approximated by Es

xr�n
, which is the stable subspace of

the tangent space at Xr�n, and that approximation is continuously preserved
over the iterations by the Jacobian of F, i.e., DF��� calculated at the iteration
point [25]. It follows that �r	m is located in the direction of Eu

Xr	m
, and �r�n�t is

located in the direction of Es
Xr�n�t

. Thus, if the proper perturbation �r	m is ap-
plied in the direction of Eu

Xr	m
, it produces a perturbed orbit that passes through

q, and converges to the original trajectory after Xr�n. Consequently, that proce-
dure generates the desired patch that avoids the recurrent loop of the original
trajectory. In addition, that argument indicates that the perturbation �r	m can be
calculated by solving the following equation:

Fm�t�Xr	m � �r	mEu
Xr	m

� p� � Xr�n�t � �r�n�tE
s
Xr�n�t

� �1�13�

This equation can be solved by using the Newton-secant method.
We should emphasize that the values of m and t in Eq. (1.13) can be ade-

quately adjusted for each system by an empirical procedure. Also, Hirsh and
Pugh’s theorem provides us with a proper way to use the approximation of the
tangent subspace Es

Xi
and Eu

Xi
at a point. According to that theorem, if we con-

sider an orbit �Xk�n
k�1 which contains Xi, any variation near Xi	m will expand
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along the unstable manifold of Xi if m is chosen large enough. A similar state-
ment can be made regarding the stable manifold of Xi for variations near Xi�m

iterated in the backward direction.
That procedure can be used in the attempt to eliminate the recurrence in the

original path from pXs
to pXt

that are less than �lim. Higher priority in the elimi-
nation should be assigned to the longest loops. A patch is accepted as usable if
the perturbation �r	m to be applied, in order to implement it, is less than a pre-
assigned limit value �lim. Our method spawns a sequence of perturbations
��i�K

i�1 and directions �Ei�K
i�1 to be respectively applied to a sequence of points

�Xni�K
i�1 of the original trajectory. To apply each perturbation, it is necessary to

calculate the value �pXni
of the parameter to be used in Xni to change the system

state from Xni to X�ni
� Xni � �iExi . The overall result of our method is a subopti-

mal constructive trajectory or a suboptimal pseudo-orbit that allows the transfer
from pXs

to pXt
.

The previous arguments can be consolidated in the following algorithm:
Step 1: Starting from the original transfer trajectory from pXs

to pXt
, find all

the recurrent points whose distance from it to its recurrent point is less
than �lim. Sort them out by the size of the loop in decreasing order.

Step 2: Take from the list its first point and find a patch for the loop using Eq.
(1.13). If the resulting perturbation is less than �lim, accept the patch.
Put in the solution list the points in which the perturbation should be
applied, together with the perturbations and the direction values.

Step 3: Take the next point in the list that is located after the previous found
patch.

Step 4: Find a patch for the loop using Eq. (1.13). If the resulting perturbation
is less than �lim, accept the patch. Put in the solution list the points in
which the perturbation should be applied, together with the perturba-
tions and the direction values.

Step 5: Go back to step 3 until all the points of the list have been considered.
Step 6: Use the solution list and the original trajectory to compute the pseudo-

orbit that allows the suboptimal transfer from pXs
to pXt

.

1.3.3
The Targeting Algorithm

The algorithm that results from the combination of parts I and II can be ap-
plied to general situations [31]. In fact, individually, each part has been success-
fully applied to numerical and laboratory experiments in mechanics [29, 46] and
in situations involving spacecraft guidance [11]. Furthermore, with delay coordi-
nate embedding, the algorithm is applicable to experimental situations in which
no a priori analytical knowledge of the system dynamics is available [46].

The power of our method is due to the sequential combination of both parts.
However, we must stress the fact that the second part has the objective of reduc-
ing the length of long trajectories that present recurrence to get a smaller trajec-
tory. We can have situations where that algorithm does not succeed because
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there is no recurrence in the trajectory for the specified limit values for the per-
turbation and the proximity between the recurrent points. In other situations,
the trajectory found by the first part of the algorithm is short enough and al-
ready satisfies our goals.

1.4
Applying Control of Chaos and Targeting Ideas

In this section we apply the control of chaos concept in association with classi-
cal control methods. The proper combination of these two approaches gives rise
to what we call the opportunistic chaos control strategy. We demonstrate this
strategy by analyzing three very significative examples. In these examples, the
chaotic invariant sets are nonattractive. In the first case, we consider a simple
electronic circuit operating in a regime in which an attracting periodic orbit co-
exists with a chaotic saddle. As so, initial conditions not located on the periodic
orbit generate trajectories that undergo a chaotic transient behavior until they
eventually settle to the periodic orbit. In this system, a classic control steering
method is used in association with the OGY to make the system behave periodi-
cally, and with a period that is different of the originally presented by the sys-
tem after its transient interval.

In the second example, we analyze a very involved scenario with the presence of
chaotic and no-chaotic behaviors that are entwined in state space in a very compli-
cated way. Here our opportunistic chaos strategy combines the chaotic targeting
approach and classic control methods to steer trajectories through the phase space
and also to stabilize the system on periodic behaviors from time to time.

1.4.1
Controlling an Electronic Circuit

Let us consider an electronic circuit composed of an AC voltage source, a resis-
tor, an inductor, and a diode as the nonlinear element, as shown in Fig. 1.1.

Applying the Kirchhoff voltage law, the voltage across the diode is related to
the input voltage generator (Vin) and the circuit current by

L
dI
dt
� V0 sin�2�ft� 	 RI 	 Vd� �1�14�

1.4 Applying Control of Chaos and Targeting Ideas 13

Fig. 1.1 Diode circuit: the diode circuit is composed of an AC
voltage source Vin, a resistor R, an inductor L, and a diode; Vd

is the voltage across the diode.



where V0 is the voltage amplitude and f is the frequency.
For the diode, we consider its high-frequency model for the voltage across it,

which is given by [19, 40]

Vd �
�q��Cj 	 Cd�

2CjCd
� q�Cj � Cd�

2CjCd
� E0� �1�15�

where q is the diode accumulated charge, Cj is the junction capacitance, and Cd

is the diffusion capacitance.
Our system model equation can be converted to the following system of first-

order autonomous differential equations:

dq
dt
� I

L
dI
dt
� V0 sin��� 	 RI 	

�
�q��Cj 	 Cd�

2CjCd
� q�Cj � Cd�

2CjCd
� E0

�
d�
dt
� 2�f

����������	���������

�1�16�

For this work, we use the diode DIN1206C, which, according to the specifications,
has for the parameters of its high-frequency model the values 453pF for the diffu-
sion capacitance (Cd), 30 nF for the junction capacitance (Cj), and 0.52 V as the junc-
tion voltage (Vj). The circuit parameter values are L � 0�18 mH, and R � 4�5�. For
the input voltage generator, i.e., Vin � Vo sin 2�ft� �, we set f � 333 kHz, and V0, the
input voltage amplitude, is used as the variable parameter.

In Fig. 1.2, we show the system bifurcation diagram obtained by using a
time-2�f stroboscopic map.

Let us now look at the system dynamics inside the period-3 window. For this
purpose and for V0 � 2�3 V, we take a random initial condition located outside
the period-3 window attractor and we obtain its trajectory. This trajectory, as it
is observed in the previously defined time-2�f stroboscopic map, appears in
Fig. 1.3, while Fig. 1.4 shows the associated time series plot for the circuit cur-
rent I. We can see that the system initially has a chaotic-like behavior. After this
transient time, the trajectory finally settles on a period-3 periodic behavior.
Further analysis indicated that this is a chaotic transient, which happens for this
value of V0 due to the presence of a nonattracting chaotic saddle that coexists
with the period-3 attractor. Thus, trajectories starting from random initial condi-
tions typically wander chaotically near this chaotic saddle for a finite time before
settling down into the period-3 attractor. During the time interval in which the
trajectory wanders chaotically, this trajectory presents in essence all the charac-
teristics that are typical of a real chaotic trajectory. As so, during this time inter-
val, it shows a sensitive dependence to changes in initial condition, as one of its
finite-time Lyapunov exponents is greater than zero. Furthermore, embedded in
the chaotic saddle, there are an infinite but numerable sets of unstable periodic
orbits (UPO) of all periods.
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Fig. 1.2 Bifurcation diagram: diode circuit bifurcation diagram
defined by a time-2�f stroboscopic map; the time-2�f mapped
charge q against the control parameter V0 varying from 0 to 5.8 V.

Fig. 1.3 Chaotic transient: chaotic transient before conver-
gence to the period-3 orbit at V0 � 3�8 V and f � 333 kHz.

Period-3 Orbit Chaotic Transient



Let us now assume that we want to stabilize the system in one of these UPO.
The original OGY method depends on ergodicity to bring a chaotic trajectory
sufficiently close to the desired UPO so to stabilize the system. However, we are
now dealing with a system in which the behavior is not chaotic, but it is a
chaotic transient. As so, a typical trajectory might not pass close to the desired
unstable periodic orbit embedded in the chaotic saddle. To overcome this diffi-
culty related to accessibility of the unstable periodic orbits by a chaotic transient
trajectory, we use our opportunistic chaos control strategy: a classical nonlinear
control method is strategically associated with the OGY chaos control strategy.
The classical method is used first, just to drive the trajectory to the neighbor-
hood of the UPO. From these point on, the OGY strategy is then applied so that
the system is kept stabilized by using small perturbations.

This classical nonlinear control method, called input–output linearization [47],
works as follows: consider a guiding control problem and a nonlinear system,

�x � f �x� u� �1�17�
� y � h�x��

where u is the control parameter.
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Fig. 1.4 Chaotic transient time series: Current I (mA) versus
time transient before convergence to the period-3 orbit at
V0 � 3�8 V and f � 333 kHz.



Assume that our goal is to make the output y�t� follows the desired output
yd�t�, where yd�t� is well known and limited (not diverging). Note that the
output y�t� is not directly related to the control parameter u. Consequently, in
general, it is not easy to find out how the input u should be designed to control
and guide the output y�t�. However, in many situations it is possible to find out
a simple and direct functional relationship between the output y�t� and the con-
trol parameter u.

In our system model, represented by Eq. (1.16), let us redefine its variable as
follows: q � x1, I � x2, y � x1, � � x3, and V0 � u, so that the system is now
described by the following equations:

dx1

dt
� x2

L
dx2

dt
� u sin�x3� 	 Rx2 	

�
�x1��C2 	 C1�

2C2C1
� x1�C2 � C1�

2C2C1
� E0

�
dx3

dt
� 2�f

y � x1

������������	�����������

�1�18�

To find a functional relation between the output y and the input u, we differen-
tiate the output y twice

�y � ��1�L� sin�x3��u� f1�x�� �1�19�

where f1�x� is a state function defined by

f1�x� � �1�L�
�
	 Rx2 	

�
�x1��C2 	 C1�

2C2C1
� x1�C2 � C1�

2C2C1
� E0

��
� �1�20�

Equation (1.19) is a direct relation between the output y and the input u. Now,
if we choose the input control as follows

u � L
sin�x3� ��	 f1�� �1�21�

where � is the new input to be determined, the nonlinearity presented in Eq.
(1.19) is canceled and we get a linear relationship between the output and the
new input �:

�y � �� �1�22�

Let us make e � y�t� 	 yd�t� the guiding error. We choose the new input control
as follows:

1.4 Applying Control of Chaos and Targeting Ideas 17



� � �yd 	 k1e	 k2 �e� �1�23�

where k1 and k2 are positive constants.
From Eqs. (1.22) and (1.23), we get the closed loop guiding error differential

equation

�e� k1e� k2 �e � 0� �1�24�

This equation can be transformed to its characteristic form

�2 � k1�� k2 � 0 � ��	 p1���	 p2�� �1�25�

As so, it is possible to choose the appropriates constants k1 and k2 to properly
allocate the poles of the linearized system. Thus, at each iteration the constants
k1 and k2 are properly chosen and the new input value is estimated in accor-
dance with the desired output yd�t� and the current error e�t�.

In Fig. 1.5, we show the results of applying our opportunistic chaos control
method for this system in an extreme situation. The system is initially on the
period-3 periodic orbit. Our method is successively used to stabilize the system
on unstable periodic orbits of periods 1, 2, 4, and 8.
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Fig. 1.5 Control in chaotic saddles: the figure shows the
system period-3 regime followed by a transient classic control
that conducts the orbit to an �-neighborhood of the desired
fixed point (periodic point) when the OGY control is applied.
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1.4.2
Controlling a Complex System

To construct a complex dynamical system, let us consider the kicked single ro-
tor, which describes the time evolution of a mechanical pendulum that is being
kicked at times nT � n � 1� 2� � � �, with a constant force f0. From the differential
equation for this mechanical system one can derive a Poincaré map which is re-
lated to the state of the system just after each successive kick [43]:

xk�1 � xk � yk�mod2�� �1�26�
yk�1 � �1	 �� � yk � f0 sin�xk � yk��

where x corresponds to the phase and y to the angular velocity. f0 is the force
parameter, and � is the damping parameter, measuring the energy dissipation
of the system. The parameter � varies between 0, for a Hamiltonian situation,
with no damping, and 1, in the case of a very strong damping. The dynamics
lies on the cylinder 0� 2�� � �.

1.4 Applying Control of Chaos and Targeting Ideas 19

Fig. 1.6 Typical trajectory of the kicked single rotor with the
parameters f0 � 4�0 and � � 0�02. The y variable represents
the angular velocity, x represents the phase, and k represents
the iteration number. In both graphs, all plotted quantities are
dimensionless.



In the Hamiltonian case (no damping, � � 0), we have the area-preserving
standard map, which was studied by Chirikov [12] and by many other authors
[36, 42]. It has stable and unstable periodic orbits, Kolmogorov-Arnol’d-Moser
(KAM) surfaces, and chaotic regions. Depending on the nonlinear parameter f0,
the regions of regular motion and the regions of chaotic motion are complexly
interwoven. As the second equation of the map is also taken to be modulo 2�,
the map of the cylinder reduces now to the map of the torus 0� 2�� � 0� 2�� to
itself. As a consequence, each of the periodic orbits represents, in fact, a family
of overlapping periodic orbits in which the velocity y differs by integer multiples
of 2�. Because of the modulo 2�, all periodic orbits of the same family are lo-
cated at the same location on the torus.

If we now consider the Hamiltonian case but introduce a very small amount
of dissipation (� value close to zero), the motion again takes place on the cylin-
der 0� 2�� � � in order to preserve the invariant structure. The periodic orbits
become sinks and the chaotic Hamiltonian sets become saddle chaotic invariant
sets embedded in the basin boundaries separating the various sinks. The chaot-
ic motion is hence replaced by long chaotic transients that occur before the tra-
jectory is eventually asymptotic to one of the sinks [16], as can be seen in a typi-
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Fig. 1.7 Basin of attraction for the kicked
single rotor. The colors identify the periodic-
ity of the orbits, while the characters identify
the location of the attracting periodic orbits.
In the figure, “*” indicates the position of
attracting period one points, “x” the posi-

tion of attracting period two orbits, and “o”
the position of attracting period three orbits.
This picture is for the following parameters:
f0 � 4�0 and � � 0�02. All quantities plotted
are dimensionless.



cal trajectory that appears in Fig. 1.6. Furthermore, the dissipation leads to a
separation of the overlapping periodic orbits, which belong to a given family,
with increasing modulo of the velocities on the cylinder. However, there is a
bounded cylinder which contains all of the attractors [16]. This cylinder is given
as 0� 2�� � 	ymax� ymax�, where ymax � f0��, and all trajectories are eventually
trapped inside this region [16]. Consequently, for values of � close to zero, there
is a large, but finite, number of coexisting periodic orbits of increasing period.
Figure 1.7 is a picture in the space of initial conditions showing the basins of
attraction for all attractors of periods 1 to 3. The periodicity of the attractors in
the picture is distinguished by gray scales, while the locations of the attracting
periodic orbits are identified by special characters that are mentioned in the fig-
ure caption.

Figure 1.8 shows a typical basin of attraction for the period-1 attracting orbit
at y � 6�. The black points are attracted to this attractor. The basins of attrac-
tion have fractal boundaries, with the box counting dimension d of the basin
boundary equal to d � 1�999. This means that the dimensions of the basin
boundaries is nearly the dimensions of the state space, and they are organized
in a complexly interwoven structure, with chaotic saddles embedded in these ba-
sin boundaries [23]. Furthermore, extremely small changes in the initial condi-
tions may shift a trajectory from one basin to another, which means that the
system has high sensitivity to the final state. Thus, which attractor is eventually
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Fig. 1.8 Enlargement of the basin of attraction for a period-1
attracting orbit. Points located inside the region
1�0� 5�0 � � 34�0� 44�0 � that go to this period-1 attracting orbit

are plotted. All quantities plotted are dimensionless.



reached by a trajectory of the system depends strongly on the initial conditions.
In this scenario, typical trajectories, starting with arbitrary initial conditions, ex-
perience periods of long chaotic transients due to the saddle chaotic invariant
sets, before approaching one of the periodic attractors.

Let us consider two points xs and xt, both of which located in the neighbor-
hood of the fractal basin boundary. Our objective is to apply our targeting proce-
dure to find a pseudo-orbit that goes from a point pxs � B��xs� to a point
pxt � B��xt�, where � is a specified small value. The scenario involving the use
of part I, as described in Section 1.3, of the targeting algorithm is depicted in
Fig. 1.9. In this case, the dimension of the space is 2. To apply part I of the tar-
geting algorithm, we uniformly distribute random points in the interior of the
circle B��xs�. In this case, the result of a Delaunay triangulation is a polygon,
which is iterated backward, while the “control segment” is iterated forward. The
result of this procedure can be seen in Fig. 1.10. For this particular situation,
part I of the algorithm is able to find a trajectory that takes just 30 iterations to
reach pxt � B��xt�. We consider this result good enough and decide that it is not
necessary to apply part II of the algorithm. It is important to reaffirm that for
low dimension systems, in general, just part I produces a good result.

The procedure just described works for points located in the neighborhood of
the fractal basin boundaries. It works because of the inherent exponential sensi-
tivity of the chaotic time evolution to perturbations. Therefore, the source point
xs and the targeting point xt must both be in the same neighborhood of the
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Fig. 1.9 Schematic representation of the scenario involving
the use of part I of our targeting procedure for a two-dimen-
sional system.

Perturbatio



chaotic invariant set. This is the case for the points xs and xt of the previous ex-
ample. However, if the system is evolving in a regular regime (not chaotic), the
condition of being located in the same chaotic invariant set is not satisfied.
Furthermore, the time evolution is “ordered,” and the inherent exponential sen-
sitivity to perturbations does not apply. However, we show next that if the objec-
tive is to bring the trajectory from one stable state to another stable state, we
can first guide the trajectory to the basin boundary structure, where the chaotic
saddles are located, and there apply our targeting method. Thus, the idea, which
is illustrated in Fig. 1.11, is as follows: (i) remove the trajectory from the basin
of attraction of the initial stable periodic orbit, (ii) apply the targeting procedure
in the basin boundary to bring the trajectory to the neighborhood of the basin
of attraction of the desired stable periodic orbit and finally (iii) bring the trajec-
tory to the desired stable periodic orbit. We can accomplish this guidance task
inside the basin of attraction of the stable periodic orbits (i) and (iii) by using a
classical technique from the system control theory and outside the basins of at-
traction (in the chaotic invariant region) (ii) using the targeting procedure just
described. This approach stresses the powerful tool that we developed by com-
bining classical control techniques with chaos control methods.
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Fig. 1.10 By exploring the chaotic behavior
of the system, our targeting procedure rapid-
ly steers the trajectory from S to T. The as-
terisks represent the trajectory obtained by
applying our targeting procedure to drive the

system from the point S to the point T. The
y variable represents the angular velocity, x
represents the phase, and k represents the
iteration number. In both graphs, all quanti-
ties plotted are dimensionless.



To accomplish (i), we can use, for example, a classical optimal control meth-
od, such as the LQ controller [3]. As the basin of attraction of the stable periodic
orbits is small open regions around the periodic orbits, it is possible to linearize
the system about the points �xi�np

i�1 of the orbit, which gives

zk�1 � A�xi�zk� �1�27�

where A�xi� is Df �xi�. To change the state of the system, it is necessary to intro-
duce an input term to Eq. (1.27) as

zk�1 � Azk � Buk� �1�28�

where uk is the vector of inputs and B is a constant matrix that states how the
inputs influence the state of the system. The objective is to pick uk so that the
“cost function”
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Fig. 1.11 Schematic representation of our
complete targeting procedure. The system
was evolving in a periodic orbit Xa. Our goal
is to steer it to another periodic orbit Xb.
The LQ controller drives the trajectory from
Xa to a point Xnfa near Xfa. In Xnfa a small
perturbation is applied, and the system
moves to the state Xfa. Another perturbation

is applied, and the system moves to the
state Xfa. Our chaotic targeting procedure is
then used to stir the system to Xtb. Another
small perturbation drives the system to the
point Xob, that belongs to the basin of attrac-
tion of Xb. From this point, the system’s nat-
ural dynamics drives the trajectory to the de-
sired stable periodic orbit Xb.

Basin of attraction

Basin of attraction



J � 1�2
�

k�0�N

�zt
kQ1zk � ut

kQ2uk� �1�29�

is minimized. Q1 and Q2 are symmetric and positive definite weighting ma-
trices to be selected based on the relative importance of the various states and
controls. The well-known solution technique can now be applied (see [3]).

As our targeting procedure, applied in (ii), is able to drive the trajectory to the
neighborhood of the basin of attraction of the desired stable periodic orbit, just
a small perturbation can be used to send the orbit from that point to the
interior of the basin of attraction. Once there, the system dynamics is enough
to drive the trajectory to the desired stable periodic orbit. Thus, (iii) can be easi-
ly accomplished. However, another control system technique could be applied,
if desired.

In Fig. 1.12 we show the results of applying that combined method to change
the system evolution among the desired stable periodic orbits. When our target-
ing method is applied, the perturbations that are necessary to create the pseu-
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Fig. 1.12 Results of applying our combined method of control
to change the system evolution among stable periodic orbits.
The y variable represents the angular velocity, x represents the
phase, and k represents the iteration number. In both graphs,
all quantities plotted are dimensionless.



do-orbit and send the orbits to the interior of the basin of attraction of the
stable periodic orbits are less than 0.1.

1.5
Conclusion

In 1990, the concept of controlling chaos came about showing that not only the
chaotic evolution could be controlled, but also the complexity inherent on the
chaotic dynamics could be exploited to provide a unique level of flexibility and
efficiency in technological uses of chaotic systems. Over the years, we have wit-
nessed a variety of applications for this concept in almost all areas of knowl-
edge. In parallel, new methods appear, each one tailored to specific situations
or trying to improve previously released control of chaos methods. Despite this
tremendous development and research, the fundamental ideas embedded in
this concept must be kept in focus. With this chapter, we envisage not only the
assessment of those fundamental ideas but also to point out paths to be fol-
lowed in future development. As so, we summarize it with the following:
� Controlling of chaos is based on small perturbations applied to sensitive sys-

tems in order to opportunistically exploit its dynamics. It is based on the flex-
ibility that such a system can provide. Feedback strategies may be used, but
just locally to a particular trajectory.

� Controlling of chaos can be applied wherever chaos is present. This means
that its application is not only restricted to attracting sets, but can also be
used in nonattracting ones, situations in which we can produce interesting re-
sults.

� Control of chaos strategies can be combined with classic control strategies to
convey powerful, opportunistic, and efficient control mechanisms that exploit
the limits of flexibility that the system can provide.
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Joshua E. S. Socolar

This chapter is intended as a pedagogical introduction to discrete time delayed
feedback methods. It is neither a comprehensive review, nor a presentation of
dramatic new results. It does, on the other hand, organize known results in a
self-contained manner that emphasizes the conceptual points that have proven
to be important, where much of the original literature focuses on historically
important points and rigorous mathematical proofs. The present work also con-
tains examples and one generalization that have not appeared elsewhere. The
goal is to provide a conceptual foundation for readers who wonder whether dis-
crete time delay feedback methods are up to the task they have in mind. Since
the study of discrete methods foreshadows many (but not all!) of the important
questions that arise in studies of continuous versions of delayed feedback con-
trol, the present chapter may also serve as a useful prequel to chapters on con-
tinuous methods.

2.1
Overview: Why Study Discrete Maps?

When chaotic oscillations degrade the performance of a natural or engineered
system, control strategies are often aimed at creating stable, periodic behavior.
If it is important to alter the intrinsic dynamics of the system as little as possi-
ble, either because those dynamics are the object of study or because the energy
available for control is limited, the possibility of stabilizing an unstable periodic
orbit (UPO) embedded in the chaotic dynamics becomes highly attractive. A
conceptually simple scheme for accomplishing this is to continuously monitor a
system variable and adjust an available parameter with the goal of making the
system do the same thing in the present that it was doing one period in the
past [1]. In principle, all one needs to know is the period of the UPO. One can
then inject a feedback signal proportional to the measured difference between
current and past values of a system variable. For some range of feedback gains,
the UPO will be a stable orbit of the compound system with feedback. And
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when the system is on this orbit, the feedback signal will vanish – the observed
behavior will be an embedded periodic orbit intrinsic to the uncontrolled system
and the power dissipated in the feedback loop will become arbitrarily small.

The comparison of a current measurement to a measurement made some ap-
preciable time in the past in order to generate a control signal is termed “time
delayed feedback” (TDF). TDF can often be easier to implement than control
schemes that rely on detailed knowledge of the desired orbit and/or significant
amounts of computation to determine the feedback signal. Its principal benefit
is that the controller does not require prior knowledge of the values of the sys-
tem variables in the UPO – there is no need to measure the distance of the sys-
tem from the UPO itself. The simplification comes with a cost, however: the in-
troduction of a time delay into the system can give rise to unanticipated in-
stabilities. Much work has been done to elucidate the nature of these instabil-
ities and develop analytical methods for determining feedback parameter
choices that will do the desired job, most often for delay times chosen to coin-
cide with the period of the desired UPO. (See chapters by the authors Just,
Pyragas, Clausen, Parlitz, Janson, Masoller, Schöll, Illing, Wünsche, Christini,
Schuster, and Hikihara of this volume.)

Discrete-time systems described by maps rather than differential equations
provide a platform for gaining fundamental analytical insights into time delay
control methods. Though certain subtleties inherent in continuous control
schemes, such as latency effects [2–4] or infinite sets of perturbation modes and
associated Floquet multipliers [5, 6], are not captured in the discrete map mod-
els, the trends discovered through analysis of discrete maps are a good starting
point for developing intuition about the behavior of continuous systems. More-
over, in systems with sufficiently slow dynamics, the schemes for controlling
discrete maps may be directly implemented. An interesting example is the con-
trol of cardiac alternans, where the control signal is constructed from measure-
ments of the duration of the action potential (the time required for the trans-
membrane voltage to drop below a threshold value after an activating stimulus
is applied) [7, 8]. In that case, one works directly with the empirically observed
map rather than constructing it from underlying differential equations.

The TDF controllers studied to date generate a feedback signal that is linearly
proportional to a measured difference between current and past values. The
analysis of variations about the desired behavior in the controlled system there-
fore involves only linear stability analysis. The time delay introduces a complica-
tion, however, that can lead to nontrivial constraints on the types of UPOs that
can be stabilized by a given feedback scheme. We show below that almost all of
these constraints can be overcome in principle, so that almost any orbit that
can be stabilized using standard methods of proportional control based on a dis-
crete-map description can also be stabilized using TDF.

An important question about any control scheme is how sensitive it is to
noise in the system. This question can be addressed analytically in the context
of discrete maps. We show below one way of estimating the noise level that a
TDF controller can tolerate.
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2.2
Theme and Variations

The simplest system one might wish to control is an unstable fixed point of a
single-variable map. The map may represent the piercings of a Poincaré section
of a two-variable continuous system subject to periodic driving, for example,
with the section defined by the phase of the drive and the value of one of the
variables. The periodic drive ensures that the time delay between piercings of
the Poincaré section is always the same. (For subtleties associated with more
general Poincaré sections, see Chapter 6 by Claussen of this volume.) Let the
dynamics of the remaining system variable y be governed by a map

yt�1 � f �yt� �t�� �2�1�

where the integer index t represents time and the real number � is the value of
a system parameter that can be altered by an external signal. We assume that
f �y� �0� has a fixed point y�.

Control of y� is to be attempted by constructing a feedback signal that adjusts
� based on the difference between the current and past values of y. The sim-
plest approach is to let

�t � �0 � 	 yt 	 yt	1� �� �2�2�

where 	 is a (real) constant of proportionality [9]. A complete analysis of this ele-
mentary system reveals many of the key features of TDF. After describing these,
we will turn to extensions involving recursive use of past values of x and gener-
alizations to many dimensions.

The general form of TDF considered here may be written as follows:

yt�1 � f �yt� �0 � 	B0
	G � ut� �2�3�

ut �
��
s�0

	Rs � �yt	s 	 yt	s	1�� �2�4�

Here lowercase boldface quantities are �-dimensional vectors; uppercase bold-
face indicates a vector with k elements, where k is the number of parameters ac-
cessible for control; and a hat indicates a matrix quantity. f �yt� is the uncon-
trolled map; ut is the control signal; �0 is the vector of nominal values of the
adjustable parameters; 	B0 is an �� k matrix that specifies the coupling of the
control signal to the adjustable parameters; and 	G and 	R are matrices we are
free to choose in order to transform the measured variables into one or more
nonzero control signals. Equations (2.1) and (2.2) are the special case � � k � 1
and 	R � 0.

Equation (2.3) does not cover all possible strategies for including information
from many past iterates of the map. One could, for example, average signals
collected from some fixed number of past iterates [9, 10]. The method of
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Eq. (2.3) is sufficiently general, however, to allow stabilization of any fixed point
that can be controlled by the proportional control techniques described in con-
trol theory textbooks [11]. The infinite series appearing here is less of a problem
than one might first imagine. It can easily be implemented experimentally
using a recursive scheme that requires only a single delay element [12–14].

2.2.1
Rudimentary Time-Delay Feedback

For the simplest case, the success of a proposed controller is determined by lin-
ear stability analysis of Eqs. (2.1) and (2.2). We make the following definitions:

xt � yt 	 y�� ut � yt 	 yt	1� � � df
dy

����
y�y�

� 
 � 	
�f
��

����
���0

� �2�5�

The �f ��� term in the definition of 
 characterizes the sensitivity of the dy-
namics to changes in �. One must be careful to clearly define what is meant by
�. For example, suppose a parameter k appears in the differential equations that
define the dynamics. The discrete (map-based) controller may function, for ex-
ample, by adjusting the value of k smoothly up and down during the time inter-
val between measurements of xt, or by rapidly adjusting it at some time during
that interval and holding it fixed until the next adjustment is made. The value
of 
 then is not simply determined by �f ��k. In the former case, � would be
the amplitude of the modulation of k; in the latter, 
 would depend on the time
chosen for switching as well as the size of the adjustment of k.

In the vicinity of y�, Eqs. (2.1) and (2.2) then take the form

xt�1 � �xt � 
ut ut � xt 	 xt	1� �2�6�

or

xt�1

ut�1

 �
� � 


�	 1 


 �
xt

ut

 �
� �2�7�

Straightforward eigenvalue analysis leads to the picture shown in Fig. 2.1. Stable
operation of the system occurs if both eigenvalues �1 and �2 of the matrix in
Eq. (2.7) have magnitudes less than unity. We will refer to the eigenvalues as
Floquet multipliers to emphasize their relation to the underlying continuous dy-
namical system. If the largest value of ��� is greater than unity, control will be
unsuccessful.

Several points are worth noting. First, this basic scheme, sometimes referred
to as “time delay autosynchronization” (TDAS), cannot stabilize unstable fixed
points with � � 1 or � � 	3. Since the system is stable when ��� � 1 even with
for 
 � 0 (no control), TDAS is useful only for 	3 � � � 	1. The � � 	3 con-
straint can be lifted using the technique described in Section 2.2.2. Control of a
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fixed point that has a positive Floquet multiplier greater than unity requires the
use of higher dimensional schemes, as shown in Section 2.2.3.

Second, the nature of the instability that occurs as parameters are varied
across the stability boundary depends on which boundary is crossed. (We as-
sume that the full system includes a quadratic nonlinearity at the fixed point.)
For fixed �, increasing 
 generates a Hopf bifurcation, with �1 and �2 becoming
complex conjugates before the instability occurs. Decreasing 
 leads to a period-
doubling instability. A drift in the system parameter � to positive values greater
than unity while 
 remains fixed leads to a monotonic instability (no oscilla-
tions).

Third, the contours near the period-doubling boundary vary much more rap-
idly than those near the Hopf boundary. The system will generally be less sensi-
tive to parameter drift for larger values of 
 in the domain of control.

Finally, due to the non-normality of eigenvectors and nondegeneracy of eigen-
values of the mapping matrix, convergence to the fixed point from a randomly
selected initial condition need not be monotonic. There can be a large transient
that moves the system farther from the fixed point before convergence sets in.
This is illustrated the inset, where the distance from the fixed point is plotted
for a trajectory beginning at �x0� u0� � �1� 0� for � � 	2�5 and 
 � 0�85. This
type of transient growth plays an important role in determining how much
noise the controlled system can tolerate (see Section 2.3).
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Fig. 2.1 Stability diagram for the rudimentary
TDF scheme. Triangles are contours repre-
senting constant values of ���, the largest
Floquet multiplier of the controlled system.
The thick triangle corresponds to ��� � 1;
systems in its interior converge to the fixed
point. The thick dashed lines separate re-

gions of qualitatively different types of insta-
bility or convergence. The shaded region is
where control is useful. Inset: transient
growth followed by convergence to the fixed
point for successful control corresponding
to the labeled point in the gray region.



2.2.2
Extending the Domain of Control

In order to extend the utility of TDF to stronger instabilities in a practical man-
ner (and without resorting to standard feedback schemes that rely on knowledge
of the fixed point), values of the system variable from further in the past can be
incorporated into the feedback signal. The simplest way to do this, from both
an analytical and experimental perspective, is to replace Eq. (2.6) with

xt�1 � �xt � 
ut� ut �
��
s�0

Rs � �xt	s 	 xt	s	1�� �2�8�

where R is a real parameter we are free to choose. An advantage of this scheme
over other methods of incorporating past values of x is that the sum can be
formed recursively by rewriting ut as

ut � xt 	 xt	1 � R ut	1� �2�9�

The stability analysis of this system is then quite similar to the above analysis
of TDAS. The linearization about the fixed point now reads

xt�1

ut�1

 �
� � 


�	 1 
 � R

 �
xt

ut

 �
� �2�10�

Writing expressions for the Floquet multipliers of this map, one can see that
they are related to the TDAS Floquet multipliers above by the parameter trans-
formation

�� �	 R
1	 R

� 
 � 
 	 R
�	 R
1	 R

� �2�11�

Thus Fig. 2.7 simply gets sheared for nonzero R, as shown in Fig. 2.2, where
we display the cases R � 1 and R � 1 separately so that � is always increasing
to the right.

The notable features of these pictures are the extensions of the domain of
control to arbitrary values of �. Values of R just below 1 allow control of arbitrar-
ily strong oscillatory instabilities (large, negative values of �). Values of R just
above 1 allow control of arbitrarily strong monotonic instabilities (� � 0).

The latter possibility may be counter-intuitive because R � 1 leads to increas-
ingly large weighting of past deviations, which would seem to imply larger and
larger feedback signals. The analysis shows, however, that the system arranges
for cancellation of these large effects and x and u do both converge to zero [15].

There is one special case where ETDAS is likely to fail, as would any TDF
method that does not refer explicitly to the fixed point value of a system vari-
able: the case � � 1, which corresponds to a stationary mode. The linearized sys-
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tem in this case has a continuum of fixed points, and TDF cannot choose be-
tween them. That is, if the system begins at some distance from the desired
fixed point, it will return to the initial point and therefore will always produce
u � 0. The stability of the full (nonlinear) system will then depend upon the na-
ture of the nonlinearity near the fixed point. A nonlinear stability analysis of
maps controlled by TDF has not yet been carried out. Experience with high-di-
mensional systems, however, shows that marginal Floquet multipliers tend to
destabilize controlled systems in the presence of noise (see below).

The use of nonzero R, referred to as “extended TDAS” (ETDAS) allows for
stabilization of any fixed point (with no stationary mode) of a one-dimensional
map. Direct implementation of this conceptual scheme requires sample-and-
hold hardware that is triggered upon detection of passage through a Poincaré
section, but does not require holding any signal for more than one period of the
desired UPO.

The performance of discrete ETDAS is illustrated in Fig. 2.3 for the Rössler
system. The system equations are

�x � 	y	 z� �x� �2�12�
�y � x � c1 y� �y� �2�13�
�z � �	 z �x 	 c2� � �z� �2�14�

where c1 and c2 are constants, � is the parameter assumed to be available for
control, and �i is a bounded noise term. More precisely, we introduce the noise
through an additive term in a simple Euler integrator:

x�t� �� � x 	 �y	 z� �x��� �2�15�
y�t� �� � y� �x � c1 y� �y��� �2�16�
z�t� �� � z� ��	 z �x 	 c2� � �z��� �2�17�
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Fig. 2.2 Stability diagram for the extended scheme. The sys-
tem is stable in the interior of the triangle. The shaded area
indicates the regime where control is necessary for stability.



where �i is a random number drawn from a uniform distribution over the inter-
val 	�max� �max�.

We take the Poincaré section to be defined as the plane y � 0 and consider
the piercings with �y � 0 and defining xn as the value of x on the nth passage
through the Poincaré section. The control signal is constructed as follows:

un � xn 	 xn	1 � Run	1� �2�18�
� � �0 � 	 un for times between piercings n and n� 1� �2�19�

where 	 and R are constants. The parameter values used for the figure are:
c1 � 0�3; c2 � 5; �0 � 0�3; �max � 0�1; � � 0�01; 	 � 0�25 (or 0 for no control);
and R � 0�5.

From Fig. 2.3 (a), one can see that the fixed point is strongly unstable; the
slope � of the return map at the fixed point is less than 	3, which means that
stabilization cannot be achieved with the simple R � 0 scheme. The middle pa-
nels show that there is a periodic orbit that is stabilized by ETDAS with
R � 0�5. (Though not shown here, the feedback signal u does decay to zero.)
The right panels show that the control is robust with respect to bounded noise.
The points on the return map remain close to the fixed point and the orbit stays
close to the periodic orbit of the middle panel.
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Fig. 2.3 ETDAS stabilization of the Rössler oscillator. (a) The
uncontrolled system, with zero noise. (b) The controlled sys-
tem, with zero noise. (c) The controlled system, with noise.
(d), (e), (f) show return maps for x constructed from the tra-
jectories of (a), (b), (c), respectively. Lighter dots indicate ear-
lier times. Note the different scales.



2.2.3
High-Dimensional Systems

The previous two subsections introduced the basic idea of discrete TDF in the
context of maps with a fixed point that has just one unstable direction. To stabi-
lize systems consisting of many dynamical variables and periodic orbits with
multiple unstable directions, we may need to monitor several system variables
and provide feedback signals to several parameters. A theoretical investigation
of a powerful way to do this was introduced by Yamamoto et al. [16]. Here we
describe a generalization of ETDAS (called GETDAS) that, while technically rep-
resenting a special case of the general method [17], has been shown to retain
enough generality to cover almost all classically controllable fixed points [14].

Let xt be an �-dimensional vector of deviations of system variables from their
fixed point values on the Poincaré section; let � now represent k parameters
that are accessible for adjustment; and let 	A be the matrix that maps xt to xt�1

in the uncontrolled system at �0. We assume that 	A has full rank. Otherwise
we could choose a smaller set of variables to describe the system near the fixed
point.

The ETDAS parameter 
 is now best thought of as a product of two matrices:
a factor 	G that we are free to adjust and a factor 	B that contains the information
about which k parameters are adjustable and how small changes in them affect
the map. (	G is the analog of 	 in Eq. (2.2) and 	B is the analog of �f ��� in
Eq. (2.5). Note that the information in 	B0 of Eq. (2.3) is included in 	B.)

For purposes of analysis, it is convenient to include 	G in the definition of the
control signal u so that the linearized version of Eq. (2.3) becomes

xt�1 � 	A � xt � 	B � ut � �2�20�

ut �
��
s�0

	Rs 	G � �xt	s 	 xt	s	1� �2�21�

� 	G � �xt 	 xt	1� � 	R � ut	1� �2�22�

A schematic diagram of a GETDAS controller is shown in Fig. 2.4. For imple-
mentation of the discrete controllers shown here, the output of 	B is sampled
once every period and the sampled value determines the feedback signal.

The design problem for such a controller is to choose 	G and 	R given 	A and
	B. (We assume 	A has full rank.) One convenient approach is to make use of
well-known design methods for standard proportional control systems in which
the feedback signal is determined by the difference between the current variable
values and their fixed point values. When the fixed point values are available for
reference, the (linearized) controlled system takes the form

xt�1 � 	A � xt � 	B � ut � �2�23�
ut � 		K � xt � �2�24�
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where 	K is a matrix that can be chosen using techniques of discrete state opti-
mal control theory if and only if 	A and 	B satisfy a controllability condition. (See
[11] for a detailed discussion of controllability.)

Equations (2.20) and (2.23) can both be cast in the form

x
u

 �
t�1
� 	Q

x
u

 �
t

� �2�25�

where we have

	Q � 	A 	B
	G	A	 	I� 	G	B� 	R

 �
or

	A 	B
		K	A 		K	B

 �
� �2�26�

A comparison of these two forms immediately reveals that the GETDAS scheme
has the same stability properties as the standard method if we choose

	G � 		K 	A	 	I
� �	1	A and 	R � 	K 	A	 	I

� �	1	B � �2�27�

(Note that 	A	 	I
� �	1	A	 	A	 	I

� �	1� 	I and that 	A	 	I�	1 commutes with 	A.)
This construction breaks down only if 	A	 	I� is singular, which occurs if and
only if the system has one or more stationary mode, as may have been expected
from the analysis of the one-dimensional version.

Assuming no stationary modes, every choice of 	K can be mimicked by a
choice of 	G and 	R [14]. According to Eq. (2.27), the matrices thus obtained satis-
fy the relation 	R � 		G	A	1	B. Any choice of 	G and 	R that do not satisfy this rela-
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Fig. 2.4 Schematic circuit diagram for imple-
menting GETDAS to control a dynamical sys-
tem. Triple lines indicate multiple signals
that are fed into each element in the loop.
The hexagon represents an element whose
only effect is a time delay of all incoming
signals. Triangles represent devices that
form the difference of each pair of incoming

signals. Each labeled square represents a de-
vice that performs a linear transformation
on its inputs. The square labeled B may be
considered as a part of the system that can-
not be changed and may have fewer outputs
than the full number of system variables.
The circle labeled SH is a sample-and-hold
element.



tion corresponds to GETDAS schemes that are not equivalent to any standard
proportional controller. Yamamoto introduced a further generalization of TDF
control in which a vector w of dynamical variables is added to the system as
part of the control mechanism and the feedback signal is generated from it as
follows [16]:

ut � 	G1�xt 	 xt	1� � 	R1wt� �2�28�

wt � 	G2�xt	1 	 xt	2� � 	R2wt	1� �2�29�

The method is called dynamical delayed feedback control (DDFC). Nakajima noted
that GETDAS is a special case of DDFC in which 	G2 � 	I and 	R1 � 	G1	R2, with
the GETDAS parameters being 	G � 	G1 and 	R � 	R2 [17]. The relations between
the various TDF methods and the standard proportional controllers are summa-
rized in Fig. 2.5.

To illustrate two points about GETDAS control, we study the fixed point of a
two-dimensional system with two unstable Floquet multipliers. We consider two
variables coupled symmetrically with parameter values set such that the fixed
point of the coupled system has two unstable Floquet multipliers, and we as-
sume that the parameter accessible for control affects only one of the maps.
The behavior of the system near the fixed point is given by

	A � �1 c
c �2

 �
� 	B � 1 0

0 0

 �
� �2�30�

Inspection of the eigenvalues of 	A	 	K	B (expressed in terms of arbitrary ele-
ments Kij) reveals that the following choice drives the system to the fixed point
in finite time (achieves deadbeat control):
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Fig. 2.5 Relations between time delay methods and standard
proportional control methods. Each disk represents a choice
of control parameters. Disks joined by lines generate identical
	Q matrices and hence identical Floquet multipliers at the con-
trolled fixed point. Shaded regions indicate one-dimensional
maps.



	K � �1 � �2 �c2 � �2
2��c

0 0

 �
� �2�31�

For purposes of illustration, we choose 	K slightly different from this, so that
control is still successful but the convergence rate is finite. Because the general
expressions for 	G and 	R are rather long and unilluminating, we consider the
specific case

�1 � 	2� �2 � 1�5� c � 0�5� and 	K � 0�5 4�0
0 0

 �
� �2�32�

With this choice, the uncontrolled system 	A has two unstable Floquet multi-
pliers �	2�0700� 1�5700� and the (successfully) controlled system 	Q has only
stable Floquet multipliers � ��������

1�2
�

�	 ��������
1�2

�
� 0� 0�. Equation (2.27) then tells us

that a GETDAS controller with

	G � 	0�7857 	10�7143
0 0

 �
and 	R � 1�2857 0

0 0

 �
�2�33�

will stabilize the system, yielding the same convergence rate –� � ��������
1�2

�
� 0�7071. It is interesting to note, however, that the convergence rate can be im-
proved without changing 	R. If we take, for example,

	G � 	0�4857 	9�7143
0 0

 �
� �2�34�

the Floquet multipliers become �0�581952�	0�466233� 0�184281� 0�. The largest
� has been reduced at the expense of increasing one of the zero multipliers by
a small amount. In addition, the elements of 	G have decreased in magnitude,
which may be an advantage in some applications. This GETDAS scheme is not
equivalent to any choice of 	K. For the system considered here, improving the
convergence rate by choosing a different 	K leads to larger matrix elements of 	G.
Thus we see that there is a potential benefit to exploring GETDAS parameter
choices that do not map directly onto a standard control scheme.

The above example is a case where the uncontrolled system has a single real,
unstable Floquet multiplier. As may have been expected from the one-dimen-
sional analysis, the required 	R has an eigenvalue greater than unity.

Control of rings of many identical coupled maps have been studied in some
detail using standard proportional control techniques [18, 19] and time delay
methods [14]. In addition to being examples of control in higher dimensional
systems, these studies emphasize the role that symmetries play in the design
and robustness of the controllers.
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2.3
Robustness of Time-Delay Stabilization

The effect of bounded, unbiased, and uncorrelated noise on the performance of
a discrete controller of any of the types defined above can be calculated to linear
order in the deviations from the fixed point. The purpose of such a calculation
is to give a heuristic picture of the robustness of the controller. When a noise
term ht is added to the right-hand side of Eq. (2.20), the iterates of the map will
form an elliptical cloud of points centered at the fixed point with axis lengths
larger than the widths of the distributions of the components of h, as observed
in Fig. 2.3 (f). (Note that h is the noise in the discrete map presumably due to
the microscopic noise �i in the underlying differential equations but not easily
calculated from it.) As the size of h is increased, the nonlinearity in the map
will eventually lead to a discontinuous jump in the cloud to a size limited only
by nonlinear saturation effects, signaling a loss of control. The noise level at
which this happens can be estimated as follows.

In the linear system, the introduced noise h will be amplified by the system’s
dynamics [18, 19]. We assume that noise enters the system in the form of an in-
dependent random addition hi to xi on every time step, with hi drawn from a
bounded distribution with variance 2. Equation (2.20) becomes

xt�1 � 	A � xt � 	B � ut � ht� �2�35�

ut �
��
s�0

	R
s 	G � �xt	s 	 xt	s	1� �2�36�

with

��hj�t�a � 0 � j� t �2�37�
��hi�t�hj�t� �a � 2�ij�tt�

Here the notation � �a represents an ensemble average.
For notational convenience, we define x to be the 2�-dimensional vector �x�u�

and h to be �h� 	G � h�. In terms of 	Q as defined in Eq. (2.25), Eq. (2.35) becomes

xt�1 � 	Q � xt � ht � �2�38�

Iterative substitution for x on the right-hand side yields

xt�1 � 	Qn�1 � xt	n �
�n

s�0

	Qsht	s � �2�39�
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In the n �� limit, the first term on the right-hand side vanishes because 	G
and 	R have been chosen such that all eigenvalues of 	Q have magnitude less
than unity.

To estimate the size of the cloud of points around the fixed point, we calcu-
late the average magnitude of xt�1 over many realizations of the noise. Using
Eq. (2.37) and the fact that the first � components of h are related to the last �

through 	G, one gets

xt�1 � xt�1� �a�
��
s�0

Tr �	Q��s � 	Qs � 	H
� �

� �2�40�

where 	Hij � ��hi�t �hj�t�a, which can be evaluated using Eq. (2.37) and expressed
as

	H � 2 	I 	G
�

	G 	G � 	G�
�

 �
�2�41�

where 	I is the �� � identity matrix. In the case where 	G and 	R can be obtained
from 	K via Eq. (2.27), the algebra can be simplified [14]; and in the one-dimen-
sional case where 	G and 	R are scalars, further simplification is possible; but
here we retain the fully general expressions.

To carry out the infinite sum in Eq. (2.40), define v�i� and e�i� to be the left
and right eigenvectors, respectively, of 	Q corresponding to the eigenvalue �i and
normalized such that v�i� � e�j� � �ij. Using

�	Q��s � 	Qs
� �

pq
�
�2�
i�j�1

�i�j

� �s
e�i� � e�j�
� �

v�j�p v�i�q

� �
�2�42�

and performing the sum over s, we get

�xt�1 � xt�1� �
�2�
i�j�1

e�i� � e�j�� �
v�j� � 	H � v�i�� �

1	 �i�j
� �2�43�

which can be evaluated numerically given 	A, 	B, 	G, 	R, and hence 	Q and 	H.
From this expression, we see again that a stationary mode (� � 1) will cause
trouble. We also see that a pair of complex marginally stable modes (��� � 1)
may cause trouble if the numerator associated with them does not vanish.

We define the (linear) noise amplification factor 	 as the ratio of the standard
deviation of the distribution of states around the fixed point in the controlled
system to the standard deviation of the intrinsic noise:

	 �
�������������������������
�xt�1 � xt�1�a

2�

�
� �2�44�
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The denominator used here implies an admittedly rough assumption that the
cloud of points around the fixed point is spherical. We are seeking here only an
order-of-magnitude estimate.

In a nonlinear system, the standard deviation of the cloud around the fixed
point is roughly 	 for very small , but increases rapidly as  crosses some
threshold max. (An illustration of this behavior can be found in [14].) To esti-
mate max, we make the rough assumption that nonlinearities introduce uncor-
related errors and treat them as an additional source of noise with standard de-
viation nonlin. The total standard deviation � from the fixed point, averaged over
the 2� components of x, is then

� � 	
�����������������������
2 � 2

nonlin

�
� �2�45�

Assuming that the quadratic nonlinearity does not vanish, we expect nonlin to
be roughly the size of the nonlinear contribution near the fixed point:
nonlin � f ���2�2, where f �� is � times the average magnitude of the coefficient of
xixj in the expansion of the map about the fixed point. The threshold is then
determined by a self-consistency condition on �:

� � 	

������������������������
2 � 1

4
f ���4

�
� �2�46�

A real solution for � exists if and only if

 � max � 1
	2f ��

� �2�47�

As a test of this formula, consider the effect of adding a quadratic term to nu-
merical example of GETDAS described above. We take the system to be the
nonlinear map

xt�1 � 	A � xt � 	B � ut � 2f ���x2
1� x

2
2� � ht� �2�48�

ut �
��
s�0

	R
s 	G � �xt	s 	 xt	s	1� �2�49�

with f �� � 1 and other parameters specified by Eqs. (2.32)–(2.34). Evaluating 	

and max according to the above formulas, we find 	 � 12�6 and predict that loss
of control should occur for �0.006. Direct iteration of the controlled map
shows that the standard deviation in x � x is exactly 	 for 
 0�006, grows
slightly faster than linearly with  for  � 0�006, and abruptly diverges at
 � 0�009. Example calculations of max and detailed comparisons to numerical
simulations for a higher dimensional system of coupled maps may be found in
[14].
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2.4
Summary

Discrete time delay feedback methods can be a useful tool for stabilizing un-
stable periodic orbits of continuous systems or fixed points of discrete maps. In
addition to being amenable to analysis, the extended scheme that makes recur-
sive use of past iterates of the feedback signal is particularly practical, as it can
be implemented in hardware with a single delay element and in principle en-
ables control of any fixed point that is controllable via standard proportional
control techniques. Moreover, experience suggests that many of the features
brought to light in the analysis of discrete, recursive time delayed feedback sys-
tems are present as well in continuous systems, as the reader will notice in per-
using other chapters in this volume. As research in chaos control continues to
turn up new situations requiring theoretical analysis and new applications in
natural and engineered systems, the concepts and basic phenomenology of dis-
crete time delayed feedback control should be put to good use.
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Kestutis Pyragas, Tatjana Pyragienė, and Viktoras Pyragas

3.1
Introduction

Although the delayed feedback control (DFC) method [1] was introduced more
than one decade ago, it is still one of the most active fields in applied nonlinear
science [2, 3]. The method allows a noninvasive stabilization of unstable period-
ic orbits (UPOs) of dynamical systems in the sense that the control force
vanishes when the target state is reached. The DFC algorithm is reference free
and makes use of a control signal obtained from the difference between the cur-
rent state of the system and the state of the system delayed by one period of the
target orbit. The block diagram of the method is presented in Fig. 3.1. The
method allows us to treat the controlled system as a black box; no exact knowl-
edge of either the form of the periodic orbit or the system of equations is
needed. The DFC algorithm is especially superior for fast dynamical systems,
since it does not require any real-time computer processing.

Successful implementation of the DFC algorithm has been attained in diverse
experimental systems, including electronic chaotic oscillators [4–7], mechanical
pendulums [8, 9], lasers [10–12], gas discharge systems [13–15], a current-driven
ion acoustic instability [16], a chaotic Taylor-Couette flow [17], chemical systems
[18, 19], high-power ferromagnetic resonance [20], helicopter rotor blades [21],
and a cardiac system [22].

The DFC method has been verified for a large number of theoretical models
from different fields. The problem of stabilizing high-speed semiconductor la-
sers was considered in [23–25]. Batlle et al. [26] implemented the DFC in a
model of buck converter. The problem of controlling chaotic solitons by a time
delayed feedback mechanism was considered in [27]. Galvanetto [28] demon-
strated the delayed feedback control of chaotic systems with dry friction. Bleich
and Socolar [29] demonstrated that the DFC can stabilize regular behavior in a
paced, excitable oscillator described by Fitzhugh-Nagumo equations. Rappel et
al. [30] used the DFC for stabilization of spiral waves in an excitable media as a
model of cardiac tissue in order to prevent the spiral wave breakup. The DFC
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was also implemented in a model of a car-following traffic [31] and in econom-
ical models [32, 33]. Tsui and Jones [34] investigated the problem of chaotic sa-
tellite attitude control. Mensour and Longtin [35] proposed the DFC as a meth-
od to store information in delay-differential equations. Mitsubori and Aihara
[36] suggested rather exotic application of the DFC, namely, the control of chao-
tic roll motion of a flooded ship in waves. Rosenblum and Pikovsky [37, 38] con-
sidered the influence of the DFC on the synchronization in an ensemble of
globally coupled oscillators and discussed a possibility of using this approach to
suppression of pathological brain rhythms.

Several modifications of the original delayed feedback scheme have been pro-
posed to improve the control performance. Among those are extended DFC
(EDFC) schemes employing multiple delays to stabilize strongly unstable orbits
[39, 40] or unstable DFC (UDFC) schemes using an unstable degree of freedom
in a feedback loop [41–43] to overcome the so-called odd number limitation
from which usual delayed feedback control suffers [44–46].

Although the DFC method is popular in experimental investigations, its theo-
ry is still in infancy. Systems with time delay are hard to handle because the dy-
namics takes place in infinite-dimensional phase spaces. Even linear analysis of
such systems is difficult due to the infinite number of Floquet exponents (FEs)
characterizing the stability of controlled orbits. The linear and nonlinear analy-
sis of such systems is usually performed numerically. In this context, a reason-
able way for further development of the delayed feedback control theory is to
look for problems allowing an analytical treatment. Our idea for the analytical
approach is to consider dynamical systems close to bifurcation points of period-
ic orbits.

Most investigations in the theory of the DFC are devoted to the stabilization
of unstable periodic orbits embedded in chaotic attractors of low-dimensional
(usually three-dimensional) systems. The leading Floquet multipliers (FMs) of
such orbits are real valued and lie outside the unit circle in the complex plane
(Fig. 3.2 (a) and (b)). The orbits with the negative real multiplier arise from a
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Fig. 3.1 Block diagram of the delayed feedback control
method. y�t� is an output variable, p is a control parameter,
p0 is its value at which the dynamical system possesses an
unstable periodic orbit with a period �, and K is the feedback
gain.



period-doubling bifurcation and are typical, for example, for the Rössler system.
The mechanism of stabilization of such orbits by delayed feedback is well un-
derstood [44, 47]. The orbits with the positive real multiplier come, for example,
from a tangent or a subcritical Hopf bifurcation and are typical, for instance,
for the Lorenz system. They satisfy the odd number limitation and it has been
assumed for a long time that they cannot be stabilized by the usual delayed
feedback method, see, however, chapter 4, for a correction of this view. The
mechanism of stabilization of such orbits by the UDFC is described in [41–43].
In addition to the above-mentioned orbits, there exists a large class of unstable
periodic orbits with the complex conjugate pair of leading FMs (Fig. 3.2 (c)).
Such orbits arise from a Nejmark-Sacker (discrete Hopf) bifurcation and cannot
appear in low-dimensional chaotic attractors. However, such orbits may appear
in low-dimensional nonchaotic systems.

Our aim is to describe an analytical treatment of the DFC algorithm for orbits
arising in the three different bifurcations. Note that all three types of orbits
have different topological properties. The orbits with the negative real multiplier
flip their neighborhood during one turn. We consider them in Section 3.3. The
orbits with the complex conjugate pair of the multipliers have a finite torsion
and the orbits with the positive real multiplier have no torsion. We consider
their stabilization in Sections 3.4 and 3.5, respectively. In Section 3.2, we de-
scribe a relationship between the FEs of periodic orbits controlled by propor-
tional and delayed feedback algorithms. This relationship is an essential tool of
our analytical approach. We also utilize the methods of bifurcation theory and
asymptotic methods of nonlinear dynamics, such as method of averaging, the
center manifold theory, and a near identity transformation.

3.1 Introduction 49

Fig. 3.2 Leading Floquet multipliers of unstable periodic
orbits arising from different bifurcations: (a) period doubling,
(b) tangent or subcritical Hopf, and (c) Nejmark-Sacker
(discrete Hopf) bifurcations. The unit circle defines the region
of stability.



3.2
Proportional Versus Delayed Feedback

Consider a dynamical system described by ordinary differential equations

�x � f �x� p� t�� �3�1�

where the vector x � Rm defines the dynamical variables and p is a scalar pa-
rameter available for an external adjustment. We imagine that a scalar variable

y�t� � g
�
x�t�� �3�2�

that is a function of dynamic variables x�t� can be measured as the system out-
put. Let us suppose that at p � p0 � 0 the system has an UPO x0�t� that satis-
fies �x0 � f �x0� 0� t� and x0�t� T� � x0�t�, where T is the period of the UPO.
Here the value of the parameter p0 is fixed to zero without a loss of generality.
To stabilize the UPO we consider two continuous time feedback techniques, the
proportional feedback control (PFC) and the DFC, both introduced by Pyragas
[1].

The PFC uses the periodic reference signal

y0�t� � g
�
x0�t�

� �3�3�

that corresponds to the system output if it would move along the target UPO.
For chaotic systems, this periodic signal can be reconstructed from the chaotic
output y�t� by using the standard methods for extracting UPOs from chaotic
time series data [48, 49]. The control is achieved via adjusting the system pa-
rameter by a proportional feedback

p�t� � G y0�t� 	 y�t� �� �3�4�

where G is the control gain. If the stabilization is successful the feedback per-
turbation p�t� vanishes. The experimental implementation of this method is dif-
ficult since it is not simple to reconstruct the UPO from experimental data.

More convenient for experimental implementation is the DFC method, which
can be derived from the PFC by replacing the periodic reference signal y0�t�
with the delayed output signal y�t	 T� [1]:

p�t� � K y�t	 T� 	 y�t� �� �3�5�

Here we exchanged the notation of the feedback gain for K to differ it from that
of the proportional feedback. The delayed feedback perturbation (3.5) also
vanishes provided the target UPO is stabilized. The DFC uses the delayed out-
put y�t	 T� as the reference signal and the necessity of the UPO reconstruction
is avoided. This feature determines the main advantage of the DFC over the
PFC.
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Hereafter, we consider a more general (extended) version of the delayed feed-
back control, the EDFC, in which a sum of states at integer multiples in the
past is used [39]:

p�t� � K �1	 R�
��
n�1

Rn	1y�t	 nT� 	 y�t�
� �

� �3�6�

The sum represents a geometric series with the parameter �R� � 1 that deter-
mines the relative importance of past differences. For R � 0 the EDFC trans-
forms to the original DFC. The extended method is superior to the original in
that it can stabilize UPOs of higher periods and with larger FEs. For experimen-
tal implementation, it is important that the infinite sum in Eq. (3.6) can be gen-
erated using only single time delay element in the feedback loop.

The success of the above methods can be predicted by a linear stability analy-
sis of the target orbit. For the PFC method, the small deviations from the UPO
�x�t� � x�t� 	 x0�t� are described by variational equation

� �x � A�t� �GB�t� ��x� �3�7�

where A�t� � A�t� T� and B�t� � B�t� T� are both T -periodic m �m matrices

A�t� � D1f
�
x0�t�� 0� t

�
� B�t� � D2f

�
x0�t�� 0� t

� Dg
�
x0�t�

�
� �3�8�

Here D1 (D2) denotes the vector (scalar) derivative with respect to the first (sec-
ond) argument. The matrix A�t� defines the stability properties of the UPO of
the free system and B�t� is the control matrix that contains all the details on
the coupling of the control force.

Solutions of Eq. (3.7) can be decomposed into eigenfunctions according to the
Floquet theory,

�x � exp��t�u�t�� u�t� � u�t� T�� �3�9�

where � is the FE. The spectrum of the FEs can be obtained with the help of
the fundamental m �m matrix ��G� t� that is defined by equalities

���G� t� � A�t� �GB�t� ���G� t�� ��G� 0� � I� �3�10�

For any initial condition xin, the solution of Eq. (3.7) can be expressed with this
matrix, x�t� � ��G� t�xin. Combining this equality with Eq. (3.9) one obtains the
system ��G�T� 	 exp��T�I �xin � 0 that yields the desired eigensolutions. The
characteristic equation for the FEs reads

det ��G�T� 	 exp��T�I � � 0� �3�11�
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It defines m FEs �j (or Floquet multipliers �j � exp��jT�), j � 1� � � � �m that are
the functions of the control gain G:

�j � Fj�G�� j � 1� � � � �m� �3�12�

The values Fj�0� are the FEs of the free system. By assumption, at least one FE
of the free UPOs has a positive real part. The PFC is successful if the real parts
of all eigenvalues are negative, ReFj�G� � 0, j � 1� � � � �m, in some interval of
the parameter G.

Consider next the stability problem for the EDFC. The variational equation in
this case reads

� �x � A�t��x�t� � KB�t� �1	 R�
��
n�1

Rn	1�x�t	 nT� 	 �x�t�
� �

� �3�13�

The delay terms can be eliminated due to Eq. (3.9), �x�t	 nT� � e	n�T�x�t�. As
a result the problem reduces to the system of ordinary differential equations
similar to Eq. (3.7),

� �x � A�t� � KH���B�t� ��x� �3�14�

where

H��� � 1	 exp�	�T�
1	 R exp�	�T� �3�15�

is the transfer function of the extended delayed feedback controller. Equa-
tions (3.7) and (3.14) have the same structure defined by the matrices A�t� and
B�t� and differ only by the value of the control gain. The equations become
identical if we substitute G � KH���. The price one has to pay for the elimina-
tion of the delay terms is that the characteristic equation defining the FEs of
the EDFC depends on the FEs itself:

det �
�
KH����T�	 exp��T�I� � � 0� �3�16�

Nevertheless, we can take advantage of the linear stability analysis for the PFC
in order to predict the stability of the system controlled by time delayed feed-
back. Suppose that the functions Fj�G� defining the FEs for the PFC are known.
Then the FEs of the UPO controlled by time delayed feedback can be obtained
through the solution of the transcendental equations

� � Fj
�
KH����� j � 1� � � � �m� �3�17�
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We emphasize the physical meaning of the functions Fj�G�, namely, these func-
tions describe the dependence of the Floquet exponents on the control gain in
the case of the PFC.

3.3
Controlling Periodic Orbits Arising from a Period Doubling Bifurcation

In this section, we consider the theory of the DFC for periodic orbits arising
from a period doubling bifurcation. Such orbits flip their neighborhood during
one turn. More specifically, we consider UPOs whose leading Floquet multiplier
is real and negative (Fig. 3.2 (a)) so that the corresponding FE obeys
ImF1�0� � ��T . It means that the FE is placed on the boundary of the “Bril-
louin zone.” Such FEs are likely to remain on the boundary under various per-
turbations and hence the condition ImF1�G� � ��T holds in some finite inter-
val of the control gain G � Gmin�Gmax�, Gmin � 0, Gmax � 0.

Let us introduce a dimensionless function

��G� � F1�G�T 	 i� �3�18�

that describes the dependence of the real part of the leading FE on the control
gain G for the PFC and denote by

� � �T 	 i� �3�19�

the dimensionless FE of the EDFC shifted by the amount � along the complex
axes. Then from Eqs. (3.15) and (3.17) we derive

� � ��G�� �3�20 a�

K � G
1� R exp

�	��G��
1� exp

�	��G�� � �3�20 b�

These equations define the parametric dependence � versus K for the EDFC.
To demonstrate the benefit of Eqs. (3.20) let us derive the stability threshold

of the UPO controlled by the extended delayed feedback. The stability of the
periodic orbit is changed when � reverses the sign. From Eq. (3.20a) it follows
that the function ��G� has to vanish for some value G � G1, ��G1� � 0. The
value of the control gain G1 is nothing but the stability threshold of the UPO
controlled by the PFC. Then from Eq. (3.20 b) one obtains the stability threshold
for the EDFC:

K1 � G1�1� R��2� �3�21�

It is interesting to note that the stability threshold for the DFC (R � 0) is equal
to the half of the threshold in the case of the PFC, K1 � G1�2. In the following
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we demonstrate the use of the parametric equations (3.20) for a specific exam-
ple of the Rössler system.

3.3.1
Example: Controlling the Rössler System

Let us consider the problem of stabilizing the period-one UPO of the Rössler
system [50]:

�x1

�x2

�x3

�� � � 	x2 	 x3

x1 � ax2

b� �x1 	 c�x3

�� � � p�t�
0
1
0

�� � � �3�22�

Here we suppose that the feedback perturbation p�t� is applied only to the sec-
ond equation of the Rössler system and the dynamic variable x2 is an observa-
ble available at the system output, i.e., y�t� � g

�
x�t�� � x2�t�.

For parameter values a � 0�2, b � 0�2, and c � 5�7, the free (p�t� � 0) Rössler
system exhibits chaotic behavior. Linearizing Eq. (3.22) around the UPO one ob-
tains explicit expressions for the matrices A�t� and B�t� defined in Eq. (3.8).

First we consider the system (3.22) controlled by proportional feedback, when
the perturbation p�t� is defined by Eq. (3.4). By solving Eqs. (3.10) and (3.11) we
obtain three FEs �1, �2, and �3 as functions of the control gain G. The real
parts of these functions are presented in Fig. 3.3 (a). The values of the FEs of
the free (G � 0) UPO are �1T � 0�876� i�, �2T � 0, �3T � 	31�974� i�.
Thus the first and the third FEs are located on the boundary of the “Brillouin
zone.” In Fig. 3.3 (a), we restricted ourselves to a small interval of the parameter
G � 0� 0�67� in which all FEs do not change their imaginary parts. Information
on the behavior of the leading FE �1 or, more precisely, of the real-valued func-
tion ��G� � �1T 	 i� in this interval will suffice to derive the main stability
properties of the system controlled by delayed feedback.
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Fig. 3.3 (a) FEs of the Rösler system under
PFC as functions of the control gain G. Thick
solid, thin broken, and thin solid lines repre-
sent the functions �1T 	 i�, �2T (zero ex-
ponent), and �3T 	 i�, respectively. (b)
Parametric dependence K versus � defined

by Eqs. (3.20) for the EDFC. The numbers
mark the curves with different values of the
parameter R: (1) 	0�5, (2) 	0�2, (3) 0, (4)
0.2, (5) 0.28, (6) 0.4. Solid dots show the
maxima of the curves and open circles indi-
cate their intersections with the line � � 0.



The main information on the EDFC performance can be gained from para-
metric equations (3.20). They make possible a simple reconstruction of the rele-
vant Floquet branch in the (K , �) plane. This Floquet branch is shown in
Fig. 3.3 (b) for different values of the parameter R. Let us denote the dependence
K versus � corresponding to this branch by a function �, K � ����. It reads

���� � �	1��� 1� R exp�	��
1� exp�	�� � �3�23�

where �	1 denotes the inverse function of ��G�. The maximum in the region
� � 0 defines the minimal value of the leading FE �min for the EDFC and
Kop � ���min� is the optimal value of the control gain at which the fastest con-
vergence of the nearby trajectories to the desired orbit is attained. From
Fig. 3.3 (b) it is evident that the delayed feedback controller should gain perfor-
mance through the increase of the parameter R since the maximum of the
���� function moves to the left. At R � R� � 0�28 the maximum disappears.
For R � R�, it is difficult to predict the optimal characteristics of the EDFC. In
this case the value �min is determined by the intersection of different Floquet
branches.

An evaluation of the right boundary K2 of the stability domain is a more intri-
cate problem. Nevertheless, for the parameter R � R� it can be successfully
solved by means of an analytical continuation of the function ���� on the com-
plex region. For this purpose we expand the function ���� at the point � � �min

into power series

���� � Kop �
�N�1

n�2

�n��	 �min�n� �3�24�

We evaluate numerically the coefficients �n by the least-squares fitting. Here we
take the real values of �. To extend the Floquet branch to the region K � Kop

we have to solve the equation K � ���� for the complex argument �.
Figure 3.4 shows the dependence of the leading FEs on the control gain K for

the EDFC. The thick solid line represents the most important Floquet branch
that conditions the main stability properties of the system. It is described by the
function K � ���� with the real argument �. For R � R�, this branch originates
an additional sub-branch, which starts at the point (Kop� �min) and spreads to
the region K � Kop. The sub-branch results from an analytical continuation of
the function ���� on the complex plane. As seen from the figures the Floquet
sub-branches obtained by means of an analytical continuation are in good agree-
ment with the “exact” solutions evaluated from the complete system of
Eqs. (3.10), (3.15), and (3.16).

For R � R�, the maximum in the function ���� disappears and the Floquet
branch originated from the eigenvalues � � ln R! i� of the controller becomes
dominant in the region K � Kop. This Floquet branch and the intersection point
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(Kop� �min) are unpredictable via a simple analysis. It can be determined by solv-
ing the complete system of Eqs. (3.10), (3.15), (3.16). In Fig. 3.4 (c) and (d) these
solutions are shown by dots.

Figure 3.5 demonstrates how much of information one can gain via a simple
analysis of parametric equations (3.20). These equations allow us to construct
the stability domain in the (K�R) plane almost completely. Figure 3.5 (b) shows
how the decay rate �min attained at the optimal value of the control gain Kop de-
pends on the parameter R.
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Fig. 3.4 Leading FEs of the Rösler system
under EDFC as functions of the control gain
K for different values of the parameter R: (a)
0.1, (b) 0.2, (c) 0.4, (d) 0.6. Thick solid lines
symbolized by ���� show the dependence
K � ���� for real �. Solid lines in the region

K � Kop are obtained by analytical continua-
tion of Eq. (3.24). The number of terms in
series (3.24) is N � 15. Solid black dots de-
note the “exact” solutions obtained from the
complete system of Eqs. (3.10), (3.15), (3.16).

Fig. 3.5 (a) Stability region of the period-one
UPO of the Rössler system under EDFC. The
thick curve inside the region shows the de-
pendence Kop versus R. The star marks the
optimal point (Kop�Rop�. (b) Minimal value

�min of the leading FE as a function of the
parameter R. In both figures solid and bro-
ken lines denote the solutions obtained from
Eqs. (3.20) and Eqs. (3.10), (3.15), (3.16), re-
spectively.



3.4
Control of Forced Self-Sustained Oscillations

In this section, we consider the problem of controlling UPOs with the complex
conjugate pair of leading FMs (Fig. 3.2 (c)). Such orbits may appear in low-di-
mensional nonchaotic systems, e.g., in a nonautonomous self-sustained oscilla-
tor exhibiting a quasiperiodic motion. We demonstrate an analytical treatment
on the specific physical example of a weakly nonlinear van der Pol oscillator
subjected to a periodic force and the DFC [51]. Without control, the oscillator
can be synchronized by the periodic force only in a certain region of parame-
ters. However, outside this region the system has UPOs that can be stabilized
by the DFC. The feedback perturbation vanishes if the stabilization is successful
and thus the region of synchronization can be extended noninvasively. By taking
advantage of the fact that the system is close to a Hopf bifurcation, we derive a
simplified averaged equation which can be treated analytically even in the pres-
ence of the delayed feedback. As a result we obtain simple analytical expres-
sions defining the region of synchronization of the controlled system as well as
an optimal value of the control gain.

3.4.1
Problem Formulation and Averaged Equation

Consider a weakly nonlinear van der Pol oscillator under the action of external
periodic force and delayed feedback perturbation,

�x � �2
0x � ��x2 	 1� �x � a sin��t� � k�x 	 xT�� �3�25�

The parameter �0 is the characteristic frequency of self-sustained oscillations,
and � is responsible for the strength of nonlinearity of the oscillator. The first
term on the right-hand side is an external periodic force and the second term
describes the delayed coupling due to control. The parameter k is the feedback
gain, xT � x�t	 T�, and T � 2��� is the period of the external force. We sup-
pose that � is a small parameter, �
 �0. Moreover, we assume that the ampli-
tude a, the frequency detuning �	 �0 as well as the control perturbation
k�x 	 xT� are proportional to the small parameter �.

We apply the method of averaging. First we rewrite Eq. (3.25) as a system

�x � y� �3�26 a�
�y � 	�2

0x 	 ��x2 	 1�y� a sin��t� � k�x 	 xT�� �3�26 b�

As Eq. (3.25) or system (3.26) is close to that of a linear oscillator, we can expect
that the solution has a nearly harmonic form. Since there is a forced system we
look for a solution with the characteristic frequency �
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x � �A�t�ei�t � A��t�e	i�t��2� �3�27 a�
y � i��A�t�ei�t 	 A��t�e	i�t��2� �3�27 b�

Here A�t� is a new variable, a slowly varying complex amplitude. Substituting
Eqs. (3.27) in system (3.26) we obtain the equation for the complex amplitude,
which after averaging over the period T of fast oscillations takes the form

�A � �2 	 �2
0

2i�
A	 �

2
A
�A�2

4
	 1

� �
	 a

2�
� k

2i�
�A	 AT�� �3�28�

By choosing an appropriate scale for the amplitude

A � 2z �3�29�

and introducing new parameters

� � a
2��

� � � �2 	 �2
0

��
� 2

�	 �0

�
� � � k

��
� �3�30�

Equation (3.28) can be simplified to

�2��� �z � 	i�z	 z��z�2 	 1� 	 �	 i��z	 zT�� �3�31�

The parameters �, �, and � are proportional respectively to the amplitude of ex-
ternal force, the frequency detuning, and the delayed feedback gain.

3.4.2
Periodic Orbits of the Free System

The bifurcation diagram of Eq. (3.31) for several values of the parameter � is
shown in Fig. 3.6. Since it is symmetrical with respect to the � and � axis, only
the part � � 0, � � 0 is presented. First we discuss this diagram for the free sys-
tem when � � 0. We start the analysis with finding the stationary solutions. Set-
ting �z � 0 and z � z0, we obtain

	i�z0 	 z0��z0�2 	 1� 	 � � 0� �3�32�
We introduce the notations

s � �z0�2� f��s� � s �s	 1�2 � �2
� �

� �3�33�

Then the values of s can be found by solving the cubic equation

f��s� � �2 �3�34�
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with respect to s. Knowing s, from Eq. (3.32) one can determine the steady state
value of z,

z0 � 	���s	 1� i��� �3�35�

Solutions of the cubic equation (3.34) define stationary periodic orbits of the
forced system. The period of these orbits coincides with the period T of the ex-
ternal force, and the amplitude (the radius in the (x� y) plane) is

�A0� � 2�z0� � 2
��
s

"
� �3�36�

Equation (3.34) has three real roots provided

�2
1��� � �2 � �2

2���� �3�37 a�
�2

1�2��� �
2

27
9�2 � 1# �1	 3�2�3�2
� �

�3�37 b�

or one real root otherwise. Thus the forced van der Pol oscillator has either
three or one periodic orbit(s). The region with three orbits is between broken
lines in Fig. 3.6. Outside this region there is only one periodic orbit.
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Fig. 3.6 The bifurcation diagram for the van
der Pol oscillator controlled by delayed feed-
back. In the region between two dashed
lines there are three periodic orbits. Outside
this region there is only one periodic orbit.
The solid line defines the Hopf bifurcation
for the uncontrolled system, and broken

lines are defined by Eq. (3.44). Above these
lines the oscillator is synchronized with the
external force. The solid dot ��� �� � �0�9� 0�6�
shows the set of parameters which we use in
Section 3.4.3 to demonstrate the DFC perfor-
mance.



To determine the stability of periodic orbits of the free system, we have to lin-
earize Eq. (3.31) for � � 0. This leads to the characteristic equation

2�
�

 �2

	2�1	 2s� 2�
�
� f �� �s� � 0� �3�38�

Here � is the Floquet exponent of the periodic orbit, and

f �� �s� � �3s	 1��s	 1� � �2 �3�39�

is the derivative of the function f��s�. The stability of a periodic orbit depends
on the amplitude of the orbit. For f �� �s� � 0 we have a tangent (saddle-node) bi-
furcation, and for s � 1�2 a Hopf bifurcation arises. The condition f �� �s� � 0 de-
fines the boundaries �2 � �2

1�2��� of the region with three periodic orbits in the
(�� �) plane (broken lines in Fig. 3.6). When crossing into this region two addi-
tional orbits of saddle and node types occur. The condition of the Hopf bifurca-
tion s � 1�2 defines the minimal amplitude of the stable orbit Amin �

���
2

"
. The

orbits with amplitude �A0� � Amin are unstable. In the (�� �) plane, this condi-
tion defines the hyperbola

�2 � f��1�2� � �2�2� 1�8� �3�40�

which is shown by a solid line in Fig. 3.6. Above this line the oscillator is syn-
chronized with the external force. Below this line, in the region of one periodic
orbit, we usually have a quasiperiodic behavior. The orbits losing their stability
through the Hopf bifurcation have a pair of complex conjugate exponents with
the positive real part. In the next section, we analyze their stability under the ac-
tion of the DFC.

3.4.3
Linear Stability of the System Controlled by Delayed Feedback

We now analyze Eq. (3.31) for � �� 0. The term ��z	 zT� does not change the
steady state solutions of this equation, but can change their stability. The char-
acteristic equation now reads

2�
�

 �2

	2�1	 2s� 2�
�
� �3s	 1��s	 1� � �� ��1	 e	�T �� �2� 0� �3�41�

We can expect that close to the Hopf bifurcation the leading Floquet exponents
will be proportional to the small parameter �. This assumption allows the ap-
proximation e	�T � 1	 �T , which simplifies Eq. (3.41),

�1� K2� 2�
�

 �2

	2�1	 2s	 �K� 2�
�
� f �� �s� � 0� �3�42�
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Here we use the notation

K � �T��2 � k���2� �3�43�

This approximation is equivalent to that of replacing the delay term in
Eq. (3.31) by the first derivative, zT � z�t	 T� � z�t� 	 T �z.

From Eq. (3.42) we see that the delayed feedback changes the condition of the
Hopf bifurcation, 1	 2s	 �K � 0, which now depends on the delayed feedback
strength K. The relation between K, �, and � is

�2 � 1
8
�1	 �K� �1� �K�2 � 4�2

� �
� �3�44�

In Fig. 3.6, these relations are presented by curves in the (�� �) plane for differ-
ent fixed values of K . These curves define the boundaries of synchronization for
the controlled oscillator. Above these curves the oscillator is synchronized with
the periodic force. We see that the delayed feedback perturbation extends the
synchronization region. Employing Eq. (3.43) and relation s � �A0�2�4 the
threshold of the Hopf bifurcation can be presented in the form

k0 � �2

�
K0 � �2

��
1	 �A0�2

2

� �
� �3�45�

To demonstrate how the FEs depend on the control gain k we specify the pa-
rameters (�� �) to be (0.9, 0.6). This set of parameters is marked by a solid dot
in Fig. 3.6. We have calculated the leading FEs of the initially unstable orbit
using three different methods, namely, (i) solving transcendental equation
(3.41), (ii) using the quadratic equation (3.42), and (iii) solving variational equa-
tions derived from the exact system (3.26). The results of the above analysis for
� � 0�01 are presented in Fig. 3.7. The exact values of the leading FEs are
shown by dots. There are two branches (the left-hand and the right-hand) defin-
ing the interval of stability k0 � k � k1 in which the real part of the leading FE
is negative.

First we discuss the results for the left-hand branch. Figure 3.7 (a) shows that
all the above three methods give quantitatively coinciding results. Thus for
small � the leading FE of the left-hand branch can be reliably obtained from the
simple quadratic equation (3.42), which yields

Re� � �

2
1	 �A0�2�2	 �k���2

1� �k���2�2 � �3�46�

and the threshold k0 of the Hopf bifurcation is well described by Eq. (3.45).
The right-hand branch of the FE defining the upper threshold k1 cannot be

quantitatively well described by Eq. (3.41). This is because the term k�x 	 xT�
responsible for the control in the system (3.26) is not small in this case, and the
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averaging procedure performed with this system is not valid. For the right-hand
branch, the nonlinear terms in Eq. (3.41) are small in comparison with the con-
trol term. Setting � � 0 in the exact variational equations we obtain the charac-
teristic equation

�2 � �2
0 	 k�1	 e	�T� � 0� �3�47�

The root loci diagram of the relevant branch for this equation when varying k is
shown in Fig. 3.7 (c). The pair of complex conjugate roots intersects the imaginary
axes at the points � � !i��T � !i��2. This intersection appears for k � k1, where

k1 � 1
2

�2
0 	

�2

4

 �
�3�48�

defines the upper threshold of stability. For k � k1, the orbit loses stability by a
period doubling bifurcation. Expanding the solution of Eq. (3.47) in Taylor series
close to the threshold k � k1, we obtain an approximate analytical expression

Re� � 4�k1��

�2 � �2�k1���2
�k	 k1� �3�49�

that describes well the Re� versus k dependence for the right-hand branch
(Fig. 3.7 (a)).

Although here we have presented the analytical results only for the case of
the DFC algorithm, the theoretical approach described in this section can be
easily extended for the case of the EDFC [51].
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Fig. 3.7 Leading Floquet exponents as func-
tions of the control gain for ��� �� � �0�9� 0�6�.
Here and in all numerical demonstrations
below we take �0 � 1. (a) Re� versus k for
� � 0�01. For the given values of parameters
�, �, and �, we have � � 1�00451 and
a � 0�01205. The amplitude of the unstable
orbit is �A0� � 1�034 and its FEs for k � 0
are �0 � �2�327! 4�297i� � 10	3. Solid dots
are the values of the FEs obtained from var-
iational equations derived from exact equa-

tions (3.26). The dashed and dotted lines
calculated respectively from Eqs. (3.41) and
(3.42) (or Eq. (3.46)) approximate the left-
hand branch. The solid line calculated from
Eq. (3.49) approximates the right-hand
branch. (b) Root loci of Eq. (3.41) (dotted
line) and Eq. (3.42) (dashed line) as k varies
from 0 to � for the same parameter value
as in (a). Crosses and black dot denote the
location of the roots for k � 0 and k � �,
respectively. (c) Root loci of Eq. (3.47).



3.4.4
Numerical Demonstrations

To verify the validity of the linear theory we have numerically investigated the
original nonlinear differential equations (3.26). Without control the system ex-
periences a quasiperiodic motion (Fig. 3.8 (a)). The DFC perturbation stabilizes
an unstable UPO and we have a periodic motion synchronized with an external
force (Fig. 3.8 (b)). Whenever the synchronization is established the feedback
perturbation vanishes (Fig. 3.8 (c)). The envelopes of the transient are well de-
scribed by the averaged amplitude equation (3.31). This confirms the validity of
the averaging procedure applied to the time delay system (3.26).

3.5
Controlling Torsion-Free Periodic Orbits

It has been widely assumed that the conventional DFC can stabilize only a cer-
tain class of periodic orbits characterized by a finite torsion. More precisely, the
limitation was thought to be that any UPOs with an odd number of real Floquet
multipliers greater than unity can never be stabilized by the DFC. This state-
ment was first proved by Ushio [52] for discrete time systems. Just et al. [44]

3.5 Controlling Torsion-Free Periodic Orbits 63

Fig. 3.8 Results of numerical integration
of delay-differential equations (3.26) for
��� �� � �0�9� 0�6�, � � 0�1. (a) Dynamics of
the x variable without control. (b) and (c)
Dynamics of the x variable and perturbation
kx�t� 	 x�t	 T�� when the control is

switched on. The broken line (an envelop) in
(b) is the dynamics of the complex ampli-
tude �A�t�� � 2�z�t�� obtained from the aver-
aged equation (3.31). The strength of the
feedback gain is k � 0�34.



and Nakajima [45] proved the same limitation for the continuous time DFC,
and then this proof was extended for a wider class of delayed feedback schemes,
including the EDFC [46]. Hence it seems hard to overcome this inherent limita-
tion, see, however, chapter 4 for a recent correction of this view, where this
proof is refuted.

In [41], we have proposed to supplement the feedback loop with an additional
unstable degree of freedom in order to overcome the odd number limitation.
The idea of an unstable controller can be demonstrated with the simple exam-
ple. Consider an unstable discrete time system yn�1 � �syn, �s � 1 controlled by
the EDFC:

yn�1 � �syn 	 KFn� �3�50 a�
Fn � yn 	 yn	1 � RFn	1� �3�50 b�

The free system yn�1 � �syn has an unstable fixed point y� � 0 with the only
real Floquet multiplier �s � 1 and, in accordance with the above limitation, can-
not be stabilized by the EDFC for any values of the feedback gain K. This is so
indeed if the EDFC is stable, i.e., if the parameter R in Eq. (3.50b) satisfies the
inequality �R� � 1. However, it is easy to verify that the unstable controller with
the parameter R � 1 can stabilize this system. Using the ansatz yn�Fn $ �n one
obtains the characteristic equation

��	 �s���	 R� � K��	 1� � 0 �3�51�

defining the FMs � of the closed loop system (3.50). The system is stable if both
roots � � �1�2 of Eq. (3.51) are inside the unit circle of the � complex plain,
��1�2� � 1. Figure 3.9 (a) shows the characteristic root-locus diagram for R � 1,
as the parameter K varies from 0 to �. For K � 0, there are two real eigenval-
ues greater than unity, �1 � �s and �2 � R, which correspond to two indepen-
dent subsystems (3.50 a) and (3.50b), respectively; this means that both the con-
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Fig. 3.9 (a) Root loci of Eq. (3.51) at �s � 3, R � 1�6 as K var-
ies from 0 to �. The crosses and black dot denote the loca-
tion of roots at K � 0 and K ��, respectively. (b) Stability
region of Eqs. (3.50) in the (K , R) plane;
K � ��s � 1�2���s 	 1�, R � ��s � 3����s 	 1�.



trolled system and controller are unstable. With the increase of K, the eigenval-
ues approach each other on the real axes, then collide and pass to the complex
plain. At K � K1 � �sR	 1 they cross symmetrically the unite circle ��� � 1.
Then both eigenvalues move inside this circle, collide again on the real axes
and one of them leaves the circle at K � K2 � ��s � 1��R� 1��2. In the interval
K1 � K � K2, the closed loop system (3.50) is stable. By a proper choice of the
parameters R and K one can stabilize the fixed point with an arbitrarily FM �s.
Figure 3.9 (b) shows the stability region in the plane of parameters �K�R�. For a
given value �s, there is an optimal choice of the parameters
R � Rop � �s���s 	 1�, K � Kop � �sRop leading to zero eigenvalues, �1 � �2

� 0, such that the system approaches the fixed point in finite time.
Note that the idea of using an unstable EDFC with the parameter R � 1 fails

for continuous time systems, since such a controller involves an infinite num-
ber of unstable modes. An appropriate controller for continuous time systems
can be constructed on the basis of usual EDFC with the parameter �R� � 1. A re-
quired additional greater than unity real FM can be gained via supplementing
the feedback loop by an additional unstable mode. The performance of such a
controller has been numerically demonstrated for the Lorenz system [41] as a
representative of systems with torsion-free UPOs. Later on it has been realized
that the unstable DFC allows an analytical treatment if the system is close to a
subcritical Hopf bifurcation. First such a treatment has been performed for a
simple nonlinear second-order electronic circuit modeling a subcritical Hopf bi-
furcation [42]. Then this approach has been extended for wider class of dynami-
cal systems with an arbitrary large phase space dimension [43]. Below we briefly
describe this approach for the Lorenz system.

3.5.1
Example: Controlling the Lorenz System at a Subcritical Hopf Bifurcation

We consider the Lorenz system [53]

�x � �y	 x� �3�52 a�
�y � rx 	 y	 xz �3�52 b�
�z � xy	 bz �3�52 c�

for fixed values of the parameters  � 10, b � 8�3, and variable parameter r.
For 0 � r � 1, the Lorenz system has a unique stable steady state (a stable node)
at the origin C0 
 �0� 0� 0�. For r � 1, the origin becomes a saddle and two addi-
tional symmetrical stable fixed points C!,

�x!f � y!f � zf � � !
�����������������
b�r 	 1�

�
�!

�����������������
b�r 	 1�

�
� r 	 1

� �
�3�53�

appear. For r � rH, the steady states C! become unstable. The value
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rH � �� b� 3�
	 b	 1

�3�54�

represents the point at which the subcritical Hopf bifurcation occurs. Just below
this bifurcation point, for

r � rH 	 �r� 0 � �r �� rH� �3�55�

there are two small unstable limit cycles surrounding the stable steady states
C!. Moreover, at the same values of the parameter r there exists a strange at-
tractor. Thus the system is multistable and depending on initial conditions the
phase trajectory may either be attracted to the one of the steady states or exhibit
a chaotic behavior on the strange attractor.

Our aim is to stabilize the unstable limit cycles arising at the Hopf bifurca-
tion using the DFC technique. In particular, we are interested in analytical treat-
ment of this problem. Note that the periodic orbits arising at this bifurcation
are torsion free and we need an unstable controller. Specifically, we consider the
following control algorithm:

�x � �y	 x� �3�56 a�
�y � rx 	 y	 xz� �w�y	 yf � �3�56 b�
�z � xy	 bz �3�56 c�
�w � ��cw � k y	 y�t	 �� �� �3�56 d�

We suppose that y is an observable and apply the control perturbation w�y	 yf �
only to the second equation of the Lorenz system. We use a nonlinear perturba-
tion. For definiteness, we consider the control of the periodic orbit surrounding
the fixed point C� and take yf � y�f �

�����������������
b�r 	 1��

.
Equation (3.56 d) describes an unstable delayed feedback controller, which

supplements the system with an additional unstable Floquet mode and elimi-
nates the odd number limitation. The positive parameter �c � 0 defines the val-
ue of the additional FE introduced with the controller. The parameter k denotes
the strength of the feedback gain. The delay time � in Eq. (3.56d) is equal to
the period of the unstable periodic orbit such that the controller does not
change the periodic solution of the Lorenz system. Finally, the parameter

� �
��������������������
b�rH 	 1�

�
	

�����������������
b�r 	 1�

�
�

����������������������
b��rH 	 1�

�
�r�2 �3�57�

defines the closeness of the system to the bifurcation point r � rH. This is the
main control parameter, whose smallness we exploit in the perturbation theory.
Below we describe only the main steps of our analytical approach; for details we
refer to our recent paper [43].

Generally Eqs. (3.56) represent a rather complicated system of nonlinear de-
lay-differential equations. The dynamics of the system takes place in an infinite-
dimensional phase space and reduction of the phase space dimension via the
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center manifold theory is a nontrivial task. To overcome the problem of an infi-
nite-dimensional phase space we use the relationship between the FEs of the
DFC and PFC algorithms described in Section 3.2. In Eq. (3.56 d) we replace the
delay term y�t	 �� with the periodic solution of the free Lorenz system y0�t�
corresponding to the unstable limit cycle, which we intend to stabilize. Then in-
stead of the DFC problem described by delay-differential equations (3.56) we get
a nonautonomous system of four ordinary differential equations for the PFC
problem. To transform the nonautonomous PFC problem to the autonomous
we write an additional free Lorenz system with the initial conditions taken on
the stable manifold of the desired UPO, such that it generates the signal y0�t�
required for the PFC algorithm. As a result we get an autonomous system of
seven ordinary differential equations for the PFC problem. Using the closeness
of the system to a subcritical Hopf bifurcation we apply the center manifold
theory and reduce the system dimension. Then we simplify this system by
using the near identity transformation and averaging. Linearization of the sim-
plified system around the desired UPO leads to a characteristic equation of the
PFC problem. Finally, using the relationship between the FEs of the PFC and
DFC algorithms we derive an analytical characteristic equation for the DFC al-
gorithm:

�2 	 ��0 � �c��� �0�c �Qk1	 exp�	����� � 0� �3�58�

Here �0 � �0�� � 0�360675991 and � � ��� are the rescaled values of the FEs
�0 and � of the free and DFC controlled UPO, respectively. An approximate
value of the parameter Q is 1�743243862.

For �����
 1, we can use an approximation exp�	���� � 1	 ���, which trans-
forms Eq. (3.58) to the simple quadratic equation

�2 	 ��0 � �c 	 kQ����� �0�c � 0� �3�59�

In Fig. 3.10 (a), we compare the leading FEs of the controlled system deter-
mined by three different methods: (i) solving the quasipolynomial equation
(3.58), (ii) using the solutions of the quadratic equation (3.59), and (iii) by solv-
ing the exact system of variational equations derived from Eqs. (3.56). All above
three results are in good quantitative agreement, as viewed in Fig. 3.10 (a). Thus
the leading FEs are reliably predicted by the simple quadratic equation (3.59).

The mechanism of stabilization is evident from Fig. 3.10 (b). For k � 0, two
real positive solutions of Eq. (3.59) , � � �0 and � � �c, describe an unstable ei-
genvalue of the free system and the free controller, respectively. With increasing
k, the eigenvalues approach each other on the real axis, and then collide and
pass to the complex plane. For k � k0, where

k0 � ��0 � �c��Q��� �3�60�
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they cross the imaginary axis and move symmetrically into the left half plane,
i.e., both the system and the controller become stable. An optimal value of the
control gain is

kop � k0 � 2
���������
�0�c

�
�Q��� �3�61�

since it provides the fastest convergence to the stabilized limit cycle with the
characteristic rate �min � 	

���������
�0�c

"
.

The validity of the linear theory is confirmed by numerical analysis of the
original system of nonlinear delay-differential equations (3.56) presented in
Fig. 3.11. In numerical simulations, the controller is switched on only when the
system is close to the desired periodic orbit and switched off when it is far away
from the orbit. Without control (t � �), the Lorenz system demonstrates a chaot-
ic behavior on the strange attractor. For t � �, the control algorithm starts to act
and after a transient process the controlled system approaches a previously un-
stable limit cycle, and the feedback perturbation vanishes.

3.6
Conclusions

The aim of this chapter was to review recently developed theoretical methods al-
lowing an analytical treatment of some delayed feedback control problems. The
key idea is to consider the control problems close to bifurcation points of peri-
odic solutions. We managed to treat analytically the delayed feedback control al-
gorithm at three different bifurcations, namely, the period doubling, the discrete
Hopf, and the subcritical Hopf bifurcations. All three types of bifurcations are
characterized by different topological properties of periodic orbits. The orbits
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Fig. 3.10 (a) Real parts of leading Floquet
exponents of the controlled limit cycle as
functions of the control gain for � � 0�1,
�c � 0�2. Dashed and solid lines show the
solutions of the characteristic equations
(3.59) and (3.58), respectively. Dots corre-
spond to the values of Floquet exponents

obtained from the exact variational equa-
tions derived from Eqs. (3.56). (b) Root loci
of Eq. (3.58) as k varies from 0 to � for the
same parameter values as in (a). Crosses
and black dot denote the location of the
roots for k � 0 and k � �, respectively.



without torsion are particularly difficult to control. To stabilize such orbits we
need an unstable controller.

In our analytical approaches, we use the classical tools of nonlinear dynamics
and bifurcation theory, such as the method of averaging, the center manifold
theory, and the near identity transformation. We also utilize the relationship be-
tween Floquet exponents of the proportional and delayed feedback control algo-
rithms, which allows us to reduce the delayed feedback problems to finite-di-
mensional phase spaces.

The analytical approaches are demonstrated for paradigmatic models of the
Rössler system, the forced van der Pol oscillator, and the Lorenz system. We
have obtained simple analytical expressions for the dependence of leading Flo-
quet exponents on the control gain and determined the lower and upper thresh-
olds of stability as well as optimal values of the control gain. The main results
and the approaches are of general importance since they are relevant to any sys-
tems close to the associated bifurcation points.

We believe that the developed analytical methods are important contributions
to the theory of the delayed feedback control. They give not only a better insight
into the mechanism of the delayed feedback control technique, but they are also
important for optimizing the control algorithm. We hope that the ideas pre-
sented in this chapter will stimulate the search for further modifications of the

3.6 Conclusions 69

Fig. 3.11 Dynamics of (a) variable y, (b) con-
troller variable w, and (c) delayed feedback
perturbation ky	 y�t	 ���. The initial condi-
tions are x�	15�� � 8�109559459,
y�	15�� � 13�03719946, z�	15�� �
14�27465065, w�	15�� � 0. y�t� � 0 for

	15� � t % 	14�. The control is initiated at
t � �. The values of the parameters are
� � 0�1, �c � 0�2, � � 0�67398328, k � 0 for
	15� % t � � and k � 9�25 for t � �. For
�y	 y�t	 ��� � Ymax � 1�2, the controller is
off.



delayed feedback control technique aiming at the improvement of the control
performance.
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4.1
Introduction

The stabilization of unstable states is a central issue in applied nonlinear
science. Starting with the work of Ott, Grebogi, and Yorke [1], a variety of meth-
ods have been developed in order to stabilize unstable periodic orbits (UPOs)
embedded in a chaotic attractor by employing tiny control forces [2–4]. A partic-
ularly simple and efficient scheme is time delayed feedback as suggested by
Pyragas [5], which uses the difference z�t� 	 z�t	 �� of a signal z at a time t
and a delayed time t	 �. It is an attempt to stabilize periodic orbits of (mini-
mal) period T by a feedback control which involves a time delay � � nT, for a
suitable positive integer n. A linear feedback example is

�z�t� � f ��� z�t�� � Bz�t	 �� 	 z�t�� �4�1�

where �z�t� � f ��� z�t�� describes a d-dimensional nonlinear dynamical system
with bifurcation parameter � and an unstable orbit of (minimal) period T . B is
a suitably chosen constant feedback control matrix. Typical choices are multiples
of the identity or of rotations, or matrices of low rank. More general nonlinear
feedbacks are conceivable, of course. The main point, however, is that the Pyra-
gas choice �P � nT of the delay time eliminates the feedback term on the orbit,
and thus recovers the original T -periodic solution z�t�. In this sense the method
is noninvasive.

Although time delayed feedback control has been widely used with great suc-
cess in real-world problems in physics, chemistry, biology, and medicine, e.g.
[6–18] (see Chapters 19–32 of this volume), severe limitations are imposed by
the common belief that certain orbits cannot be stabilized for any strength of
the control force. In fact, it has been contended that periodic orbits with an odd
number of real Floquet multipliers greater than unity cannot be stabilized by
the Pyragas method [19–24], even if the simple scheme (4.1) is extended by mul-
tiple delays in the form of an infinite series [25]. To circumvent this restriction
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more complicated control schemes, like an oscillating feedback [26], half-period
delays for special, symmetric orbits [27], or the introduction of an additional,
unstable degree of freedom [24, 28], have been proposed. In this chapter, we
claim, and show by example, that the general limitation for orbits with an odd
number of real unstable Floquet multipliers greater than unity does not hold:
stabilization may be possible for suitable choices of B [29]. Our example con-
sists of an unstable periodic orbit generated by a subcritical Hopf bifurcation.
In particular, this refutes the theorem in [20].

4.2
Mechanism of Stabilization

Consider the normal form of a subcritical Hopf bifurcation, extended by a time
delayed feedback term

�z�t� � �� i� �1� i	��z�t��2
� �

z�t� � bz�t	 �� 	 z�t�� �4�2�

with z � � and real parameters � and 	. Here the Hopf frequency is normalized
to unity. The feedback matrix B is represented by multiplication with a complex
number b � bR � ibI � b0ei
 with real bR� bI� 
, and positive b0. Note that the
nonlinearity f ��� z�t�� � �� i� �1� i	��z�t��2�z�t� commutes with complex
rotations. Therefore exp�i	�z�t� solves (4.2), for any fixed 	, whenever z�t� does.
In particular, nonresonant Hopf bifurcations from the trivial solution z � 0 at
simple imaginary eigenvalues � � i� �� 0 produce rotating wave solutions

z�t� � z�0� exp i
2�
T

t

 �
with period T � 2��� even in the nonlinear case and

with delay terms. This follows from uniqueness of the emanating Hopf
branches.

Transforming Eq. (4.2) to amplitude and phase variables r� � using
z�t� � r�t�ei��t�, we obtain at b � 0

�r � �� r2� �
r �4�3�

�� � 1� 	r2� �4�4�

An unstable periodic orbit (UPO) with r � �������	�"
and period T � 2���1	 	�� ex-

ists for � � 0. This is the orbit we will stabilize. We will call it the Pyragas orbit.
At � � 0 a subcritical Hopf bifurcation occurs, and the steady state z � 0 loses
its stability. The Pyragas control method chooses delays as �P � nT . This de-
fines the local Pyragas curve in the ��� ��-plane for any n � �,

�P��� � 2�n
1	 	�

� 2�n�1� 	�� � � ��� �4�5�

which emanates from the Hopf bifurcation points � � 0� � � 2�n.
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Under further nondegeneracy conditions, the Hopf point � � 0, � � nT
(n � �0) continues to a Hopf bifurcation curve �H��� for � � 0. We determine
this Hopf curve next. It is characterized by purely imaginary eigenvalues � � i�
of the transcendental characteristic equation

� � �� i� b e	�� 	 1� �� �4�6�

which results from the linearization at the steady state z � 0 of the delayed sys-
tem (4.2). Separating Eq. (4.6) into real and imaginary parts

0 � �� b0cos�
 	 ��� 	 cos 
� �4�7�
�	 1 � b0sin�
 	 ��� 	 sin 
� �4�8�

and using the trigonometric identity

cos�
 	 ����2 � sin�
 	 ����2 � 1 �4�9�

to eliminate ���� from Eqs. (4.7), (4.8) yields an explicit expression for the mul-
tivalued Hopf curve �H��� for a given control amplitude b0 and phase 
:

�H �
! arccos b0 cos 
	�

b0

� �
� 
 � 2�n

1	 b0 sin 
 #
������������������������������������������������������
��2b0 cos 
 	 �� � b2

0 sin2 

� � �4�10�

Note that �H is not defined in the case of 
 � 0 and � � 0. Thus complex b is a
necessary condition for the existence of the Hopf curve in the subcritical regime
� � 0. Figure 4.1 displays the family of Hopf curves n � 0� 1� ��� (solid),
Eq. (4.10), and the Pyragas curve n � 1 (dashed), Eq. (4.5), in the (�� �) plane. In
Fig. 4.1 (b) the domains of instability of the trivial steady state z � 0, bounded
by the Hopf curves, are marked by light grey shading. The dimensions of the
unstable manifold of z � 0 are given in parentheses along the �-axis in
Fig. 4.1 (b). By construction, the delay � becomes a multiple of the minimal peri-
od T of the bifurcating Pyragas orbits along the Pyragas curve � � �P��� � nT ,
and the time delayed feedback term vanishes on these periodic orbits. The inset
of Fig. 4.2 displays the Hopf and Pyragas curves for different values of the feed-
back b0. These choices of b0 are displayed as full circles in the main figure,
which shows the domain of control in the plane of the complex feedback gain
b. For b0 � bcrit

0 (a) the Pyragas curve runs partly inside the Hopf curve. With
decreasing magnitude of b0 the Hopf curves pull back to the right in the ��� ��-
plane until the Pyragas curves lie fully outside the instability regime of the
trivial steady state (c). At the critical feedback value (b) the Pyragas and Hopf
curves are tangent at �� � 0� � � 2��.

Standard exchange of stability results [30], which hold verbatim for delay
equations, then assert that the bifurcating branch of periodic solutions locally
inherits linear asymptotic (in)stability from the trivial steady state, i.e., it con-
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sists of stable periodic orbits on the Pyragas curve �P��� inside the shaded do-
mains for small ���. We stress that an unstable trivial steady state is not a suffi-
cient condition for stabilization of the Pyragas orbit. In fact, the stabilized Pyra-
gas orbit can become unstable again if � � 0 is further decreased, for instance
in a torus bifurcation. However, there exists an interval for values of � in our ex-
ample for which Pyragas stabilization occurs. More precisely, for small ��� un-
stable periodic orbits possess a single Floquet multiplier � � exp���� with
1 � � ��, near unity, which is simple. All other nontrivial Floquet multipliers
lie strictly inside the complex unit circle. In particular, the (strong) unstable di-
mension of these periodic orbits is odd, here 1, and their unstable manifold is
two dimensional. This is shown in Fig. 4.3 (a) (top), which depicts solutions �
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Fig. 4.1 Pyragas (dashed) and Hopf (solid)
curves in the ��� ��-plane: (a) Hopf bifurca-
tion curves n � 0� ���� 10, (b) Hopf bifurca-
tion curves n � 0�1 in an enlarged scale.

Light grey shading marks the domains of un-
stable z � 0 and numbers in parentheses de-
note the dimension of the unstable manifold
of z � 0 (	 � 	10, b0 � 0�3, and 
 � ��4).

Fig. 4.2 Change of Hopf curves with varying
control amplitude b0. The main figure shows
the complex plane of control gain b. The
three values marked by full circles corre-
spond to the insets (a), (b), (c), where the

Hopf (solid) and Pyragas (dashed) curves
are displayed for 
 � �

4 and three different
choices of b0: (a) b0 � 0�04 � bcrit

0 , (b)
b0 � 0�025 � bcrit

0 , and (c) b0 � 0�01 � bcrit
0

(� � 	0�005, 	 � 	10).

Im(b)



of the characteristic equation of the periodic solution on the Pyragas curve (see
the appendix).

The largest real part of � is positive for b0 � 0. Thus the periodic orbit is un-
stable. As the amplitude of the feedback gain increases, the largest real part of
the eigenvalue becomes smaller and eventually changes sign at a transcritical bi-
furcation (TC). Hence the periodic orbit is stabilized. Note that an infinite num-
ber of Floquet exponents are created by the control scheme; their real parts tend
to 	� in the limit b0 � 0, and some of them may cross over to positive real
parts for larger b0 (dashed line in Fig. 4.3 (a)), terminating the stability of the
periodic orbit.

Panel (a) (bottom) illustrates the stability of the steady state by displaying the
largest real part of the eigenvalues �. The interesting region of the top and bot-
tom panels where the periodic orbit becomes stable and the fixed point loses
stability is magnified in panel (b).

Figure 4.4 shows the behavior of the Floquet multipliers � � exp���� of the
Pyragas orbit in the complex plane with the increasing amplitude of the feed-
back gain b0 as a parameter (marked by arrows). There is an isolated real multi-
plier crossing the unit circle at � � 1, in contrast to the result stated in [20].
This is caused by a transcritical bifurcation in which the Pyragas orbit collides
with a delay-induced stable periodic orbit. In panels (c) and (d) of Fig. 4.3 the
periods and radii of all circular periodic orbits (r � const) are plotted versus the
feedback strength b0. For small b0 only the initial (unstable) Pyragas orbit
(T and r independent of b0) and the steady state r � 0 (stable) exist. With in-
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Fig. 4.3 (a) Top: Real part of Floquet expo-
nents � of the periodic orbit vs. feedback
amplitude b0. Bottom: Real part of the eigen-
value � of the steady state vs. feedback am-
plitude b0. (b) Blow-up of (a), (c) periods

and (d) radii of the periodic orbits vs. b0.
The solid and dashed curves correspond to
stable and unstable periodic orbits, respec-
tively. Parameters in all panels: � � 	0�005,
	 � 	10, � � 2�

1		�, 
 � ��4.



creasing b0 a pair of unstable/stable periodic orbits is created in a saddle-node
(SN) bifurcation. The stable one of the two orbits (solid) then exchanges stability
with the Pyragas orbit in a transcritical bifurcation (TC), and finally ends in a
subcritical Hopf bifurcation (subH), where the steady state r � 0 becomes un-
stable. The Pyragas orbit continues as a stable periodic orbit for larger b0. Except
at TC, the delay-induced orbit has a period T �� � (see Fig. 4.3 (c)). Note that the
respective exchanges of stability of the Pyragas orbit (TC) and the steady state
(subH) occur at slightly different values of b0. This is also corroborated by
Fig. 4.3 (b). The mechanism of stabilization of the Pyragas orbit by a transcriti-
cal bifurcation relies upon the possible existence of such delay-induced periodic
orbits with T �� �, which was overlooked, e.g., in [20]. Technically, the proof of
the odd-number limitation theorem in [20] fails because the trivial Floquet mul-
tiplier � � 1 (Goldstone mode of the periodic orbit) was neglected there; F�1� in
equation (14) in [20] is thus zero and not less than zero, as assumed [31]. At
TC, where a second Floquet multiplier crosses the unit circle, this results in a
Floquet multiplier � � 1 of algebraic multiplicity 2.

4.3
Conditions on the Feedback Gain

Next we analyze the conditions under which stabilization of the subcritical peri-
odic orbit is possible. From Fig. 4.1 (b) it is evident that the Pyragas curve must
lie inside the yellow region, i.e., the Pyragas and Hopf curves emanating from
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Fig. 4.4 Floquet multipliers � � exp���� in the complex plane
with the feedback amplitude b0 � 0� 0�3�. Arrows indicate the
direction of increasing b0. Same parameters as in Fig. 4.3.



the point ��� �� � �0� 2�� must locally satisfy the inequality �H��� � �P��� for
� � 0. More generally, let us investigate the eigenvalue crossings of the Hopf ei-
genvalues � � i� along the �-axis of Fig. 4.1. In particular, we derive conditions
for the unstable dimensions of the trivial steady state near the Hopf bifurcation
point � � 0 in our model equation (4.2). On the �-axis (� � 0), the characteristic
equation (4.6) for � � i� is reduced to

� � i� b e	�� 	 1� �� �4�11�

and we obtain two series of Hopf points given by

0 % �A
n � 2�n �4�12�

0 � �B
n �

2
 � 2�n
1	 2b0 sin 


�n � 0� 1� 2� � � ��� �4�13�

The corresponding Hopf frequencies are �A � 1 and �B � 1	 2b0 sin 
. Note that

series A consists of all Pyragas points, since �A
n � nT � 2�n

�A
. In series B the inte-

gers n have to be chosen such that the delay �B
n � 0. The case b0 sin 
 � 1�2, only,

corresponds to �B � 0 and does not occur for finite delays �.
We evaluate the crossing directions of the critical Hopf eigenvalues next,

along the positive �-axis and for both series. Abbreviating
�

��
� by �� the crossing

direction is given by sign�Re���. Implicit differentiation of (4.1) with respect to
� at � � i� implies

sign�Re��� � 	sign��� sign�sin���	 
��� �4�14�

We are interested specifically in the Pyragas-Hopf points of series A (marked by
dots in Fig. 4.1) where � � �A

n � 2�n and � � �A � 1. Indeed sign�Re��� �
sign�sin 
� � 0 holds, provided we assume 0 � 
 � �, i.e., bI � 0 for the feedback
gain. This condition alone, however, is not sufficient to guarantee stability of the
steady state for � � 2n�. We also have to consider the crossing direction sign�Re���
along series B, �B � 1	 2b0 sin 
, �B�B

n � 2
 � 2�n, for 0 � 
 � �. Equation
(4.14) now implies sign�Re��� � sign�2b0 sin 
 	 1�� sin 
� � sign�2b0 sin 
 	 1�.

To compensate for the destabilization of z � 0 upon each crossing of any point
�A

n � 2�n, we must require stabilization (sign�Re��� � 0) at each point �B
n of series

B. If b0 � 1�2, this requires 0 � 
 � arcsin 1��2b0�� � or �	 arcsin 1��2b0�� �
� 
 � �. The distance between two successive points �B

n and �B
n�1 is

2���B � 2�. Therefore, there is at most one �B
n between any two successive Hopf

points of series A. Stabilization requires exactly one such �B
n , specifically:

�A
k	1 � �B

k	1 � �A
k for all k � 1� 2� � � � � n. This condition is satisfied if, and only if

0 � 
 � 
n
�� �4�15�
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where 0 � 
n
� � � is the unique solution of the transcendental equation

1
�

n
� � 2nb0 sin 
n

� � 1� �4�16�

This holds because the condition �A
k	1 � �B

k	1 � �A
k first fails when �B

k	1 � �A
k .

Equation (4.15) represents a necessary but not yet sufficient condition that the
Pyragas choice �P � nT for the delay time will stabilize the periodic orbit.

To evaluate the remaining condition, �H � �P near ��� �� � �0� 2��, we expand
the exponential in the characteristic equation (4.6) for �� � 2�n, and obtain the
approximate Hopf curve for small ���:

�H��� � 2�n	 1
bI
�2�nbR � 1��� �4�17�

Recalling (4.5), the Pyragas stabilization condition �H��� � �P��� is therefore
satisfied for � � 0 if, and only if,

1
bI

bR � 1
2�n

 �
� 		� �4�18�

Equation (4.18) defines a domain in the plane of the complex feedback gain
b � bR � ibI � b0ei
 bounded from below (for 	 � 0 � bI) by the straight line

bI � 1
		 bR � 1

2�n

 �
� �4�19�

Equation (4.16) represents a curve b0�
�, i.e.,

b0 � 1
2n sin 


1	 


�

 �
� �4�20�

which forms the upper boundary of a domain given by inequality (4.15). Thus
Eqs. (4.19) and (4.20) describe the boundaries of the domain of control in the
complex plane of the feedback gain b in the limit of small �. Figure 4.5 depicts

this domain of control for n � 1, i.e., a time delay � � 2�
1	 	�

. The lower and

upper solid curves correspond to Eqs. (4.19) and (4.20), respectively. The gray-
scale displays the numerical result of the largest real part, wherever � 0, of the
Floquet exponent, calculated from linearization of the amplitude and phase
equations around the periodic orbit (see the appendix). Outside the shaded
areas the periodic orbit is not stabilized. With increasing ��� the domain of sta-
bilization shrinks, as the deviations from the linear approximation (4.17) be-
come larger. For sufficiently large ��� stabilization is no longer possible, in
agreement with Fig. 4.1 (b). Note that for real values of b, i.e., 
 � 0, no stabili-
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Fig. 4.5 Domain of control in the plane of
the complex feedback gain b � b0ei
 for
three different values of the bifurcation pa-
rameter �. The solid curves indicate the
boundary of stability in the limit �& 0,

(see (4.19), (4.20)). The shading shows the
magnitude of the largest (negative) real part
of the Floquet exponents of the periodic
orbit (	 � 	10, � � 2�

1		�).

Fig. 4.6 Domain of control in the complex b-plane (left)
and the 
-b0-plane (right) (� � 	0�005, 	 � 	10, � � 2�

1		��.



zation occurs at all. Hence, stabilization fails if the feedback matrix B is a multi-
ple of the identity matrix. Figure 4.6 compares the control domain for the same
value of ��� for the representation in the planes of complex feedback b (left),
and amplitude b0 and phase 
 (right).

4.4
Conclusion

In conclusion, we have refuted a theorem which claims that a periodic orbit
with an odd number of real Floquet multipliers greater than unity can never be
stabilized by time delayed feedback control. For this purpose we have analyzed
the generic example of the normal form of a subcritical Hopf bifurcation, which
is paradigmatic for a large class of nonlinear systems. We have worked out ex-
plicit analytical conditions for stabilization of the periodic orbit generated by a
subcritical Hopf bifurcation in terms of the amplitude and the phase of the
feedback control gain [32]. Our results underline the crucial role of a nonvanish-
ing phase of the control signal for stabilization of periodic orbits violating the
odd-number limitation. The feedback phase is readily accessible and can be ad-
justed, for instance, in laser systems, where subcritical Hopf bifurcation scenar-
ios are abundant and Pyragas control can be realized via coupling to an external
Fabry-Perot resonator [18]. The importance of the feedback phase for the stabili-
zation of steady states in lasers [18] and neural systems [33], as well as for stabi-
lization of periodic orbits by a time delayed feedback control scheme using spa-
tio-temporal filtering [34], has been noted recently. Here, we have shown that
the odd-number limitation does not hold in general, which opens up funda-
mental questions as well as a wide range of applications. The result will not
only be important for practical applications in physical sciences, technology, and
life sciences, where one might often desire to stabilize periodic orbits with an
odd number of positive Floquet exponents, but also for tracking of unstable or-
bits and bifurcation analysis using time delayed feedback control [35].
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Appendix: Calculation of Floquet Exponents

The Floquet exponents of the Pyragas orbit can be calculated explicitly by rewrit-
ing Eq. (4.2) in polar coordinates z � r ei�
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�r ���� r2� r � b0cos�
 � ��t	 �� 	 �� r�t	 �� 	 cos�
� r� �4�21�
�� � 1� 	r2 � b0sin�
 � ��t	 �� 	 �� r�t	 ��

r
	 sin�
�� �4�22�

and linearizing around the periodic orbit according to r�t� � r0 � �r�t� and
��t� � �t� ���t�, with r0 �

�������	�"
and � � 1	 	� (see Eq. (4.3)). This yields

��r �t�
� ���t�

 �
� 	2�	 b0 cos 
 b0r0 sin 


2	r0 	 b0 sin 
 r	1
0 	b0 cos 


! "
�r�t�
���t�

 �
�4�23�

� b0 cos 
 	b0r0 sin 


b0 sin 
r	1
0 b0 cos 


! "
�r�t	 ��
���t	 ��

 �
� �4�24�

With the ansatz

�r�t�
���t�

 �
� u exp��t�� �4�25�

where u is a two-dimensional vector, one obtains the autonomous linear equa-
tion

	2�� b0 cos 
 �e	�� 	 1� 	� 	b0r0 sin 
 �e	�� 	 1�
2	r0 � b0r	1

0 sin 
 �e	�� 	 1� b0 cos 
 �e	�� 	 1� 	�

 �
u � 0� �4�26�

The condition of vanishing determinant then gives the transcendental character-
istic equation

0 � 	2�� b0 cos 
 �e	�� 	 1� 	�
� �

b0 cos 
 �e	�� 	 1� 	�
� �

	 b0r0 sin 
 �e	�� 	 1� 2	r0 � b0r	1
0 sin 
 �e	�� 	 1�� � �4�27�

for the Floquet exponents �, which can be solved numerically.
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Wolfram Just

5.1
Introduction

Topics in control are a genuine subject in engineering and applied mathe-
matics. Such a field was developed in the wake of the Second World War [1].
Although it is virtually not possible to give a comprehensive overview of the
whole subject, it is often an essential feature of standard control approaches to
use to some extent structural information about the underlying dynamics, the
possibility of reconstructing dynamical equations of motion from measured sig-
nal, or focus on simple time independent target states. There exists a rather
complete theory for linear systems. Furthermore, global aspects of the dynamics
can be dealt with by Lyapunov techniques which are applicable when the under-
lying equations of motion are known. From such a perspective control theory
provides a strong link to optimization problems.

Within control theory different types of methods have been classified. Actu-
ally, from the point of view of applications it usually does not matter whether
the method is invasive, i.e., a finite control force has to be applied when the tar-
get state is reached, or noninvasive. The latter type, often called orbit control in
the engineering context, stabilizes genuine unstable motion of the dynamical
system and requires only small control forces. Such an idea was combined in
the early 90s with properties of chaotic dynamical systems to solve the so-called
pole placement problem for the stabilization of unstable periodic states by ap-
plying tiny control forces [2]. Dynamical system approaches, i.e., stable and un-
stable manifolds were employed to design suitable control algorithms for con-
trolling the huge number of unstable states embedded in chaotic attractors by
application of tiny control forces. Although such an idea was known to some ex-
tent by engineers it became quite popular among physicists [3].

On the other hand, stabilization of time-periodic states without any knowl-
edge of the structure of the underlying dynamics still posed some challenge in
particular when noninvasive methods are of interest, which can, e.g., be used
for spectroscopic purposes as well. Control techniques based on suitable time
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delayed feedback of measured signals have been proposed for such a purpose
[4] and have been applied to a variety of experimental setups, e.g., for the con-
trol of laser systems [5], Taylor-Couette flows [6], in ferromagnetic resonance ex-
periments [7], in electrochemical cells [8], and of course for demonstration pur-
pose in elastomechanics [9] and electronic circuit experiments [10]. Even applica-
tions in biosystems have been reported [11], although some of the setups do not
result in a completely noninvasive scheme.

Although motion with time delay results in dynamical systems with infinite-
dimensional phase space, there exists a fairly comprehensive approach to solve
linear equations of motion, in particular for the autonomous case [12]. Thus,
most systematic theoretical investigations of time delayed feedback control have
been based so far on linear stability analysis (cf. e.g. [13–15]). Several universal
features of the control scheme were uncovered by such an approach. Periodic
orbits with an odd number of positive unstable Floquet multipliers cannot be
stabilized by plain time delayed feedback schemes [16], but such a constraint
does not apply in general for autonomous systems (see chapter 4 for a detailed
discussion of this case). In fact, most examples where time delayed feedback
control has been applied successfully use unstable periodic orbits which were
generated in a period doubling cascade where such an “odd-number limitation”
does not apply. Furthermore, simple time delayed feedback control fails for sys-
tems with fast time scales [17], or systems with large Floquet exponents [18].
Modifications of plain time delayed feedback control were able to overcome
such limitations. Application of an external periodic modulation, so-called rhyth-
mic control [19–21], or an unstable control loop [22] can cope with the odd-
number limitation while the application of multiple time delay, so-called ex-
tended time delayed feedback control [17], allows for the stabilization of periodic
states in fast systems. Other important aspects have been addressed as well.
Above all, methods for the adjustment of suitable delay times have been devel-
oped [23–25] and the influence of control loop latency has been analysed in
some detail [26, 27]. Meanwhile even comprehensive overviews of approaches
based on linear analysis are available in the literature (cf. e.g. [28, 29]).

Time-delayed feedback control aims at stabilization of time-periodic states
when no information about the underlying dynamical system is available, apart
from a measured signal s�t�. Thus analytical approaches should be based on
general equations of motion which do not make reference to any particular
model [14]. Time-delayed feedback control applies a control force
F�t� � K�s�t� 	 s�t	 ��� generated from a time delayed difference to a dynami-
cal system so that the most general setup reads

�x�t� � f �x�t��F�t��� �5�1�

where the measured signal is some, in general unknown, function of the inter-
nal degrees of freedom, s�t� � g�x�t��. If the time delay � is chosen such that it
coincides with an integer multiple of the period of the target state, then the
control force will vanish when the target state is reached and the control
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scheme is potentially noninvasive. Even within such a general setup one is able
to discuss the linear stability of the target state and the performance of the con-
trol scheme [14]. Results for the stability exponents obtained in such a way are
in agreement with measurements (cf. Fig. 5.1) and yield some of the universal
features of time delayed feedback control. In particular, depending on the con-
trol amplitude K a domain, usually an interval, is obtained where the control
signal s�t� 	 s�t	 �� tends to zero, all stability exponents develop a negative real
part, and control is successful. The boundaries of this interval are the control
thresholds. At the lower threshold usually a flip or period doubling bifurcation
appears which is responsible for the onset of control. At the upper threshold an
instability with nontrivial frequency, i.e., a Hopf bifurcation, occurs. This upper
threshold is often less robust and more vulnerable with respect to external per-
turbations. It is this threshold which will be of interest within our investiga-
tions, although similar arguments can be applied to the lower control threshold
as well.

Since time delayed feedback control results in a system of differential-differ-
ence equations the corresponding linear stability analysis yields infinitely many
eigenvalue branches reflecting the infinite-dimensional phase space of the dy-
namical system. Such branches can be detected even in experiments and may
change the simple scenario sketched in Fig. 5.1 (cf. e.g. [30, 31]). Nevertheless,
at a qualitative level one often gets reasonable agreement with the simple theory
just sketched.

The basin of attraction, i.e., the set of initial conditions for which control
works successfully, is one of the essential objects that cannot be assessed by lin-
ear analysis. Such a global feature of the control system is of central interest
and has rarely been addressed so far for time delayed feedback control. If one
assumes that the underlying equations of motion are known one would be able
to estimate such basins, e.g., by the famous Lyapunov functional method which
is available as well for time delay dynamics (cf. e.g. [32]). In fact, such ideas are
very powerful, e.g., when one designs numerical tools for root finding. But such
a concept cannot be employed easily for time delayed feedback control. We will
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Fig. 5.1 Typical dependence of the leading
Floquet exponent � on the control ampli-
tude, for an unstable periodic orbit gener-
ated in a period doubling sequence. Sym-

bols: experimental data from an electronic
circuit experiment, line: analytical result
according to a mean field like expansion
(cf. [30] for details).



discuss such a link in Section 5.2. Although global properties of particular mod-
el systems subjected to time delayed feedback control can be estimated by nu-
merical means, e.g., by employing continuation techniques [33] such a strategy
can hardly yield generic features of basins of attraction. Furthermore, numerical
techniques can be used for the computation of low-dimensional manifolds but
are still not able to determine, e.g., an infinite-dimensional basin boundary. To
overcome such problems basins for time delayed feedback control have been
probed along low-dimensional cross sections by applying well-defined perturba-
tions to the system under considerations [34] and the method has been even im-
plemented in experiments [35]. One discovers structures for the basins of attrac-
tion that are comparable to those found in low-dimensional dynamical systems.
But such features may depend on the underlying equations of motion and do
not seem to provide a universal mechanism. On the other hand, a closer look at
the instabilities determining the control boundaries can reveal a mechanism for
generating basins that just depend on the type of instability and that do not rely
on the details of the equations of motion [36]. These ideas will be briefly out-
lined in Section 5.3. The corresponding analytical normal form analysis will be
described in Section 5.4 and some consequences for time delayed feedback con-
trol will be mentioned. To keep this part less technical we present the analysis
within the setup of time-discrete dynamics although similar, but much more in-
volved, considerations can be carried out for the more realistic time-continuous
setup as well.

5.2
A Comment on Control and Root Finding Algorithms

Noninvasive control aims at stabilizing unstable orbits of the underlying dynam-
ical system by application of asymptotically small control forces. Thus, in some
abstract setting the application of the control loop replaces the original dynami-
cal system by a different one which possesses the former unstable orbit as a
stable object. From that point of view such control schemes have something in
common with numerical root finding algorithms.

To illustrate the principal aspect of such an idea let us consider for simplicity
a time-discrete dynamical system xn�1 � f �xn�. An unstable periodic orbit of
period p, i.e., a periodic point of order p, �� � f p����, should be the desired tar-
get state. If the equations of motion are known then the determination of that
object reduces to finding the roots of f p���� 	 �� � 0. There are plenty of algo-
rithms available to perform such a task, one of the most famous being the
Newton-Raphson method. This method results in an iteration scheme
xm�1 � xm 	 �f p�xm� 	 xm����f p���xm� 	 1� which converges to the periodic
point �� for appropriate initial conditions. Thus, the Newton-Raphson method
replaces the original dynamics with unstable periodic point �� by a fictitious dy-
namics with stable point ��. The desired target state can be simply obtained by
iteration. In such a sense the scheme could be viewed as a control algorithm.
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While the Newton-Raphson method has excellent local convergence properties
since the sequence converges faster than exponentially toward the target state it
is one of the classical examples having often quite poor global properties as the
choice of the initial condition is crucial for convergence. The basin of attraction
of the target state �� is usually a quite complicated set with fractal basin bound-
ary.

Thus, even for the numerical determination of periodic states one relies on
different methods. Again one replaces the original motion by a fictitious dy-
namics which preserves preferably all periodic points of, say, period p. Following
an idea introduced in [37] which was further refined in [38] and [39] one intro-
duces the differential equation

dx
ds
� 		�f p�x� 	 x� �5�2�

such that the stationary states of the solution x�s� yield the desired target states
��. The main benefit of this approach comes from the observation that at least
for one-dimensional maps f the global properties of Eq. (5.2) can be determined
easily as the differential equation (5.2) can be derived from a potential
dx�ds � 		U��x�, where U�x� � # �f p�x� 	 x� dx denotes a Lyapunov function.
For such type of system it is quite easy to show that the energy U�x�s�� de-
creases for 	 � 0 and any solution apart from those which stay at maxima of
the potential tends toward a minimum of the potential. The basin of attraction
of such a minimum is bounded by the two neighboring maxima (cf. Fig. 5.2).
Straightforward integration of Eq. (5.2) for a few initial conditions yields all the
minima of the potential. Reverting the sign of 	 interchanges the role of maxi-
ma and minima and the same integration procedure now yields the maxima as
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Fig. 5.2 Diagrammatic view of the potential U�x� � # �f p�x� 	 x� dx
governing the dynamics of Eq. (5.2). The critical points of the poten-
tial and the motion in the one-dimensional phase space for positive
and negative values of 	 are indicated as well.



well. Thus, all critical points of the potential, i.e., all the periodic points of the
original dynamical system, can be obtained within a few steps. 1� These ideas
can be generalized to higher dimensional maps [37–39] and it is possible to re-
tain to some extent the potential structure which ensures the nice global proper-
ties, although it might be more difficult to obtain a priori estimates for the ba-
sins of attraction.

There is in fact no need to introduce a time-continuous fictitious dynamics.
For instance, one may approximate the derivative by a finite stepsize estimate
�xm�1 	 xm���s and thus obtains the fictitious map

xm�1 � xm 	 	�s�f p�xm� 	 xm�� �5�3�

As long as the stepsize �s is sufficiently small so that the right-hand side is a
monotonic function of xm the good global properties of the time-continuous ver-
sion are preserved due to the cobweb theorem. There are of course different
ways to introduce a time-discrete version and the just mentioned Euler scheme
is often not the most efficient way.

A superficial inspection of the scheme (5.3) suggests that a difference involv-
ing an iterated state plays a crucial role. From that perspective Eq. (5.3) seems
to have something in common with time delayed feedback schemes. Actually, a
simple time delayed feedback scheme for the stabilization of a period-p orbit
reads

xn�1 � f �xn� � K�xn 	 xn	p� �5�4�

and it is tempting to discuss similarities and differences between Eqs. (5.3) and
(5.4). First of all Eq. (5.3) has the same phase space dimension as the original
one-dimensional map while the time delay dynamics (5.4) acts on a p-dimen-
sional phase space. Such an increase of phase space dimension is a characteris-
tic feature of any time delay system [32]. Thus, already the linear stability prop-
erties of both equations are different since the additional degrees of freedom in-
herent in the time delay may alter the stability properties of the target state [30].
It is now not surprising that time delayed feedback schemes do not share the
nice global features of the Biham-Wenzel method since global dynamical fea-
tures surely depend on the underlying phase space. Time-delayed feedback
schemes, like Eq. (5.4), have of course the advantage to be based on the real-
time dynamics so that their implementation in real applications is possible. It
would be tempting to improve time delayed feedback control in such a way that
it shares the nice potential properties of root finding algorithms, but no such
improvement seems to be available at the moment. The study of global features
of time delayed feedback control is nevertheless of great interest and nice global
features like for the Biham-Wenzel scheme are surely the desired goal. Above
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Wenzel which is better adapted for numerical

purposes. The approach used here is able to un-
cover the global properties of the root finding
scheme.



all, a generic mechanism is needed which is independent of the underlying
model, like the potential dynamics in the case of the Biham-Wenzel method, to
determine the basins of attraction and the global performance of time delayed
feedback schemes.

5.3
Codimension-Two Bifurcations and Basins of Attraction

Determination of basins of attraction is already a challenge for nonlinear ordi-
nary differential equations and one cannot expect to give a full account for time
delay dynamics. Here we will identify a simple mechanism based on local bifur-
cation theory which determines some basin of attraction in a generic way and
which proves its relevance for time delayed feedback schemes.

5.3.1
The Transition from Super- to Subcritical Behavior

Let us just recall a few elementary features of Hopf bifurcations although such
facts can be found in graduate textbooks (cf. e.g. [40]). When a system experi-
ences a Hopf bifurcation an instability takes place where a fixed point becomes
unstable with respect to two oscillating modes. 2) Thus the motion can be re-
duced to a two-dimensional coordinate, usually a complex number z�t�, which
obeys the so-called normal form

�z�t� � �z�t� � rz�t��z�t��2� �5�5�

Derivation of such an effective equation of motion can be found in textbooks
(cf. Section 5.4.1 as well). The coefficient of the linear part coincides with the
critical eigenvalue. Re��� � 0 yields a stable fixed point z � 0, a case which we
will call the subthreshold regime, while Re��� � 0 yields an unstable fixed
point, the superthreshold regime. The cubic coefficient r is essential for the
nontrivial dynamics in the vicinity of the instability. Actually, from the very be-
ginning one can confine to real-valued coefficients. Introducing polar coordi-
nates z � � exp�i�� Eq. (5.5) is written as

���t� � Re�����t� � Re�r��3�t� �5�6 a�
���t� � Im��� � Im�r��2�t� �5�6 b�
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2) Strictly speaking a Hopf bifurcation denotes
an instability of a fixed point in a time-con-
tinuous system. Later on we will apply such a
concept to the instability of periodic orbits as
well, i.e., to fixed points in time-discrete
maps. In such a case one often calls an insta-
bility caused by a complex conjugated pair of

eigenvalues of a Neimark-Sacker bifurcation
since some additional strong resonance condi-
tions become important (cf. Appendix A). Here,
in order to simplify the notation, we are a little
by sloppy with the notation and call such an in-
stability a Hopf bifurcation as well.



so that imaginary parts of the coefficients just cause an amplitude-dependent
oscillation. Equation (5.6 a) obviously has a nontrivial stationary solution
�� � �	Re����Re�r��1�2 whenever the square root is real valued. This nontrivial
solution corresponds to a limit cycle of radius ��. Thus, if Re�r� � 0 the limit
cycle exists for Re��� � 0, i.e., in the superthreshold regime where the trivial
fixed point is unstable, while for Re�r� � 0 the nontrivial solution exists in the
region Re��� � 0, i.e., the subthreshold regime (cf. Fig. 5.3). The stability of the
resulting limit cycle can be easily evaluated from Eq. (5.6 a) by computing the
derivative of the right-hand side at ��, 	2Re���. The limit cycle is stable for
Re�r� � 0, the so-called supercritical case, and unstable for Re�r� � 0, the sub-
critical case. 3) The features are summarized in Fig. 5.3.

While a supercritical transition is continuous when changing the bifurcation
parameter the subcritical transition is discontinuous showing hysteresis as well
since a different dynamical state is attained in the superthreshold regime. In ad-
dition, in the subthreshold regime the unstable limit cycle which surrounds the
stable fixed point yields the basin boundary (cf. Fig. 5.4). Thus subcritical behav-
ior always suffers from small basins since the coexisting unstable limit cycle
contracts toward the fixed point when the bifurcation point is approached. No
such feature exists for the supercritical transition where the basin is determined
by some global feature of the dynamics. Thus, basins remain large even close to
the bifurcation point. This generic mechanism works in higher dimensional
phase spaces as well where the stable manifold of the unstable limit cycle yields
the basin boundary. Locally the basin has the topology of a higher dimensional
cylinder (cf. Fig. 5.4).

When Re��� changes sign a Hopf bifurcation takes place which is either
super- or subcritical depending on the sign of Re�r�. If the latter quantity be-
comes small and changes sign as well then a codimension-two bifurcation takes
place since two conditions Re��� � 0 and Re�r� � 0 have to be satisfied. Such a
higher order instability governs the transition from super- to subcritical behav-
ior. The universal features of such a transition depend on higher order terms in
the normal form (5.5) and yield some information about the limit cycles in-
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Fig. 5.3 Diagrammatic view of a supercritical (left: Re�r� � 0)
and subcritical (right: Re�r� � 0) Hopf bifurcation (cf. Eq. (5.5)).
Full line: stable fixed point/limit cycle, broken line: unstable fixed
point/limit cycle. Bifurcation parameter Re � increases from left
to right.

3) Alternative notions for super-/subcritical bi-
furcations that can be found in the literature

are continuous/discontinuous transitions or for-
ward/inverse bifurcation.



volved in the Hopf bifurcation and the occurring hysteresis (cf. e.g. [40] for
further details).

5.3.2
Probing Basins of Attraction in Experiments

As shown in the previous section subcritical bifurcations, i.e., discontinuous
transitions and hysteresis, yield a limitation for the basin of the stable state at
least when the bifurcation point is approached. This generic mechanism can
also be relevant for time delayed feedback control, e.g., at the upper control
threshold when a subcritical Hopf bifurcation occurs. The principal aspects of
such a mechanism can be demonstrated by numerical simulations (cf. Sec-
tion 5.4.2 or [36]) and it even proves its relevance in real experiments [35]. Here
we just summarize the essential features. More details about the experiment
can be found in chapter 26 of the book.

Detection of discontinuous transitions, e.g., at the upper control threshold,
the corresponding bistability, and recording hysteresis, is easily accomplished by
an adiabatic increase respectively decrease of the control amplitude. Discontinu-
ity in the amplitude of the control signal s�t� 	 s�t	 �� shows up (cf. Fig. 5.5 for
an experimental realization in an electronic circuit experiment). Thus, subcriti-
cal transitions are easily detected. Probing the basin of attraction of the stabi-
lized periodic orbit in the subthreshold regime is a much more challenging
task. The phase space of differential-difference equations is infinite-dimensional
since the whole history enters the dynamics. The basin and the basin boundary
are infinite-dimensional objects as well. Nevertheless, close to the bifurcation
point the basin admits the geometry sketched in Fig. 5.4. Thus, if one applies a
well-defined perturbation to the controlled system, e.g., a voltage pulse at a defi-
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Fig. 5.4 Left: diagrammatic view of the two-
dimensional phase space portrait close to a
subcritical Hopf bifurcation in the subthresh-
old regime: unstable limit cycle (broken line)
and basin of the stable fixed point (shaded).

Right: geometry of the stable manifold of the
unstable limit cycle (broken line), i.e., the
basin boundary of the stable fixed point, in a
three-dimensional phase space.



nite value of the phase of the periodic orbit, then one probes the basin along a
low-dimensional cross section in phase space, e.g., along a line or a two-dimen-
sional surface. By monitoring the maximal strength of the pulse such that the
system returns to the stabilized state one obtains an estimate for the diameter
of the basin of attraction in this cross section. Experimental data displayed in
Fig. 5.5 show indeed the characteristic S-shape for the diameter of the basin (cf.
Fig. 5.3) when recorded in dependence on the control amplitude. Thus, subcriti-
cal bifurcations yield reduced basins of attraction and an enhanced sensitivity of
the controlled systems with respect to external perturbations.

5.4
A Case Study of Global Features for Time-Delayed Feedback Control

Determination of the type of instability which limits control domains for time
delayed feedback control is in principle quite straightforward [36]. But explicit
computations of such normal forms become quite involved for time-continuous
time delay equations [32] even when fairly simple model systems are considered
(cf. e.g. [41, 42]). Here we want to illustrate the relevance of sub- and supercriti-
cal transitions for the formation of basins of attraction. For the purpose of vi-
sualization we even want to avoid the problems that are related to infinite-di-
mensional phase spaces. Since we are interested in the principal mechanism
we focus on the simplest setup, namely the stabilization of fixed points in a
one-dimensional map. In view of the previous remarks it is obvious that for
such models there exist much more powerful tools for controlling unstable fixed
points. But the case study presented here gives some insight into global features
of time delayed feedback control and the results can be generalized to time-con-
tinuous systems as well. Moreover, the analysis presented here for the time-dis-
crete setup is simpler from the technical point of view, although it has only rele-
vance for real control experiments at a qualitative level.
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Fig. 5.5 Left: dependence of the amplitude
of the control signal on the control ampli-
tude K in an electronic circuit experiment:
adiabatic increase (black, full symbols, line),
adiabatic decrease (grey, open symbols,

broken line) of K . Lines are a guide for the
eye. Right: critical voltage pulse to destroy
the controlled state, in dependence on the
control amplitude. Different symbols corre-
spond to different durations of the pulse.



5.4.1
Analytical Bifurcation Analysis of One-Dimensional Maps

Let us consider a one-dimensional map xn�1 � f �xn� with fixed point
�� � f ����. To stabilize the fixed point a simple time delayed feedback scheme
is applied,

xn�1 � f �xn� � K�xn 	 xn	1�� �5�7�

Actually, the phase space dimension of Eq. (5.7) has increased just by 1 and it is
for that reason why the analysis of this time delay system stays to be rather
straightforward. In a neighborhood of the fixed point a Taylor series expansion
of Eq. (5.7) up to third order yields, using the variable �xn � xn 	 ��,

�xn�1 � f ������xn�K��xn	�xn	1� � f ������
2

��xn�2 � f �������
3�

��xn�3 � � � � � �5�8�

It is now the scope to transform such an equation of motion into the normal
form (cf. Eq. (5.31)). Details of the formal calculation are summarized in Ap-
pendix A.

Using the state vector y
n
� �y�1�n � y�2�n � � ��xn� �xn	1�, Eq. (5.8) can be cast into

a nonlinear two-dimensional map (cf. Eq. (5.28)). The linear part of the motion
is governed by the two-dimensional matrix

A � f ����� � K 	K
1 0

 �
� �5�9�

Stability of the trivial solution is easily expressed in terms of the determinant
and the trace of this matrix. Here we are interested in cases where we are close
to a Hopf bifurcation, i.e., usually close to the upper control threshold. Then
the matrix (5.9) admits a complex conjugated pair of eigenvalues �c, �c

� with
modulus 1, �c � exp�i�c�. Thus

1 � det�A� � Kc �5�10�

and

tr�A� � f ����� � Kc � �c � �c
� � 2 cos��c� � �	2� 2�� �5�11�

The eigenvector for the eigenvalue �c is obviously given by

uc � �c
1

 �
�5�12�

while the eigenvector of the corresponding adjoint eigenvalue problem (cf.
Eq. (5.29b)) reads
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v'c � �	�c� 1�� �5�13�

If the control amplitude K deviates from its critical value Kc � 1, then the linear
part changes by the amount

�A � �K
1 	1
0 0

 �
�5�14�

when �K � K 	 Kc denotes the distance of the control amplitude from the con-
trol boundary.

So far we have written down the linear terms of the equations of motion
(5.8). In order to determine the normal form we have to consider quadratic and
cubic nonlinearities as well. Using the notation introduced in Appendix A the
quadratic and cubic terms can be expressed through bilinear and trilinear ex-
pressions, B 
 y

n

 y

n

 and C 
 y

n

 y

n

 y

n

 respectively, where

B 
 u 
 v 
 � f ������
2

u�1�v�1�

0

� �
�5�15 a�

C 
 u 
 v 
 w 
 � f �������
3�

u�1�v�1�w�1�

0

� �
� �5�15 b�

The evolution equation (5.8) has been cast into the vector notation of Eq. (5.28)
and for the coefficients of the normal form (5.31) the expressions (5.37) and
(5.39) can be evaluated readily.

For the unfolding parameter (5.37) we obtain, using Eqs. (5.12), (5.13), and
(5.14)

� � �vc��A uc�
�vc�uc�

� �K
�c�1	 �c�

1	 �2
c

� �c
�K exp�	i�c�2�

2 cos��c�2� � �5�16�

where we have used the polar representation of the critical eigenvalue as well,
�c � exp�i�c�. Since

Re����c� � �K�2 �5�17�

the trivial fixed point is stable if �K � 0, i.e., below the control threshold while
control fails above that threshold, �K � 0 (cf. Appendix B for the linear stability
criterion).

The nature of the Hopf bifurcation is determined by the cubic coefficient
(5.39). The two auxiliary vectors (5.35) are just computed from Eqs. (5.9), (5.10),
(5.12), and (5.15 a)
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� � f ������
2

1
det��2

c 1	 A�
�2

c 	1

1 �2
c 	 f ����� 	 1

� �
�2

c

0

 �

� f �������2
��2

c 	 �c���2
c 	 1��c�

�4
c

�2
c

� �
�5�18 a�


 � f ������
2

1
det�1	 A�

1 	1

1 	f �����
 � ��c�2

0

� �

� f �������2
�1	 �c��1	 1��c�

1

1

 �
� �5�18 b�

Now the evaluation of the terms entering the coefficient (5.39) is straightfor-
ward, applying the definitions (5.15)

�vc�B 
 uc
� 
 � 
�

�vc�uc�
� 	 f ������

2

 �2
�4

c

�1	 �2
c ���2

c 	 �c���2
c 	 1��c�

� �c
f ������

2

 �2 i
8 sin�c sin��c�2� sin�3�c�2� �5�19 a�

�vc�B 
 uc 
 
 
�
�vc�uc�

� 	 f ������
2

 �2
�2

c

�1	 �2
c ��1	 �c��1	 1��c�

� �c
f ������

2

 �2 	i

8 sin�c sin2��c�2� �5�19 b�

�vc�C 
 uc 
 uc 
 uc
� 
�

�vc�uc�
� 	 f �������

3�

 �
�2

c

1	 �2
c

� �c
f �������

3�

 � 	i
2 sin��c�

� �5�19 c�

Thus

Re�r��c� � 0 �5�20�

since all contributions to the cubic coefficient are imaginary. 4) Hence the con-
trol law (5.7) just realizes the transition between sub- and supercritical behavior
(cf. Appendix B for the conditions on super- and subcritical Hopf bifurcations
for maps), no matter what the values of the second and third derivatives are,
i.e., no matter what kind of one-dimensional map is considered. The result is
in fact far from surprising since it is due to some hidden symmetry which is
shared by the control law (5.7). If one considers the value of the critical cou-
pling Kc � 1 then the Jacobian of the corresponding two-dimensional map is
easily computed to be (cf. Eq. (5.9))
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Jacf �x� � f ��x�1�� � Kc 	Kc

1 0

 �
� �5�21�

The determinant of the Jacobian equals 1 and the two-dimensional map is area
preserving. Hence, all the dissipative contributions to the normal form, i.e., the
real parts of the coefficients, will vanish. This particular symmetry will be de-
stroyed if a different type of coupling is considered, and a transition from sub-
to supercritical behavior can be realized.

5.4.2
Dependence of Sub- and Supercritical Behavior on the Observable

The control scheme (5.7) can be modified in a simple way by altering the ob-
servable from which the time delayed control force is derived. If we keep for
simplicity the additive coupling of the control force, then the dynamics is deter-
mined by

xn�1 � f �xn� � K�g�xn� 	 g�xn	1��� �5�22�

where g�xn� denotes the measured signal which depends on the state xn in gen-
eral in a nonlinear way. With a suitable choice of the observable g�xn� it is pos-
sible to generate supercritical behavior at the upper control threshold. It is
rather straightforward to apply the analytical perturbation scheme of the pre-
vious section to the current setup. But here we just illustrate the essential be-
havior in a phenomenological way by a simple numerical simulation.

For that purpose let us choose g�x� � x � �x2. The free parameter � allows
for tuning the nonlinearity of the measured signal. The choice � � 0 corre-
sponds to the setup of the previous section with degenerated bifurcations at the
upper control threshold. For the underlying dynamical system we employ the
logistic map f �x� � 1	 ax2 at a parameter value a � 1�6 to ensure for chaotic
motion. The control thresholds can be easily computed using linear stability
analysis. Actually, comparing Eq. (5.7) with Eq. (5.22) it is obvious that the pre-
vious results can be used when K is replaced by g �����K. In particular, the
upper control threshold is given by g �����Kc � 1. For a sensible comparison of
results for different observables it is therefore appropriate to use the normalized
control amplitude g �����K since this quantity governs the linear stability proper-
ties.

Numerical simulations show that a supercritical Hopf bifurcation is found for
� � 0 while for � � 0 subcritical behavior prevails (cf. Fig. 5.6). The supercritical
transition is continuous and no hysteresis or bistability occurs when one com-
pares results obtained from an adiabatic increase and decrease of the control
amplitude. The subcritical transition for � � 0 is discontinuous. Actually, phase
space points escape to infinity in the superthreshold regime as a result of a lack
of phase space contraction and dissipation in the model (cf. the previous sec-
tion).

5 On Global Properties of Time-Delayed Feedback Control98



The transition from super- to subcritical behavior which has been induced by
the change of observable is accompanied by a corresponding change in the glo-
bal dynamical features. Figure 5.7 shows the basins of attraction of the stabi-
lized fixed point in the subthreshold regime, K � Kc, for positive and negative
values of �, i.e., for the super- and subcritical Hopf bifurcation, respectively. In
the subcritical case, � � 0, the basin of attraction is restricted to a small neigh-
borhood of the target state, in particular when the control amplitude is close to
the critical value Kc. No such constraint is observed in the supercritical case,
� � 0, where the basin of attraction remains large even when the boundary of
the control interval is approached. Thus, the suitable choice of observable has a
profound effect on the global properties of the control, as predicted by the pre-
vious analytical considerations.

5.4.3
Influence of the Coupling of the Control Force

As long as the desired unstable target state is embedded in a chaotic attractor
one may improve the control performance by applying the control force only if
the actual state is close to the target state. Such events happen because of the
recurrence properties of chaotic motion. Within the context of time delayed
feedback control such events can be identified easily since the control force be-
comes small when the system is close to the target state. Corresponding ideas
have been proposed for time delayed feedback control from the very beginning
[4]. Within the context of the previous example it means that one caps the con-
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Fig. 5.6 Bifurcation diagrams of the model
(5.22) with f �x� � 1	 ax2, g�x� � x � �x2,
and a � 1�6. Top: � � 0�2 adiabatic increase
of the control amplitude, middle: � � 0�2
adiabatic decrease of the control amplitude,
bottom: � � 	0�2 adiabatic increase of the

control amplitude. Successful control for
g�����K � 1. Continuous transition for
� � 0�2 with regions of additional bistability
above the control threshold. Discontinuous
transition for � � 	0�2 where the solution
escapes to infinity for K � Kc.



trol force xn 	 xn	1 when its value becomes too large. In terms of a mathemati-
cal model that means

xn�1 � f �xn� � Kh�xn 	 xn	1�� �5�23�

where the coupling function h�x� is odd, h�x� � h�	x�, has slope 1 for small ar-
gument to keep the results comparable to the previous investigations, h��0� � 1,
and saturates or decays for large values of the argument. Indeed such a cou-
pling function will enhance the control performance since it is able to induce
supercritical Hopf bifurcations at the upper control threshold and thus enlarges
basins of attraction even without chaotic recurrence to the target state.

It is quite straightforward to supply the details of the analytical perturbation
expansion when we assume h��0� � 1 and h���0� � 0. Recall that with these as-
sumptions the Taylor series expansion reads

h�xn 	 xn	1� � xn 	 xn	1 � h����0�
3�

�xn 	 xn	1�3 � � � � � �5�24�

It is obvious that the analysis of Section 5.4.1 still applies as far as linear and
quadratic terms are concerned (cf. Eq. (5.8)). Just the cubic nonlinearity (cf.
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Fig. 5.7 Basin of attraction of the model
(5.22) for supercritical (top: � � 0�2) and
subcritical (bottom: � � 	0�2) transitions,
displayed in the x0 	 x	1 plane of initial con-
ditions and different values of the control
amplitude: g�����K � 0�999 (left), 0�99 (mid-
dle), 0�95 (right). Black dots mark initial

conditions resulting in successful stabiliza-
tion of the target state �� � 0�537 � � � .
Basins are essentially independent of K in
the supercritical case while a considerable
reduction of the basin in the subcritical case
occurs close to the control threshold.



Eq. (5.15b)) changes since in view of Eq. (5.24) and Kc � 1 an additional addi-
tive contribution occurs

C 
 u 
 v 
 w 
� f �������
3�

u�1�v�1�w�1�

0

� �

� h����0�
3�

�u�1� 	 u�2���v�1� 	 v�2���w�1� 	 w�2��
0

� �
� �5�25�

Thus, for the computation of the cubic coefficient of the normal form we just
have to recalculate Eq. (5.19c) which is pretty straightforward using the eigen-
vectors (5.12) and (5.13),

�vc�C 
 uc 
 uc 
 uc
� 
�

�vc�uc�
� 	 f �������

3�

 �
�2

c

1	 �2
c

	 h����0�
3�

�c��c 	 1���c 	 1���c
� 	 1�

1	 �2
c

� �c
f �������

3�

 � 	i
2 sin��c�

� �c
h����0�

3�
2 exp�	i�c�2� sin2��c�2�

cos��c�2� � �5�26�

Now Eqs. (5.19a), (5.19b), and (5.26) yield

Re�r��c� �
2h����0�

3�
sin2��c�2�� �5�27�

Supercritical behavior occurs if h����0� � 0 which corresponds locally to a satura-
tion of the control force, while subcritical behavior and corresponding deteriora-
tion of the basins are caused for h����0� � 0. The local codimension-two analysis
thus nicely complies with the observations described above and highlights the
importance of the coupling scheme for global properties of time delayed feed-
back control.

5.5
Conclusion

Time-delayed feedback control has been developed to stabilize time-periodic
states with tiny control forces when no detailed information about the underly-
ing dynamics is available. Meanwhile properties of such control schemes are
quite well understood as far as linear stability is concerned. But even from the
linear perspective there are unsolved problems of experimental relevance. Apart
from very preliminary numerical studies of model systems (cf. e.g. [13, 31]) it is
rather unclear how properties of the measured signal and the coupling of the
control force to the internal degrees of freedom affect the control properties in
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detail. While such questions are addressed by standard control theory in great
detail, comparable results are still missing for time delayed feedback control.

Apart from numerical simulations of model systems properties of time de-
layed feedback control are scarcely investigated beyond linear stability analysis.
For instance, almost no analytical results are available concerning basins of at-
traction or the robustness of the control scheme with respect to external, e.g.,
stochastic, perturbations. While such results are delivered by standard control
theory using Lyapunov functions such a strategy cannot be applied directly to
time delayed feedback schemes unless the structure of the underlying equations
of motion is known. In the near future one may hope that the application of
numerical continuation schemes to particular models of time delayed feedback
control may give some insight into global properties of the delay dynamics (cf.
e.g. [43]). The ultimate goal, however, should be a modification of time delayed
feedback schemes such that generic systems show good Lyapunov stability prop-
erties.

The case study presented here followed a different less ambitious route. Ap-
plication of bifurcation theory to time delay dynamics may give some insight
into generic features of time delayed feedback control. The analysis of local
higher order codimension bifurcations related to the behavior at control thresh-
olds is able to yield information about the global phase space structure. The
analysis presented here for the time-discrete case can be performed in the more
realistic time-continuous setup as well [36]. Such approaches are potentially able
to yield universal global features of time delayed feedback control as demon-
strated in the previous sections. It is furthermore tempting to apply such ideas
for analyzing the influence of external perturbations beyond the linear response
regime, to employ global phase space structures for implementing targeting
procedures (cf. e.g. [3]) for time delayed feedback control, and to study the inter-
relation between spatial degrees of freedom and time delay. Thus, there are still
plenty of interesting problems around which are of general interest for time de-
lay dynamics and which are not restricted to the study of control problems.
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Appendix A
Normal Form Reduction

Normal form calculations for Hopf bifurcations are a standard procedure. To
keep the presentation self-contained and since appropriate closed expressions
for the normal form parameters are rarely available in the literature we here
just recall the computation. Suppose a system with a trivial fixed point y � 0 ex-
periences a Hopf bifurcation. Close to the critical point a Taylor series expan-
sion of the d-dimensional map yields the expression

y
n�1

� A y
n
� �A y

n
� B 
 y

n

 y

n

 �C 
 y

n

 y

n

 y

n

 � � � � � �5�28�

The matrix A governs the linear part of the motion at the bifurcation point.
Thus the corresponding eigenvalue problem

A uc � �cuc �5�29 a�
v'cA � �cv

'
c �5�29 b�

possesses a complex conjugated pair of eigenvalues �c, �c
�, where ��c� � 1. Equa-

tion (5.29 b) just states the adjoint eigenvalue equation with v'c denoting the
Hermitian conjugate. Such an eigenvector will turn out to be quite useful for
analytical calculations. The additional linear contribution to Eq. (5.28), �A, is
supposed to be small and takes the deviation from the bifurcation point into
account. Furthermore, nonlinear quadratic and cubic contributions to the equa-
tions of motion are captured by the tensors B and C. 5)

We are looking for a two-dimensional surface in the full phase space being in-
variant with respect to the dynamics of Eq. (5.28), and tangent to the plane
spanned by the two critical vectors uc and uc

� when a system at the bifurcation
point is considered. Thus it captures the slow part of motion in the vicinity of
the critical point. Such a manifold can be written in terms of a complex valued
coordinate zn as

y
n
� uczn � uc

�zn
� � �zn � ��zn

� � �z2
n � ���zn

��2 � 2
�zn�2 � 	zn�zn�2 � � � � �
�5�30�

Here � � � denotes the remaining cubic nonresonant contributions and terms of
higher order. The additional linear term �zn accounts for deviations from the bi-
furcation point and is therefore of the same small order as �A. It is our goal to
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 u 
 v 
 is given by$
�� B�����u���v���. In view of Eq. (5.28) we

assume a symmetric expression B 
 u 
 v 
�
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 v 
 u 
 and employ homogeneity
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 �u 
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� �B 
 u 
 v 
 and additivity
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 u� w 
 v 
� B 
 u 
 v 
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. An analo-
gous notation is used for the cubic nonlinearity
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 u 
 v 
 w 
.



fix the parameters �, 
, 	, and � in such a way that the dynamics for the slow
coordinate zn obeys the so-called normal form

zn�1 � ��c � ��zn � rzn�zn�2 � � � � � �5�31�

where the small deviation from the critical point, �, is assumed to be of the or-
der (�z2�.

Employing the invariance of the surface (5.30) we can immediately obtain ex-
plicit expressions for the coefficients appearing in Eq. (5.31). On the one hand,
Eq. (5.30) yields

y
n�1

� uczn�1 � uc
�zn�1
� � �zn�1 � ��zn�1

�
� �z2

n�1 � ���zn�1
� �2 � 2
�zn�1�2 � 	zn�1�zn�1�2 � � � �

� �czn � �zn � rzn�zn�2 � � � �
� �

uc � �c
�zn
� � ��zn

� � r�zn
��zn�2 � � � �

� �
uc
�

��c�zn� �c�
�zn
���2

c�z2
n ���c

��2���zn
��2�2
�zn�2��c	zn�zn�2 � � � � � �5�32�

where for the last step Eq. (5.31) has been employed. On the other hand the
same quantity is, according to Eq. (5.28), given by

y
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� A y
n
� �A y

n
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 y

n

 y

n
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 y
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 y
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 y

n
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� A uczn � A uc
�zn
� � A �z2

n � A ���zn
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�zn�2 � A 	zn�zn�2

� A �zn � A ��zn
� � �A uczn � �A uc

�zn
�

� B 
 uc 
 uc 
 z2
n � B 
 uc

� 
 uc
� 
 �zn

��2 � 2B 
 uc 
 uc
� 
 �zn�2

� 2B 
 uc
� 
 � 
 zn�zn�2 � 4B 
 uc 
 
 
 zn�zn�2

� 3C 
 uc 
 uc 
 uc
� 
 zn�zn�2 � � � � � �5�33�

where here for the last step Eq. (5.30) has been used. If we equate contributions
of the same order in Eqs. (5.32) and (5.33) we obtain the desired coefficients for
the normal form (5.31).

Contributions of order (�z� in Eqs. (5.32) and (5.33) match because of the ei-
genvalue equation (5.29). Matching the contributions of second order, (�z2�, we
obtain, comparing the coefficients of z2

n and of �zn�2

�2
c� � A �� B 
 uc 
 uc 
 �5�34 a�

 � A 
 � B 
 uc 
 uc

� 
 � �5�34 b�

The second-order contribution associated with �zn
��2 just yields the complex

conjugate of Eq. (5.34 a). If �c �� 1 and �2
c �� �c

�, one can solve Eqs. (5.34) since
the coefficients appearing on the left-hand side are not contained in the spec-
trum of the matrix A. Thus, the parameters of the center manifold (5.30) are de-
termined by
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� � ��2
c 1	 A�	1B 
 uc 
 uc 
 �5�35 a�


 � �1	 A�	1B 
 uc 
 uc
� 
 � �5�35 b�

We now proceed and equate coefficients of the order (��z� in Eqs. (5.32) and
(5.33). For the coefficient of �zn we get

�uc � �c� � �A uc � A �� �5�36�

As �c is eigenvalue of the matrix A a nontrivial condition, the so-called Fred-
holm condition, has to be imposed on � in order that Eq. (5.36) can be solved
for �. In fact, if we multiply Eq. (5.36) from the left with the eigenvector v'c of
the adjoint eigenvalue equation (5.29b) the contributions containing � cancel
due to the eigenvalue condition and we are left with

��vc�uc� � �vc��A uc�� �5�37�

where we have introduced the usual inner product by �v�u� � v'u. Equation
(5.37) is nothing else but the well-known first-order perturbative result for the
shift of eigenvalues.

If we finally equate the cubic terms, zn�zn�2, in Eqs. (5.32) and (5.33) we ob-
tain the condition

ruc � �c	 � 2B 
 uc
� 
 � 
 �4B 
 uc 
 
 
 �3C 
 uc 
 uc 
 uc

� 
 �A 	� �5�38�

Again application of the Fredholm condition, i.e., multiplication with the adjoint
eigenvector, yields the expression for the coefficient of the cubic term

r�vc�uc� � �vc�2B 
 uc
� 
 � 
 �4B 
 uc 
 
 
 �3C 
 uc 
 uc 
 uc

� 
�� �5�39�

Thus all coefficients of the normal form (5.31) have been expressed in terms of
quantities of the underlying equation of motion (5.28).

In order to eliminate the other, nonresonant, cubic contributions in the nor-
mal form (5.31) which have not been written down explicitly, one requires the
additional constraints �2

c �� 1 and �4
c �� 1 on the critical eigenvalue. When the

so-called strong resonance conditions, �k
c � 1, k � 1� 2� 3� 4, are avoided the mo-

tion is given in terms of the Hopf normal form. 6)
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neglected when the dynamics on the resulting
invariant circle is of interest (cf. e.g. [40]).



Appendix B
Super- and Subcritical Hopf Bifurcation for Maps

Conditions for super- and subcritical behavior of the time-discrete normal form
(5.31) describing the Hopf instability are quite similar to the time-continuous
case we dealt with in Section 5.3.1. There are, however, minor technical differ-
ences and for further reference we just recall the basic facts. A transformation
to polar coordinates is in principle possible in the time-discrete setup, but less
straightforward. We follow a different strategy and employ a transformation to a
rotating frame using �n � �n

c zn. Then Eq. (5.31) reads

�n�1 	 �n �
�

�c
�n �

r
�c

�n��n�2� �5�40�

In a small neighborhood of the bifurcation point, i.e., ��� 
 ��c� � 1, the ampli-
tude ��n� becomes of order (� ��������� � and the rate of change �n�1 	 �n turns out
to be small as well. Capturing these features with the scaling �n �

���������
�����n�

one reduces the map (5.40) to the differential equation (5.5) and the conditions
of Section 5.3.1 on the bifurcation apply. Thus Re����c� � 0 yields subthreshold
dynamics and Re����c� � 0 corresponds to the behavior beyond the Hopf
instability. A supercritical Hopf bifurcation occurs for Re�r��c� � 0 while
Re�r��c� � 0 yields subcritical behavior.
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Jens Christian Claussen

6.1
Introduction

What is the effect of measurement delay on Ott, Grebogi, and Yorke (OGY)
chaos control? Which possibilities exist for improved control? These questions
are addressed within this chapter, and the OGY control case is considered as
well as a related control scheme, difference control; both together form the two
main Poincaré-based chaos control schemes, where the control amplitude is
computed once during the orbit after crossing the Poincaré section.

If the stabilization of unstable periodic orbits or fixed points by the method
given by Ott, Grebogi, Yorke [23] and Hübler [15] can only be based on a mea-
surement delayed by � orbit lengths, resulting in a control loop latency, the per-
formance of unmodified OGY control is expected to decay. For experimental
considerations, it is desired to know the range of stability with minimal knowl-
edge of the system. In Section 6.3, the area of stability is investigated both for
OGY control and for difference control, yielding a delay-dependent maximal Lya-
punov number beyond which control fails. Sections 6.3.4 to 6.4.3 address the
question how the control of delayed measured chaotic systems can be improved,
i.e., what extensions must be considered if one wants to stabilize fixed points
with a higher Lyapunov number. Fortunately, the limitation can be overcome
most elegantly by linear control methods that employ memory terms, as linear
predictive logging control (Section 6.4.1) and memory difference control (Sec-
tion 6.4.3). In both cases, one is equipped with an explicit deadbeat control
scheme that allows, within linear approximation, us to perform control without
principal limitations in delay time, dimension, and Ljapunov numbers.

6.1.1
The Delay Problem–Time-Discrete Case

For fixed point stabilization in time-continuous control, the issue of delay has
been investigated widely in control theory, dating back at least to the Smith pre-
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dictor [31]. This approach mimics the, yet unknown, actual system state by a
linear prediction based on the last measurement. Its time-discrete counterparts
discussed in this chapter allow us to place all eigenvalues of the associated lin-
ear dynamics to zero, and always ensure stability. The (time continuous) Smith
predictor with its infinite-dimensional initial condition had to be refined [12,
24], giving rise to the recently active fields of model predictive control [3]. For
fixed point stabilization, an extension of permissible latency has been found for
a modified proportional-plus-derivative controller [28].

Delay is also a generic problem in the control of chaotic systems. The effec-
tive delay time � in any feedback loop is the sum of at least three delay times,
the duration of measurement, the time needed to compute the appropriate con-
trol amplitude, and the response time of the system to the applied control. The
latter effect appears especially when the applied control additionally has to prop-
agate through the system. This response time may extend to one or more cycle
lengths [21]. If one wants to stabilize the dynamics of a chaotic system onto an
unstable periodic orbit, one is in a special situation. In principle, a proper engi-
neering approach could be to use the concept of sliding mode control [10], i.e.,
to use a co-moving coordinate system and perform suitable control methods
within it. However, this requires quite accurate knowledge of whole trajectory
and stable manifold, with respective numerical or experimental costs.

Therefore, direct approaches have been developed by explicitely taking into ac-
count either a Poincaré surface of section [23] or the explicit periodic orbit
length [26]. This field of controlling chaos, or stabilization of chaotic systems, by
small perturbations, in system variables [15] or control parameters [23], has de-
veloped to a widely discussed topic with applications in a broad area from tech-
nical to biological systems. Especially in fast systems [2, 29] or for slow drift in
parameters [4, 22], difference control methods have been successful, namely the
time-continuous Pyragas scheme [26], ETDAS [29], and time-discrete difference
control [1].

As for the control method itself, the discussion of the measurement delay
problem in chaos control has to take into account the special issues of the situa-
tion: in classical control applications one always tries to keep the control loop
latency as short as possible. In chaotic systems however, one wants to control a
fixed point of the Poincaré iteration and thus has to wait until the next crossing
of the Poincaré surface of section, where the system again is in vicinity of that
fixed point.

The stability theory and the delay influence for time-continuous chaos control
schemes has been studied extensively [11, 14, 17–19], and an improvement of
control by periodic modulation has been proposed in [20]. For measurement de-
lays that extend to a full period, however, no extension of the time-continuous
Pyragas scheme is available.

This chapter discusses the major Poincaré-based control schemes OGY con-
trol [23] and difference feedback [1] in the presence of time delay, and addresses
the question what strategies can be used to overcome the limitations due to the
delay [8]. We show how the measurement delay problem can be solved systema-
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tically for OGY control and difference control by rhythmic control and memory
methods and give constructive direct and elegant formulas for the deadbeat con-
trol in the time-discrete Poincaré iteration. While the predictive control method
LPLC presented below for OGY control has a direct correspondence with the
Smith predictor and thus can be reviewed as its somehow straightforward im-
plementation within the unstable subspace of the Poincaré iteration, this predic-
tion approach does not guarantee a stable controller for difference control. How-
ever, within a class of feedback schemes linear in system parameters and the
system variable, there is always a unique scheme where all eigenvalues are zero,
i.e., the MDC scheme presented below. The method can be applied also for
more than one positive Lyapunov exponent, and shows, within validity of the
linearization in vicinity of the orbit, to be free of principal limitations in Lyapu-
nov exponents or delay time. For zero delay (but the inherent period one delay
of difference control), MDC has been demonstrated experimentally for a chaotic
electronic circuit [4] and a thermionic plasma discharge diode [22], with excel-
lent agreement, both of stability areas and transient Lyapunov exponents, with
the theory presented here. This chapter is organized as follows. After introduc-
ing the notation within a recall of OGY control, we give a brief summary of lim-
itations that occur for unmodified OGY control; details can be found in [8].
From Section 6.3.6 we introduce different memory methods to improve control,
of which the LPLC approach appears to be superior as it allows stabilization of
arbitrary fixed points for any given delay. The stabilization of unknown fixed
points is discussed in Section 6.4.3, where we present a memory method
(MDC) that again allows stabilization of arbitrary unstable fixed points. For all
systems with only one instable Lyapunov number, the iterated dynamics can be
transformed on an eigensystem which reduces to the one-dimensional case, and
the generalization to the case of higher dimensional subspaces is straightfor-
ward [9].

6.1.2
Experimental Setups with Delay

Before discussing the time-discrete reduced dynamics in the Poincaré iteration,
it should be clarified how this relates to an experimental control situation. On a
first glance, the time-discrete viewpoint seems to correspond only to a case
where the delay (plus waiting time to the next Poincaré section) exactly matches
the orbit length, or a multiple of it. Generically, in the experiment one experi-
ences a nonmatching delay. Application of all control methods discussed here
requires introduction of an additional delay, usually by waiting for the next
Poincaré crossing, so that measurement and control are applied without phase
shift at the same position of the orbit. In this case the next Poincaré crossing
position xt�1 is a function of the values of x and r at a finite number of pre-
vious Poincaré crossings only, i.e. it does not depend on intermediate positions.
Therefore the (a priori infinite-dimensional) delay system reduces to a finite-di-
mensional iterated map. If the delay (plus the time of the waiting mechanism
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to the next Poincaré crossing) does not match the orbit length, the control
schemes may perform less efficiently. Even for larger deviations from the orbit,
the time between the Poincaré crossings will vary only marginally; thus a con-
trol amplitude should be available in time. In practical situations therefore the
delay should not exceed the orbit length minus the variance of the orbit length
that appears in the respective system and control setup.

In a formal sense, the Poincaré approach ensures robustness with respect to
uncertainties in the orbit length, as it always ensures a synchronized reset of
both trajectories and control. Between the Poincaré crossings the control param-
eter is constant; the system is independent of everything in advance of the last
Poincaré crossing. It is solely determined by the differential equation (or experi-
mental dynamics). Thus the next crossing position is a well-defined iterated
function of the previous one. This is quite in contrast to the situation of a de-
lay-differential equation (as in Pyragas control), which has an infinite-dimen-
sional initial condition it “never gets rid of.” One may proceed to stability analy-
sis via Floquet theory [13] as investigated for continuous [17] and impulse
length issues in Poincaré-based [5–7] control schemes. Though a Poincaré cross-
ing detection may be applied as well, the position will depend not only on the
last crossing, but also on all values of the system variable within a time horizon
defined by the maximum of the delay length and the (maximal) time difference
between two Poincaré crossings (being nonstroboscopic). Thus the Poincaré
iteration would be a function between two infinite-dynamical spaces. Contrary
to a delay differential equation with fixed delay, a major advantage of a Poincaré
map is to reduce the system dynamics to a low-dimensional system; therefore
for all control schemes discussed here, the additional dimensionality is not a contin-
uous horizon of states, but merely a finite set of values that were measured at
the previous Poincaré crossings.

6.2
Ott-Grebogi-Yorke (OGY) Control

The method of Ott, Grebogi, and Yorke [23] stabilizes unstable fixed points, or
unstable periodic orbits utilizing a Poincaré surface of section, by feedback that
is applied in the vicinity of the fixed point x� of a discrete dynamics
xt�1 � f �xt� r�. For a chaotic flow, or corresponding experiment, the system dy-
namics �
x � 
F�
x� r� reduces to the discrete dynamics between subsequent Poin-
caré sections at t0� t1� � � � � tn. This description is fundamentally different from a
stroboscopic sampling as long as the system is not on a periodic orbit, where
the sequence of differences �ti 	 ti	1� would show a periodic structure.

If there is only one positive Lyapunov exponent, we can proceed considering
the motion in the unstable direction only. One can transform on the eigensys-

tem of the Jacobi matrix
�f
�r

and finds again the equations of the one-dimen-

sional case, i.e., one only needs to apply control in the unstable direction (see
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e.g. [5, 9]). Thus stability analysis and control schemes of the one-dimensional
case holds also for higher dimensional systems provided there is only one un-
stable direction. For two or more positive Lyapunov exponents one can proceed
in a similar fashion [5, 9].

In OGY control, the control parameter rt is made time dependent. The ampli-
tude of the feedback rt � r 	 r0 added to the control parameter r0 is propor-
tional by a constant � to the distance x 	 x� from the fixed point, i.e.,
r � r0 � ��xt 	 x��, and the feedback gain can be determined from a lineariza-
tion around the fixed point, which reads, if we neglect higher order terms,

f �xt� ro � rt� � f �x�� r0� � �xt 	 x�� � �f
�x

 �
x��r0

� rt � �f
�r

 �
x��r0

� f �x�� r0� � ��xt 	 x�� � �rt

� f �x�� r0� � ��� ��� � �xt 	 x��� �6�1�

The second expression vanishes for � � 	���, that is, in linear approximation
the system arrives at the fixed point at the next time step, xt�1 � x�. The un-
controlled system is assumed to be unstable in the fixed point, i.e. ��� � 1. The
system with applied control is stable if the absolute value of the eigenvalues of
the iterated map is smaller than 1,

�xt�1 	 x�� � ���� ��� � �xt 	 x��� � �xt 	 x�� �6�2�

Therefore � has to be chosen between �	1	 ���� and ��1	 ����, and this in-
terval is of width 2�� and independent of �, i.e., fixed points with arbitrary �

can be stabilized. This property however does not survive for delayed measure-
ment [8], as surveyed below.

6.3
Limitations of Unmodified Control and Simple Improved Control Schemes

In this section the limitations of unmodified control are discussed, both for
OGY control and for difference control. For completeness, rhythmic control and
a state space memory control are discussed in Sections 6.3.4 and 6.3.6.

6.3.1
Limitations of Unmodified OGY Control in the Presence of Delay

We want to know what limitations occur if the OGY rule is applied without
modification. Intuitively, one expects the possibility of unstable behavior of
��� 1� control loops that mutually overlap in the course of time (see Fig. 6.1).
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In OGY control, the control parameter rt is time dependent, and without loss of
generality we assume that x� � 0 and that rt � 0 if no control is applied. First
we discuss the simplest relevant case � � 1 explicitely. For one time step delay,
instead of rt � �xt we have the proportional feedback rule:

rt � �xt	1� �6�3�
Using the time delayed coordinates �xt� xt	1�, the linearized dynamics of the

system with applied control is given by
xt�1

xt

 �
� � ��

1 0

 �
xt

xt	1

 �
. The

eigenvalues of � ��
1 0

 �
are given by �1�2 � �

2!
���������������
�2

4
� ��

�
� Control can be

achieved with � being in an interval � 	 1��� �1	 ���� with the width �2	 ����
(see Fig. 6.2).

In contrast to the nondelayed case, we have a requirement � � 2 for the Lya-
punov number: direct application of the OGY method fails for systems with a
Lyapunov number of 2 and higher [4, 8]. This limitation is caused by the addi-
tional degree of freedom introduced in the system due to the time delay.

Now we consider the general case. If the system is measured delayed by �

steps, rt � �xt	�� we can write the dynamics in time delayed coordinates
�xt� xt	1� xt	2� � � � xt	��T:
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Fig. 6.1 Unmodified control in the presence of delay (schematically).

Fig. 6.2 Stability range of OGY control.

Lyapunov number



xt�1

��
�

��
�

xt	��1

�%%%%%%%%%%%�

�&&&&&&&&&&& 
�

� 0 � � � � � � 0 ��
1 0 0

0 1 � �
� ��

�

��
� � �

�

� �
�

��
� � �

�
0 ��

�

0 � � � � � � 0 1 0

�%%%%%%%%%%�

�&&&&&&&&&& 

xt

��
�

��
�

xt	�

�%%%%%%%%%%%�

�&&&&&&&&&&& 
� �6�4�

The characteristic polynomial is given by (we define rescaled coordinates
�� 
� ��� and �� � ������1)

0 �P��� � ��	 ���� 	 ��

or 0 �P���� � ���	 1���� 	 ��� �6�5�

Figure 6.3 shows the maximum of the absolute value of the eigenvalues.
In rescaled coordinates �� � 1�� corresponds to a control interval ��!��� ��. For

�max � 1� 1
�

�6�6�

the control interval vanishes, and for � � �max��� no control is possible [4, 8]. If
we look at the Lyapunov exponent � 
� ln � instead of the Lyapunov number,
we find with ln x � �x 	 1� the inequality

�max � � � 1� �6�7�
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Fig. 6.3 Control intervals for several time de-
lays � � 0 � � � 5: The plots show the maximal
absolute value of the eigenvalues as a func-
tion of the rescaled control gain ��.

Values of ���� � 1�� correspond to ��� � 1 in
(6.5) without rescaling, so one can obtain
the range ��	� �� for which control is suc-
cessfully achieved.



Therefore, delay time and Lyapunov exponent limit each other if the system is
to be controlled. This is consistent with the loss of knowledge in the system by
exponential separation of trajectories.

6.3.2
Stability Diagrams Derived by the Jury Criterion

For small � one can derive easily the borders of the stability area with the help
of the Jury criterion [5, 8]. The Jury criterion [16] gives a sufficient and neces-
sary condition that all roots of a given polynomial are of modulus smaller than
unity. Given a polynomial P�x� � anxn � an	1xn	1 � � � � � a1x � a0� one applies
the iterative Jury table scheme:

�0%i%n bi 
� an	i

�n 
� bn�an

�1%i%n anew
i	1 
� ai 	 �nbi

giving �n and coefficients an	1� � �a0 for the next iteration. The Jury criterion
states that the eigenvalues are of modulus smaller than unity if and only if
�1%i%n��i� � 1� The criterion gives 2n (usually partly redundant) inequalities that
define hypersurfaces in coefficient space. The complete set of lines is shown in
Fig. 6.4 for � � 4 to illustrate the redundancy of the inequalities generated by
the Jury table. For � � 1, the Jury coefficients are given by �1 � 	���1� ���
and �2 � 	��. Control is only necessary for ��� � 1, and by folding the relevant
stability area into the same quadrant one obtains Fig. 6.5 showing how �max de-
creases for increasing �.

6.3.3
Stabilizing Unknown Fixed Points: Limitations of Unmodified Difference Control

As the OGY approach discussed above requires the knowledge of the position of
the fixed point, one may wish to stabilize purely by feeding back differences of
the system variable at different times. This becomes relevant in the case of pa-
rameter drifts [4] which often can occur in experimental situations. A time-con-
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tinuous strategy r�t� � ��x�t� 	 x�t	 �d�� has been introduced by Pyragas [26],
where r�t� is updated continuously and �d matches the period of the unstable
periodic orbit. The time-discrete counterpart (i.e., control amplitudes are calcu-
lated every Poincaré section) is the difference control scheme [1]: for control
without delay, a simple difference control strategy

rt � ��xt	� 	 xt	�	1� �6�8�

is possible for �� � 	��3, and eigenvalues of modulus smaller than unity of the

matrix
�� �� 	��

1 0

 �
are obtained only for 	3 � � � �1, so this method sta-

bilizes only for oscillatory repulsive fixed points with 	3 � � � 	1 [1] see the
� � 0 case in Fig. 6.6).

We can proceed in a similar fashion as for OGY control. In the presence of �
steps delay the linearized dynamics of difference control is given by

xt�1

��
�

��
�

xt	�

�%%%%%%%%%%%�

�&&&&&&&&&&& 
�

� 0 � � � 0 �� 	��
1 0 0

0 1 � �
� ��

�

��
� � �

�

� �
�

��
� � �

�
0 ��

�

0 � � � � � � 0 1 0

�%%%%%%%%%%�

�&&&&&&&&&& 

xt

��
�

��
�

xt	�	1

�%%%%%%%%%%%�

�&&&&&&&&&&& 
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Fig. 6.5 Stability areas for � � 1� 2� 3� 4, com-
bined. Only for ��� � 1 control is necessary
(dashed line), and the stability area (shaded
for � � 4) extends to ��max� � 2� 3�2� 4�3�
5�4. Note that still both positive and

negative � can be controlled. The abscissa
	���sgn����	1� takes into account that for
odd � a negative �� is required, independent
of the sign of �.



in delayed coordinates �xt� xt	1� � � � xt	�	1�, and the characteristic polynomial is
given by

0 � ��	 �����1 � �1	 ����� �6�9�
As we have to use xt	�	1 in addition to xt	�, the system is of dimension �� 2,
and the lower bound of Lyapunov numbers that can be controlled is found to
be

�inf � 	 3� 2�
1� 2�

� 	 1� 1
�� 1�2

 �
�6�10�

and the asymptotic control amplitude at this point is

�� � �	1��
1� 2�

� �6�11�

The stability area in the ���� �� plane is bounded by the lines �i � !1 where �i

are the coefficients given by the Jury criterion [16] (see Fig. 6.6). For � � 0, the

Jury coefficients are �1 � 	 �� ��

1� ��
and �2 � ��� For � � 1 to � � 3, the Jury coef-

ficients are given in [8].
The controllable range is smaller than for the unmodified OGY method, and

is restricted to oscillatory repulsive fixed points with �inf � � % 	1. Thus, delay
severely reduces the number of controllable fixed points, and one has to develop
special control strategies for the control of delayed measured systems. A strik-
ing observation is that inserting �� 1

2 for � in Eq. (6.6) exactly leads to the ex-
pression in Eq. (6.10) which reflects the fact that the difference feedback control
can be interpreted as a discrete first derivative, taken at time t	 ��� 1

2�. Thus
the controllability relation (6.7) holds again.
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Fig. 6.6 Difference feedback for � � 0� 1� 2� 3:
Stability borders derived by the Jury criterion
[5, 8]. The stability diagram of the nonde-
layed case � � 0 has already been given in

[1]. From � � 	1 (dashed line) to � � �1
the system is stable without control. For
each �, control is effective only within the
respective area (shaded for � � 3).



As �	1 is implying a natural time scale (that of exponential separation) of an
orbit, it is quite natural that control becomes limited by a border proportional to
a product of � and a feedback delay time. Already without the additional diffi-
culty of a measurement delay this is expected to appear for any control scheme
that itself is using time delayed feedback: e.g., the extensions of time-discrete
control schemes discussed in [30] with an inherent Lyapunov number limitation
due to memory terms, and the experimentally widely applied time-continuous
schemes Pyragas and ETDAS [11, 17, 19]. Here Pyragas control has the Lyapu-
nov exponent limitation ��p % 2 together with the requirement of the Floquet
multiplier of the uncontrolled orbit having an imaginary part of �, meaning that
deviations from the orbit after one period experience to be flipped around the
orbit by that angle, which is quite the generic case [18]. This nicely corresponds
with the requirement of a negative Lyapunov number that appears in difference
control. A positive Lyapunov number in the time-discrete picture corresponds to
a zero flip of the time-continuous orbit, and is consistently uncontrollable in
both schemes.

Recently, the influence of a control loop latency control loop latency has also
been studied for continuous time delayed feedback [18] by Floquet analysis, ob-
taining a critical value for the measurement delay �, that corresponds to a maxi-

mal Lyapunov exponent log ��inf � � ��p � 1
1�2� ���p

, where �p is the orbit

length and matched feedback delay. By the log inequality that again translates
(for small Lyapunov exponents) to our result for the time-discrete difference
control. An exact coincidence could not be expected, as in Pyragas control the
feedback difference is computed continuously sliding with the motion along the
orbit, where in difference control it is evaluated within each Poincaré section.
For the ETDAS scheme with latency, a detailed analysis is performed in [14],
showing that the range of stability can be extended compared to the Pyragas
scheme. Although the time-continuous case (as an a priori infinite-dimensional
delay-differential system) could exhibit much more complex behavior, it is how-
ever astonishing that for all three methods, OGY, difference, and Pyragas con-
trol, the influence of measurement delay mainly results in the same limitation
of the controllable Lyapunov number.

6.3.4
Rhythmic Control Schemes: Rhythmic OGY Control

As pointed out for difference control in the case � � 0 in [1], one can eliminate
the additional degrees of freedom caused by the delay term. One can restrict
himself to applying control rhythmically only every �� 1 time steps (�� 2 for
difference control), and then leaving the system uncontrolled for the remaining
timesteps (see Fig. 6.7). Then � � ��t� appears to be time dependent with

��t mod �� � ��0� 0� � � � � 0� �6�12�
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and, after ��� 1� iterations of (6.4), we again have a matrix as in (6.4), but with
���1 instead of �. Equivalently, we can write

xt����1� � ���1xt � �0�xt� �6�13�

What we have done here is controlling the ��� 1�-fold iterate of the original
system. This appears to be formally elegant, but leads to practically uncontrolla-
ble high effective Lyapunov numbers ���1 for both large � and large �.

Even if the rhythmic control method is of striking simplicity, it remains unsa-
tisfying that control is kept quiet, or inactive, for � time steps. Even if the state
of the system x is known delayed by �, one knows (in principle) the values of xt

for t � �, and one could (in principle) store the values �rt	�� � � � � �rt of the con-
trol amplitudes applied to the system. This can be done, depending on the
timescale, by analog or digital delay lines, or by storing the values in a compu-
ter or signal processor (observe that there are some intermediate frequency
ranges where an experimental setup is difficult).

Both methods, rhythmic control and simple feedback control in every time
step, have their disadvantages: for rhythmic control it is necessary to use rather
large control amplitudes, in average ����, and noise sums up to an amplitude
increased by factor

���
�

"
. For simple feedback control the dimension of the system

is increased and the maximal controllable Lyapunov number is bounded by
(6.6). One might wonder if there are control strategies that avoid these limita-
tions. This has necessarily to be done by applying control in each time step, but
with using knowledge what control has been applied between the last measured
time steps t	 � and t. This concept can be implemented in at least two ways,
by storing previous values of xt (Section 6.3.6) or by storing previous values of
�rt (LPLC, Section 6.4.1 and MDC, Section 6.4.3).

6.3.5
Rhythmic Difference Control

To enlarge the range of controllable �, one again has the possibility of reducing
the dimension of the control process in linear approximation to 1 by applying
control every �� 2 time steps.
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Fig. 6.7 Rhythmic control (schematically). Keeping control
quiet for � intermediate time steps avoids the additional
degrees of freedom. However, the effective Lyapunov number
to be controlled then is raised to ���1.



xt�1 � �xt � ���xt	� 	 xt	�	1� �6�14�
� ����1 � ���	 ���xt	�	1

and the goal xt�1�� 0 can be fulfilled by

�� � 	 ���1

1	 �
� �6�15�

One has to choose �� between ��! � 	 ���1 ! 1
1	 �

to achieve control as shown in

Fig. 6.8. The case � � 0 has already been discussed in [1]. With rhythmic con-
trol, there is no range limit for �, and even fixed points with positive � can be
stabilized by this method.

When using differences for periodic feedback, one still has the problem that
the control gain increases by ��, and noise sums up for �� 1 time steps before
the next control signal is applied. Additionally, now there is a singularity for
� � �1 in the “optimal” control gain given by (6.14). This concerns fixed points
where differences xt 	 xt	1 when escaping from the fixed point are naturally
small due to a � near to �1.

Here one has to decide between using a large control gain (but magnifying
noise and finite precision effects) or using a small control gain of order
��	�� � �1� � �� 1 (but having larger eigenvalues and therefore slow conver-
gence).

Two other strategies that have been discussed by Socolar and Gauthier [30]
are discretized versions of time-continuous methods. Control between
� � 	�3� R���1	 R� and � � 	1 is possible with discrete ETDAS (R � 1)
rt � �

$�
k�0 Rk�xt	k 	 xt	k	1� and control between � � 	�N � 1� and � � 	1 is

achieved with discrete NTDAS (let N be a positive integer) which is defined by
rt � � xt 	 1

N

$N
k�0 xt	k��

�
Both methods can be considered to be of advantage

even in time-discrete control in the Poincaré section, e.g., if the number of ad-
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Fig. 6.8 Stability area of rhythmic difference control for � � 0� 1� 2� 3� 4� 5.



justable parameters has to be kept small. Whereas these methods are mainly
applied in time-continuous control, especially in analog or optical experiments,
for time-discrete control the MDC strategy described below allows us to over-
come the Lyapunov number limitations.

6.3.6
A Simple Memory Control Scheme: Using State Space Memory

We extend the single delay line by several artificial delay lines (see Fig. 6.9),
each with an externally tuneable control gain coefficient [5, 9]:

rt � �1xt	1 � �2xt	2 � � � � � �n�1xt	n	1 �6�16�

For n steps memory (and one step delay) the control matrix is

xt�1

��
�

��
�

xt	n

�%%%%%%%%%%%�

�&&&&&&&&&&& 
�

� �1 � � � �n �n�1

1 0 0

0 1 � �
� ��

�

��
� � �

�

� �
�

��
� � �

�
0 ��

�

0 � � � � � � 0 1 0

�%%%%%%%%%%�

�&&&&&&&&&& 

xt

��
�

��
�

xt	n	1

�%%%%%%%%%%%�

�&&&&&&&&&&& 
�6�17�

with the characteristic polynomial ��	 ���n�1 �$n
i�1 �i�

n	i� We can choose
�1 � �2 � � � � � �n�2 � 	���n� 2� and evaluate optimal values for all �i by
comparing with the coefficients of the product

'n�2
i�1 ��	 �i�. This method al-

lows control up to �max � 2� n; thus arbitrary � can be controlled if a memory
length of n � �	 2 and the optimal coefficients �i are used.

For more than one step delay, one has the situation �1 � 0� � � � � ��	1 � 0. This
prohibits the “trivial pole placement” given above (choosing all �i to the same
value) and therefore reduces the maximal controllable � and no general scheme
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Fig. 6.9 A state space memory control (schematically). For
electronic or optic analog circuits, the idea to use additional
delay lines is appealing, though the applicability is restricted
to the � � 1 OGY case (which will cover most experiments).



for optimal selection of the �i applies. One can alternatively use the LPLC meth-
od described below, which provides an optimal control scheme. One could won-
der why to consider the previous state memory scheme at all when it does not
allow us to make all eigenvalues zero in any case. First, the case of up to one or-
bit delay and moderately small � already covers many low-period orbits. Second,
there may be experimental setups where the feedback of previous states through
additional delay elements and an analog circuit is experimentally more feasible
than feedback of past control amplitudes.

6.4
Optimal Improved Control Schemes

6.4.1
Linear Predictive Logging Control (LPLC)

If it is possible to store the previously applied control amplitudes rt� rt	1� � � �,
then one can predict the actual state xt of the system using the linear approxi-
mation around the fixed point (see Fig. 6.10). That is, from the last measured
value xt	� and the control amplitudes we compute estimated values iteratively
by

yt	i�1 � �xt	i � �rt	i �6�18�

leading to a predicted value yt of the actual system state. Then the original OGY
formula can be applied, i.e., rt � 	���yt. In this method the gain parameters
are again linear in xt	� and all �rt� � with t	 � % t� % t, and the optimal gain pa-
rameters can be expressed in terms of � and �.

In contrast to the memory method presented in the previous subsection, the
LPLC method directs the system (in linear approximation) in one time step
onto the fixed point. However, when this control algorithm is switched on, one
has no control applied between t	 � and t	 1, so the trajectory has to be fairly
near to the orbit (in an interval with a length of order ����, where � is the inter-
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Fig. 6.10 Linear predictive logging control (schematically).
In LPLC, all intermediately applied control amplitudes are
employed for a linear prediction. A corresponding scheme
(MDC, Section 6.4.3) exists also for difference control.



val halfwidth where control is switched on). Therefore the time one has to wait
until the control can be successfully activated is of order ��	1 larger than that in
the case of undelayed control.

The LPLC method can also be derived as a general linear feedback in the last
measured system state and all applied control amplitudes since the system was
measured by choosing the feedback gain parameters in a way that the linearized
system has all eigenvalues zero. The linear ansatz

rt � � � xt	�	i � �1rt	1 � � � � ��rt	� �6�19�

leads to the dynamics in combined delayed coordinates
�xt� xt	1� � � � � xt	�� rt	1� � � � � rt	��

xt�1

xt

��
�

xt	��1

rt

��
�

rt	��1

�%%%%%%%%%%%%%%%%%%%�

�&&&&&&&&&&&&&&&&&&& 

�

� 0 � � � � � � 0 � �1 �2 � � � � � � ��
0

1 � �
�

� �
� � �

�

� �
� � �

�

1 0
0 0 � � � � � � 0 � �1 �2 � � � � � � ��

1 0
� �
� � �

�

� �
� � �

�

1 0

�%%%%%%%%%%%%%%%%%%%�

�&&&&&&&&&&&&&&&&&&& 

xt

xt	1

��
�

xt	�
rt	1

��
�

rt	�

�%%%%%%%%%%%%%%%%%%%�

�&&&&&&&&&&&&&&&&&&& 
giving the characteristic polynomial

0 �	 ������1 � ���	�	 �1�
� ��	1�� � �1 	 �2� � ��	2�� � �2 	 �3�
� � �� �1�� � ��	1 	 ��� � �� � �� 	 ���� �6�20�

All eigenvalues can be set to zero using � � 	���1 and �i � 	�i. A generaliza-
tion to more than one positive Lyapunov exponent is given in [9].

6.4.2
Nonlinear Predictive Logging Control

One can also consider a nonlinear predictive logging control (NLPLC) strategy [9]
as the straightforward extension to the LPLC method for nonlinear prediction. If
the system has a delay of several time steps, the interval where control is achieved
becomes too small. However, if it is possible to extract the first nonlinearities from
the time series, prediction (and control) can be fundamentally improved. In
NLPLC, the behavior of the system is predicted each time step by a truncated Tay-
lor series
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xt�1 � �xt � �2

2
x2

t � �rt � �2

2
r2

t � �xtrt � o�x3
t � x1

t rt� xtr
2
t � r

3
t �

using applied control amplitudes �rt� for each time step. This equation has to
be solved for rt using xt�1�� 0. A similar nonlinear prediction method has been
described by Petrov and Showalter [25]. They approximate the xt�1�xt� rt� surface
directly from the time series and use it to direct the system to any desired
point. Both Taylor approximation or Petrov and Showalter method can be used
here iteratively, provided one knows the delay length. Both approaches could be
regarded as a nonlinear method of model predictive control [3], applied to the
Poincaré iteration dynamics.

From a practical point of view, it has to be mentioned that one has to know
the fixed point x� more accurately than in the linear case. Otherwise one experi-
ences a smaller range of stability and additionally a permanent nonvanishing
control amplitude will remain. This may be of disadvantage especially if the
fixed point drifts in time (e.g. by other external parameters such as tempera-
ture) or if the time series used to determine the parameters is too short.

6.4.3
Stabilization of Unknown Fixed Points: Memory Difference Control (MDC)

As all methods mentioned above require the knowledge of the position of the
fixed point, one may wish to stabilize purely by feeding back differences of the
system variable at different times. Without delay, difference feedback can be
used successfully for �� � 	��3, and eigenvalues of modulus smaller than unity

of the matrix
�� �� 	��

1 0

 �
are obtained only for 	3 � � � �1, so this

method stabilizes only for oscillatory repulsive fixed points with 	3 � � � 	1
[1].

Due to the inherent additional period one delay of difference control and
MDC, the � period delay case of MDC corresponds, in terms of the number of
degrees of freedom, to the �� 1 period delay case of LPLC.

One may wish to generalize the linear predictive feedback to difference feed-
back. Here, caution is advised. In contrast to the LPLC case, the reconstruction
of the state xt	� from differences xt	�	i 	 xt	�	i	1 and applied control ampli-
tudes rt	j is no longer unique. As a consequence, there are infinitely many ways
to compute an estimate for the present state of the system, but only a subset of
these leads to a controller design ensuring convergence to the fixed point.
Among these there exists an optimal every-step control for difference feedback
with minimal eigenvalues and in this sense optimal stability.

To derive the feedback rule for MDC [4, 5, 9], we directly make the linear an-
satz

rt � � � �xt	�	i 	 xt	�	i	1� � �1rt	1 � � � � ��rt	�

with the dynamics in combined delayed coordinates
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�&&&&&&&&&&&&&&&&&&&&& 
giving the characteristic polynomial

0 �	 ������1 � ���	�	 �1�
� ��	1�� � �1 	 �2� � ��	2�� � �2 	 �3�
� � �� �2�� � ��	2 	 ��	1�
� �1�� � ��	1 	 �� 	 �� � �� � �� � ���� �6�21�

All eigenvalues can be set to zero using � � 	���1���	 1�, �� � ������	 1�
and �i � 	�i for 1 % i % �	 1. This defines the MDC method. For more than
one positive Lyapunov exponent see [5, 9].

6.5 Summary

Delayed measurement is a generic problem that can appear in controlling chaos
experiments. In some situations it may be technically impossible to extend the
control method; then one wants to know the stability borders with minimal
knowledge of the system.

We have shown that both OGY control and difference control cannot control
orbits with an arbitrary Lyapunov number if there is only delayed knowledge of
the system. The maximal Lyapunov number up to which an instable orbit can

be controlled is given by 1� 1
�

for OGY control and 1� 1
�� 1�2

for difference

control. For small � the stability borders can be derived by the Jury criterion, so
that the range of values for the control gain � can be determined from the
knowledge of the Taylor coefficients � and �. If one wants to overcome these
limitations, one has to modify the control strategy.

We have presented methods to improve Poincaré-section-based chaos control
for delayed measurement. For both classes of algorithms, OGY control and dif-
ference control, delay affects control, and improved control strategies have to be
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applied. Improved strategies contain one of the following principle ideas: rhyth-
mic control, control with memory for previous states, or control with memory
for previously applied control amplitudes. In special cases the unmodified con-
trol, previous state memory control, or rhythmic control methods could be con-
sidered, especially when experimental conditions restrict the possibilities of de-
signing the control strategy.

In general, the LPLC and MDC strategies allow a so-called deadbeat control
with all eigenvalues zero; and they are in this sense optimal control methods.
All parameters needed for controller design can be calculated from linearization
parameters that can be fitted directly from experimental data. This approach
has also been sucessfully applied in an electronic [4] and plasma [22] experi-
ment.
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Alexander Fradkov and Alexander Pogromsky

7.1
Introduction

For almost three decades after the term “chaos” was coined, chaotic phenomena
and chaotic behavior have been observed in numerous natural and model sys-
tems in physics, chemistry, biology, ecology, and so on. Paradigm of chaos al-
lows us to better understand inherent properties of natural systems. Engineer-
ing applications are rapidly developing in areas such as lasers and plasma tech-
nologies, mechanical and chemical engineering and telecommunications.

Chaotic systems are deterministic dynamical systems exhibiting irregular,
seemingly random behavior. Two trajectories of a chaotic system starting close
to each other will diverge after some time (so-called sensitive dependence on
initial conditions). Mathematically, chaotic systems are characterized by local in-
stability and global boundedness of the trajectories. Since local instability of a
linear system implies unboundedness (infinite growth) of its solutions, a chaotic
system should be necessarily nonlinear, i.e., should be described by a nonlinear
mathematical model.

An important consequence of the system instability is high sensitivity with re-
spect to changes of input (controlling action). It means that small changes of
input may produce large variations in system behavior. Such a phenomenon
and its implications in physics were described in the seminal paper [1] that trig-
gered an explosion of activities and thousands of publications related to control
of chaos.

Control of chaos, or control of chaotic systems, is the boundary field between
control theory and dynamical systems theory studying when and how it is possi-
ble to control systems exhibiting irregular, chaotic behavior. Control of chaos is
closely related to nonlinear control and many methods of nonlinear control are
applicable to chaotic systems. However control of chaotic systems has some spe-
cific features. In the early 1990s when the first methods of controlling chaos
were proposed, no systematic applications of nonlinear control machinery were
made. At that time a number of new ideas in control were developed, such as

129

7
Nonlinear and Adaptive Control of Chaos



OGY and Pyragas methods [1, 2]. Later a systematic study and comparative anal-
ysis of different methods for control of chaos, including conventional methods
of nonlinear control theory were carried out [3–8].

Methods of nonlinear control are well presented in a number of monographs
and textbooks [17, 19, 20]. In order to facilitate their application a brief survey
of main nonlinear control ideas will be given in this chapter. The chosen
methods of gradient, speed gradient, and feedback linearization are simple yet
general (applicable to the models of arbitrarily high order).

An important problem arising when dealing with real-world systems is uncer-
tainty. Properties of both controlled systems and their environment are not known
precisely and may change during experiment. A powerful way of coping with un-
certainty is the usage of adaptive control methods. Even if a model of the system
is known, it may be too complicated for effective control algorithm design and a
suitable auxiliary model may be needed (for example, model of the controlled
Poincaré map in the OGY method). Methods of adaptive control are also well pre-
sented in textbooks and monographs [16, 17, 21]. It is convenient to consider
adaptive and nonlinear control in one package, since their design is often based
on similar approaches. Indeed, even if the controlled system is described by a lin-
ear model, arranging feedback tuning of its parameters makes the overall system
model linear. Because of place limitation only the main definitions and principles
related to adaptive control and an example will be considered in this chapter.

Before exposition of the methods some preliminaries are given concerning
system models, control goals, and properties of chaotic systems. After exposition
of the methods some illustrating examples are presented.

7.2
Chaos and Control: Preliminaries

7.2.1
Definitions of Chaos

There exists different definitions of a chaotic system and chaotic behavior. The
following quotation gives an idea of the situation.

� There are many possible definitions of chaos. In fact, there is
no general agreement within the scientific community as to
what constitutes a chaotic dynamical system. [12]

In most of definitions chaotic processes are treated as solutions of nonlinear dif-
ferential or difference equations, characterized by local instability and global
boundedness. It means that solutions with close initial conditions will diverge
to some finite distance after some time (so-called sensitive dependence on ini-
tial conditions). Below a typical definition and a typical criterion of chaos are in-
troduced. For more details see, for example [9–11].
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Consider the system of differential equations

�x � f �x�� �7�1�

where x � �
n is the n-dimensional state vector, �x � dx�dt stands for the time

derivative of x. Let A � �
n be an attracting set of (7.1) (any solution of (7.1)

starting from a vicinity of A approaches A as t ��). The set A is called a chao-
tic attractor if it is minimal (does not contain other attracting sets), bounded
and unstable (any solution starting from A is unstable in a certain sense, e.g.
Lyapunov unstable). The system (7.1) is called chaotic if it possesses at least one
chaotic attractor. Similarly for discrete-time system xk�1 � f �xk�.

Although the above definition is used very often, some alternatives have been
suggested in the literature. For example, the definition due to Devaney [12] re-
quires additionally that periodic trajectories are dense in the attractor. Some
authors prefer to use the term “strange attractor” instead of “chaotic attractor.”
The term “strange attractor” introduced by Ruelle and Takens [13] in 1971 means
that the attractor is a porous (fractal) set that cannot be represented as a piece of
manifold and therefore has a noninteger, fractional dimension. In fact in over-
whelming part of applications the concepts of “strange attractor” and “chaotic at-
tractor” are indistinguishable.

7.2.2
Models of Controlled Systems

A formal statement of a control problem typically begins with a model of the sys-
tem to be controlled (controlled system or controlled plant) and a model of the control
objective (control goal). If the plant model is not given a priori (as in many real life
applications) some approximate model should be determined in some way. Several
classes of models are considered in the literature related to control of chaos. The
most common class consists of continuous systems with lumped parameters de-
scribed in state space by differential or difference equations

�x � F�x� u�� xk�1 � F�xk� uk� �7�2�

where x is the n-dimensional vector of the state variables; u is the m-dimen-
sional vector of inputs (control variables). For the continuous-time case the vec-
tor function F�x� u� is usually assumed continuously differentiable, which guar-
antees local existence and uniqueness of solutions of (7.2). The model should
also include the description of measurements, i.e., the l-dimensional vector of
output variables y should be defined, for example

y � h�x�� �7�3�

If the outputs are not defined explicitly, it is assumed that all the state variables
are available for measurement, i.e. y � x.
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More details concerning different classes of controlled system models and
their peculiarities can be found in [3].

7.2.3
Control Goals

The main classes of control goals are briefly described below.

Stabilization A typical goal for control of chaotic systems is stabilization of an
unstable periodic solution (orbit). Let x��t� be the T -periodic solution of
the free (u�t� � 0) system (7.2) with the initial condition x��0� � x�0, i.e.
x��t� T� � x��t� for all t � 0. If the solution x��t� is unstable, a reasonable
goal is stabilization or driving solutions x�t� of (7.2) to x��t� in the sense of ful-
fillment of the limit relation

lim
t��x�t� 	 x��t�� � 0 �7�4�

or driving the output y�t� to the desired output function y��t�, i.e.

lim
t��y�t� 	 y��t�� � 0 �7�5�

for any solution x�t� of (7.2) with initial conditions x�0� � x0 � �, where � is a
given set of initial conditions.

The problem is to find a control function either in the form of an open-loop
(feedforward) control

u�t� � U�t� x0� �7�6�

or in the form of state feedback

u�t� � U�x�t�� �7�7�

or output feedback

u�t� � U�y�t�� �7�8�

to ensure the goal (7.4) or (7.5).
Such a problem is nothing but a tracking problem standard for control theory.

However, the key feature of the control of chaotic systems is to achieve the goal
by means of sufficiently small (ideally, arbitrarily small) control. Solvability of
this task is not obvious since the trajectory x��t� is unstable.

A special case of the above problem is stabilization of the unstable equi-
librium x�0 of system (7.2) with u � 0, i.e. stabilization of x�0, satisfying
F�x�0� 0� � 0. Again, this is just the standard regulation problem with an addi-
tional restriction that “small control” solutions are sought. Such a restriction
makes the problem far from standard: even for a simple pendulum, nonlocal
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solutions of the stabilization problem with small control are nontrivial. The
class of admissible control laws can be extended by introducing dynamic feed-
back described by differential or time delayed models. Similar formulations hold
for discrete and time delayed systems.

Chaotization A second class of control goals corresponds to the problems of ex-
citation or generation of chaotic oscillations (also called chaotization, chaotification
or anticontrol). Sometimes these problems can be reduced to the form (7.5), but
the goal trajectory x��t� is no longer periodic, while the initial state is equilib-
rium. The goal trajectory may be specified only partially. Otherwise, the goal
may be to meet some formal criterion of chaos, for example, positivity of the
largest Lyapunov exponent.

Synchronization Third important class of control goals corresponds to synchron-
ization (more accurately, controlled synchronization as opposed to autosynchroni-
zation or self-synchronization). Generally speaking, synchronization is understood
as concordance or concurrent change of the states of two or more systems or,
perhaps, concurrent change of some quantities related to the systems, for exam-
ple, alignment of oscillation frequencies. If the required relation is established
only asymptotically, one may speak about asymptotic synchronization. If synchro-
nization does not exist in the system without control (u � 0) the following con-
trolled synchronization problem may be posed: find a control function u�t� ensur-
ing synchronization in the closed-loop system. In this case synchronization is
the control goal. For example, the goal corresponding to asymptotic synchroni-
zation of the two system states x1 and x2 can be expressed as follows:

lim
t��x1�t� 	 x2�t�� � 0� �7�9�

In the extended state space x � �x1� x2� of the overall system, relation (7.9) im-
plies convergence of the solution x�t� to the diagonal set �x 
 x1 � x2�.

Asymptotic identity of the values of some quantity G�x� for two systems can
be formulated as

lim
t��G�x1�t�� 	 G�x2�t��� � 0� �7�10�

Goal functions To solve a control problem it is often convenient to rewrite the
goals (7.4), (7.5), (7.9) or (7.10) in terms of an appropriate goal function Q�x� t�
as follows:

lim
t��Q�x�t�� t� � 0� �7�11�

For example, to reduce the goal (7.9) to the form (7.11) one may choose the
squared Euclidean distance between state vectors of the subsystems as a goal
function:
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Q�x� � �x1 	 x2�2�

Instead of Euclidean norm other quadratic functions can also be used. For ex-
ample, in the case of the goal (7.4) the goal function

Q�x� t� � x 	 x��t����x 	 x��t���

where � is a positive definite symmetric matrix can be used. The choice of the
matrix � provides the possibility of weighting different components of the sys-
tem state vector to take into account differences in their scale or importance.

In the case of chaotization problem, a goal function G�x� may be introduced
such that the goal is to achieve the limit inequality

limt��G�x�t�� � G�� �7�12�

Typical choice of the goal function for chaotization is the largest Lyapunov expo-
nent: G � �1 with G� � 0. In some cases the total energy of mechanical or elec-
trical oscillations can serve as G�x�.

In terms of goal functions more subtle control goals can be specified, for ex-
ample, the control goal may be to modify a chaotic attractor of the free system
in the sense of changing some of its characteristics (Lyapunov exponents, entro-
py, fractal dimension, etc.). The freedom of choice of the goal function can be
utilized for design purposes.

7.3
Methods of Nonlinear Control

Among numerous nonlinear control methods that may be used for chaos con-
trol we will briefly describe just two big classes: goal-oriented methods and geo-
metrical methods.

Goal-oriented techniques A number of methods are based on reduction of the
current value of some goal (objective) function Q�x�t�� t�. The current value
Q�x�t�� t� may reflect the distance between the current state x�t� and the current
point of the goal trajectory x��t�, such as Q�x� t� � �x 	 x��t��2, or a function of
the distance between the current state and the goal surface h�x� � 0, such as
Q�x� � �h�x��2. For discrete-time systems a reasonable direction to change
the control variable is the direction of the gradient of Q�x� at the next step
with respect to control u. For continuous-time systems the value Q�x�
does not depend directly on control u and decreasing the value of the speed
�Q�x� � �Q��xF�x� u� can be posed as immediate control goal instead of de-

creasing Q�x�. This is the basic idea of the speed gradient (SG) method, which
was first used for control of chaotic systems in [33–35]. Both gradient and speed
gradient methods are described below in Sections 7.3.1 and 7.3.2.
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Geometrical methods A number of methods are based upon ideas of differen-
tial geometry used for transformation of the system description to a simplified
form. A typical geometrical method is feedback linearization. It will be de-
scribed in Section 7.3.3.

7.3.1
Gradient Method

Numerous systems in physics, biology, economics, and other areas can be de-
scribed by discrete-time dynamical models. Even if a natural system is function-
ing in continuous time, its variables are often available for measurement or con-
trol only at some discrete sampling time instants and, therefore, the system
model can be presented in a discrete-time form. Consider a class of controlled
systems described by the discrete-time state-space model:

xk�1 � F�xk� uk�� yk � h�xk� uk�� �7�13�

where xk � �
n is the value of the state vector at the kth step of system function-

ing, yk � �
l is the corresponding value of the output, and uk � �

m is the kth val-
ue of the input (control) action. The vector functions F and h are assumed to be
well defined for all values of states and inputs. In the case when the model
(7.13) describes behavior of a continuous-time system measured at some sam-
pling instants k � 0� 1� 2� � � �, the variables can be interpreted as follows: xk � �

n

is the value of the state vector x�t� at the sampling instant tk; yk � �
l is the

value of the output measured at the sampling instant tk, and uk � �
m is the

value of the input (control) applied to the system at the sampling interval
tk % t � tk�1, k � 0� 1� 2� � � � .

Let the goal function Q�x� � 0 be given and the control goal be specified as

Q�xk�1� % �� when k � k�� �7�14�

where � � 0 is the prespecified threshold value. The gradient method of control
algorithm design consists of two stages. At the first stage the reduced goal func-
tion depending on the number of the step is calculated, substituting (7.13) into
(7.14):

Qk�u� � Q�Fk�xk� u��� �7�15�

The reduced goal function directly depends on u. At the second stage the gradi-
ent vector

)uQk�u� � col
�Qk�u�
�u�1�

� � � � �
�Qk�u�
�u�m�

 �

({\ it col} stands for column vector) is calculated and the control algorithm
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uk�1 � uk 	 	k)uQk�uk�� �7�16�
where 	k � 0 is the algorithm parameter (step size), is derived.

The algorithm (7.16) makes the current control correction �uk � uk�1 	 uk

along the descent direction of the current goal function Qk�u�. The idea of the
gradient method comes from optimization theory. However, in optimization
problems the objective function does not depend on k. It is worth noting that
there is no reason to use more complicated algorithms for control of a dynami-
cal system because at every step the goal function may change.

A simple algorithm does not necessarily have simple applicability conditions.
To formulate such conditions we use the so-called method of the recursive goal
inequalities proposed by Yakubovich in 1966 [15, 16]. The key point of the meth-
od is to introduce a deadzone into the algorithm, i.e. to choose 	k � 0 if the goal
inequality (7.14) is fulfilled. The precise formulation of the applicability condi-
tions can be found in [3, 15]. Essentially, three main conditions should be ful-
filled: (A) the function Qk�u� is convex in u; (B) there exists a common solution
u � u� to the system of the goal inequalities Qk�u� � �, k � 0� 1� 2� � � �; (C) the
choice of the gain 	k takes into account the deadzone: if the current inequality
Qk�uk� % � holds, then 	k � 0 is chosen.

Note that it often happens that the right-hand side of the algorithm (7.16) de-
pends on the whole nonmeasurable state vector xk. There are two standard ways
to treat such problems. The first is to include an additional dynamical system
(so-called observer), which performs an online estimation of the unknown state
vector. The second is to replace the state space model (7.2) of the controlled sys-
tem by the input–output model:

yk�1 � ��yk� � � � � yk	n� uk� � � � � uk	n�1�� �7�17�
Then at the kth step one will need to evaluate control in the form uk �
U�yk� � � � � yk	n� uk	1� � � � � uk	n�1� which is easier to design.

7.3.2
Speed-Gradient Method

A continuous-time counterpart of the gradient method is the so-called speed-gra-
dient (SG) method. Like the gradient method for discrete-time systems, SG-
method is intended for control problems where control goal is specified by
means of a goal function.

Consider a nonlinear time-varying system

�x � F�x� u� t� �7�18�
and control goal

lim
t��Q�x�t�� t� � 0� �7�19�

where Q�x� t� � 0 is a smooth goal function.
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In order to design the control algorithm the scalar function �Q � ��x� u� t� is
calculated that is the speed (rate) of changing Qt � Q�x�t�� t� along trajectories
of (7.18): ��x� u� t� � �Q�x� t���t� )xQ�x� t� ��F�x� u� t�� Then it is required to
evaluate the gradient of ��x� u� t� with respect to input variables:
)u��x� u� t� � ����u� ��� �F��u� ��)xQ�x� t�� Finally, the algorithm of chang-
ing u�t� is determined according to the differential equation

du
dt
� 	�)u��x� u� t�� �7�20�

where � � �
�
� 0 is a positive definite gain matrix, for example,

� � diag �	1� � � � � 	m�, 	i � 0. The algorithm (7.20) is called the speed-gradient
(SG) algorithm, since it suggests to change u�t� proportionally to the gradient of
the speed of changing Qt.

The origin of the algorithm (7.20) can be explained as follows. In order to
achieve the control goal (7.19) it is desirable to change u�t� in the direction
where Q�x�t�� t� decrease. However, it may be a problem since Q�x�t�� t� does
not depend on u�t� directly. Instead one may try to decrease �Q in order to
achieve the inequality �Q � 0, which implies the decrease of Q�x�t�� t�. The
speed �Q � ��x� u� t� generically depends on u explicitly which allows us to write
down (7.20). The speed-gradient algorithm can also be interpreted as a continu-
ous-time counterpart of the gradient algorithm, since for small sampling step
size the direction of the gradient is close to the direction of the speed gradient.

Let us illustrate speed-gradient design methodology for a class of tracking
control problems for controlled systems linear in the inputs:

�x � A�x� t� � B�x� t�u� �7�21�

where x�t� � �
n is the state vector, u�t� � �

m is the vector of controlling vari-
ables (inputs) which may be either physical quantities or adjustable parameters,
A�x� t� is the n-vector, and B�x� t� is the n�m-matrix. Let the control goal have
the form

lim
t��y�t� 	 y��t�� � 0� �7�22�

where y�t� � h�x�t�� � �
l is the l-vector of regulated variables (outputs), and

y��t� � �
l is the goal trajectory (desired trajectory) of the outputs. It is clear that

the goal (7.22) has the equivalent form (7.19) if the goal function Q�x� t� is cho-
sen as follows:

Q�x� t� � 1
2
y	 y��t��

�
Py	 y��t��� �7�23�

where P is the symmetric positive-definite l � l-matrix.
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For the purpose of control algorithm design rewrite equation (7.21) in the
form

�x � A�x� t� �
�m
i�1

Bi�x� t�ui� �7�24�

where ui are components of the vector u � �
m and Bi�x� t� � �

n are columns of
the matrix B�x� t�. Then the rate (speed) of changing Q�x�t�� t� along trajectories
of the system (for constant u) is as follows:

��x� u� t� � y	 y��t��
�
PCA�x� t� � CB�x� t�u	 �y��t��� �7�25�

where C � C�x� t� � �G�x� t���x. Taking the gradient of (7.25) in u we obtain
the speed gradient and the speed-gradient algorithm in the following form:

)u��x� u� t� � B�x� t��C
�
Py	 y��t��� �7�26�

du
dt
� 	�B�x� t��C

�
Py	 y��t��� �7�27�

To simplify design, the gain matrix � is often chosen as the diagonal matrix
(� � diag �	i�) or scalar matrix (� � 	I) where 	i, 	 are positive numbers. For a
special case of the system linear in inputs the algorithm (7.27) is nothing but
the classical integral control law.

In a similar way the so-called speed-gradient algorithm is designed in finite
form

u�t� � u0 	 �)u��x�t�� u�t�� t�� �7�28�

where u0 is some initial value of a control variable, for example, u0 � 0. Algo-
rithm (7.28) is a generalization of the classical proportional control law.

The more general form of speed-gradient algorithms is sometimes useful:

u�t� � u0 	 	��x�t�� t�� �7�29�

where 	 � 0 is the scalar gain parameter and the vector function ��x� t� satisfies
the so-called pseudogradient condition

��x� t��)u��x� u� t� � 0 �7�30�

for all x� u� t. A special case of (7.29) is called the sign-like or relay-like algorithm:

u�t� � u0 	 	 sign)u��x�t�� u�t�� t�� �7�31�

where sign of a vector is understood component wise: for a vector z � col
�z1� � � � � zm� sign z is defined as sign z � col �sign z1� � � � � sign zm�.
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In order to make a reasonable choice of the control algorithm parameters the
applicability conditions should be verified. Let us formulate applicability condi-
tions for a combined finite-differential version of the SG-algorithm

d u� ���x� t�� �
dt

� 	�)u��x� u� t� �7�32�

where � � �� � 0� ��x� t��)u��x� u� t� � 0.

Theorem 7.1 Let the following assumptions A1–A4 be satisfied.

A1 The functions F and )u� are continuous in x and u, piecewise continuous in t
and locally bounded uniformly in t, that is for any 
 � 0 there exists C�
� such that

�F�x� u� t�� � �)u�x� t�� % C�
�

holds if �x� % 
 and �u� % 
.

A2 The function Q is nonnegative, uniformly continuous in any set of the form
��x� t� 
 �x� % 
� t � 0� and radially unbounded, that is

inf
t�0

Q�x� t� � �� if �x� � ��

A3 The function � is convex in u, that is the inequality

��x� u�� t� 	 ��x� u� t� � �u� 	 u��)u��x� u� t�

holds for all u � �
m� u� � �

m� x � �
n� t � 0.

A4 There exists a constant vector u� � �
m and a nonnegative continuous scalar

function � 
 �n � �� such that for any solution x�t� of (7.18) the following inequal-
ity

��x�t�� u�� t� % 	��x�t��

holds for all t � 0.
Then any solution �x�t�� u�t�� of (7.18), (7.32) is bounded and

lim
t�� ��x�t�� � 0�

First let us discuss assumptions A1–A4. Condition A1 guarantees existence and
uniqueness of solutions of the system (7.18), (7.32) at least on some finite time
interval and from the practical point of view this assumption is not restrictive.
Assumption A2 about radial unboundedness of Q�x� t� helps us to establish glo-
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bal properties of the overall system. This assumption is valid, for example, for
the quadratic objective function

Q�x� t� � x 	 �x�t�� ��H�t� x 	 �x�t�� �

if the vector �x�t� is bounded and the matrix H�t� is positive definite uniformly
in t: H�t� � �In� � � 0.

The main conditions are A3 – convexity of the function ��x� u� t� in u and A4
– existence of “ideal” control u� such that ��x� u�� t� % 0 for all x (attainability
condition). Convexity condition A3 holds, for example, if the function � is lin-
ear in u. To check Assumption A3 for twice differentiable in u functions � it is
sufficient to verify the inequality )2

u��x� u� t� � 0. Assumption A4 is the most
restrictive one. It requires the existence of the constant value of the control vari-
able for which the control objective is achieved. Also this assumption gives a
clue to how to choose the objective function Q – it must coincide with the Lya-
punov function of the overall system which proves its stability for some fixed
(perhaps, unknown) value of the input variable.

More results concerning applicability conditions of speed-gradient algorithms
can be found in [3, 17].

The speed-gradient algorithms can be modified to take into account con-
straints. For example, let the equality constraint be given as

g�x�t�� u�t�� t� � 0� �7�33�

where g is a smooth scalar function, and a scalar control function u�t� is to be
chosen such that (7.33) is satisfied for all t � 0. The modified (constrained) SG-
algorithm in differential form is as follows:

�u�t� � 		)u��x�t�� u�t�� t� 	 ��t�)ug�x�t�� u�t�� t�� �7�34�

where the Lagrange multiplier ��t� is chosen to satisfy the condition �g � 0, that
is

��t� � 		)u��x�t�� u�t�� t� � )xg
�
F�x�t�� u�t�� t� � �g��t

�)ug�x�t�� u�t�� t��2 � �7�35�

The initial condition u�0� should satisfy constraint too: g�x�0�� u�0�� t� � 0� The
case of SG-algorithms in finite form and the case of inequality constraints are
considered in a similar way.

The speed-gradient algorithm is tightly associated with the concept of Lyapu-
nov function V�x� – a function of the system state nonincreasing along its tra-
jectories. The Lyapunov function is an abstraction for such physical characteris-
tics as energy and entropy. It is important that the Lyapunov function can be
used not only for analysis but also for system design. In particular, for the
speed-gradient algorithms in the finite form the goal function itself may serve
as the Lyapunov function: V�x� � Q�x�. The Lyapunov function for differential
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form of SG-algorithms is as follows: V�x� u� � Q�x� � 0�5�u	 u����	1�u	 u��,
where u� is the desired “ideal” value of controlling variables. Note that in order
to justify the discrete-time gradient algorithm one may use the Lyapunov func-
tion as the square distance between the current and the “ideal” controlling vari-
ables V�u� � �u	 u��2.

7.3.3
Feedback Linearization

The gradient and the speed-gradient methods represent a family of goal-oriented
methods which allow the designer of control system to create the control algo-
rithm for a nonlinear controlled system as soon as the control goal is formu-
lated by means of a goal function. However, it is not a unique approach to con-
trol system design. A number of other more sophisticated approaches can be
found in the control literature (see [3, 17–22]). Below one of most popular meth-
ods, feedback linearization, will be briefly presented.

Consider the systems affine in control:

�x � f �x� � g�x�u� �7�36�

Definition 7.2 System (7.36) is called feedback linearizable in the open domain
� � �

n if there exists a smooth coordinate change z � ��x�� x � �, and a feed-
back transformation

u � ��x� � 
�x�v� �7�37�

with smooth functions �� 
 such that � and 
 are smoothly invertible in � and
the closed loop system (7.36) and (7.37) is linear, i.e. there exist constant ma-
trices A � �

n�n and B � �
n�m so that

f �x� � g�x���x� � A� g�x�
�x� � B� x � �� �7�38�

Feedback linearizability of the system means that it is equivalent to the system

�z � Az� Bv� �7�39�

where z�t� � �
n is the new state vector and v�t� � �

m is the new input, which
contains the nonlinearities.

Definition 7.3 System (7.36) is said to have relative degree r� r % n, at point
x0 � �

n with respect to the output

y � h�x�� �7�40�

if for any x � �, where � is some neighborhood of x0, the following conditions
are valid:
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LgLk
f h�x� � 0� k � 0� 1� � � � � r 	 2� LgLr	1

f h�x� �� 0�

Recall that L���x� �
$n

i�1
��
�xi

�i�x� stands for the Lie derivative of the vector
function � along the vector field �. Relative degree r is exactly equal to the
number of times one has to differentiate the output in order to have the input
explicitly appearing in the equation which describes the evolution of y�r��t� in
the neighborhood of x0.

Theorem 7.4 (Criterion of feedback linearizability for single-input/single-output sys-
tems). System (7.36) is feedback linearizable in the neighborhood � of a point
x0 � �

n if and only if there exists a smooth scalar function h�x� defined in � such
that the relative degree r of (7.36), (7.40) is equal to n.

In the case r � n the state transformation z � ��x� and the feedback law
reducing (7.36) to the chain of integrators (so-called Brunovsky form) can be cho-
sen as follows:

��x� � col�h�x�� Lf h�x�� � � � � Ln	1
f h�x�� �7�41�

u � 1
LgLn	1

f h�x� 	Ln
f h�x� � v

� �
� �7�42�

7.3.4
Other Methods

For stabilization of a goal point or manifold other methods of modern nonlinear
control theory have been used, for example, center manifold theory; backstep-
ping iterative design or the method of macrovariables; passivity based design;
absolute stability theory; H� control; combination of Lyapunov and feedback lin-
earization methods (see surveys [5, 6, 8]).

A number of papers are devoted to application of variable structure systems
(VSS) and sliding modes [23–25]. Switching makes the system hybrid that po-
tentially improves its performance yet complicates its analysis. Note that VSS
algorithms for the switching surface h�x� � 0 coincide with the speed-gradient
algorithms for the goal function Q�x� � �h�x��. A fruitful direction is the use of
frequency-domain methods applied to nonlinear control. In particular, approxi-
mate methods of harmonic balance for evaluation and prediction of chaotic
modes can be used together with rigorous absolute stability theory [26]. An
interesting method within this framework employs a selective (“washout”) filter
which damps all signals with frequencies beyond some narrow range [27]. If
such a filter is included in the feedback loop of a chaotic system and the base
frequency of the filter coincides with the frequency of one of the existing
unstable periodic solutions, then it is plausible that the system will be in a
periodic motion rather than in chaotic. This approach was applied to control of
lasers.
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The majority of nonlinear control approaches can be grouped into two large
classes: goal-oriented approaches (Lyapunov, speed-gradient, passivity-based
methods) and compensation approaches (feedback linearization, geometric
methods). The interrelation between these classes can be illustrated as follows.
Let the control goal be stabilization of some output variable y � h�x� of the af-
fine system �x � f �x� � g�x�u, at zero level. Lyapunov (or speed-gradient) meth-
ods introduce a goal function Q�x� � �h�x��2 and gradually decrease its deriva-
tive �Q according to the condition h��h��x�f � gu� � 0, for example, moving
along the speed gradient (antigradient of �Q ):

u � 		g��)h�h�

To respect the “small control” requirement it is necessary to choose sufficiently
small gain 	 � 0.

On the other hand, the compensation approaches introduce an auxiliary
macrovariable ��x� � �y� �y with some � � 0 and immediately force it to zero
with the control:

u � 	 f ��)h� � �h
g��)h� �

Note that � � 0 if and only if �Q � 	2�Q , i.e. compensation is equivalent to
specifying a rate decrease of Q�x�. As a result, any desired “instantaneous” tran-
sient rate can be achieved at the cost of loss of flexibility and loss of the “small
control” property.

Therefore using the well-developed machinery of modern linear and non-
linear control theories often does not take full account of the special aspects of
chaotic motions. This often means that the “small control” requirement is vio-
lated. To respect the “small control” requirement the gain 	 � 0 should be suffi-
ciently small. An outer deadzone may be introduced in terms of the goal func-
tion, for example

u�t� � 		)u
�Q�x� u�� if �Q�x�t��� % ��

0� otherwise�

�
�7�43�

Another peculiarity of chaotic systems is that the models of chaotic systems of-
ten do not satisfy the global Lipschitz condition owing to the presence of poly-
nomial nonlinearities x1x2, x2, etc. Although trajectories of chaotic systems are
bounded, it is not necessarily the case when the system is influenced by control.
Therefore, a special attention should be paid to providing boundedness of the
solutions by special choice of controls. Otherwise the solution may escape in fi-
nite time and it will not make sense to discuss stability and convergence issues.

Let us demonstrate usage of nonlinear control methods for chaos control by
examples.
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7.3.5
Gradient Control of the Hénon System

The Hénon map is a popular example of two-dimensional quadratic mapping
which produces the discrete-time system with chaotic behavior. The Hénon sys-
tem is described by the following difference equations

xk�1 � 1	 ax2
k � byk�

yk�1 � xk�

�
�7�44�

where xk� yk are the scalar state variables, a� b are the scalar parameters. The dy-
namics of the Hénon system is well studied (see, for example, [12]) and this sys-
tem also has become a benchmark example in the studies concerning oscilla-
tions and chaos. It is not difficult to obtain that the fixed point of the Hénon
map if exists is given by

�x�� y�� � 	c �
�������������
c2 � a

�
�	c �

�������������
c2 � a

�� �
� �7�45�

where c � �1	 b��2 and calculating eigenvalues of the Jacobi matrix calculated
at this point one may derive that it is unstable for the following values of the
system parameters: a � 1�4� b � 0�3.

Suppose that the system (7.44) can be controlled:

xk�1 � a	 x2
k � byk � uk�

yk�1 � xk�

� (
�7�46�

where uk � �
1 is the control action which is to be designed to achieve the de-

sired behavior of the controlled system. Following [3, 28], consider the problem
of stabilization of the unstable equilibrium for the Hénon system.

In this case the control goal is as follows:

lim
k��

xk � x�� lim
k��

yk � y�

where �x�� y�� is an (unstable) fixed point of (7.46). This control goal can be
characterized by the following objective function:

Q�xk�1� � 1
2
�xk�1 	 x��2 �7�47�

Solving this control problem we will assume that the whole state vector is avail-
able for measurements and the values of parameters a� b are known to the sys-
tem designer.

Substituting xk�1 from (7.46) into (7.47) we obtain the objective function ex-
plicitly depending on the control and therefore after some simple calculations
(see Section 2.7) we can obtain the gradient control algorithm
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uk �	 	)uk Q�xk�
� 	 	

1� 	
�a	 x2

k � byk 	 x�� �7�48�

Stability properties of the algorithm (7.48) are established by the following re-
sults.

Proposition 7.1 A sufficient condition for the local stability of the fixed point of the
controlled Hénon system (7.46), (7.48) is

	 � �b� 2x� 	 1� � 2�b	 1� �
���������������������������
�b	 1�2 � 4a

�
� �7�49�

Proof: Consider the Jacobi matrix of the controlled system

D �H � 	2x��1� 	� b��1� 	�
1 0

! "
�7�50�

and suppose that all its eigenvalues are less than 1 in absolute value at the fixed
point

� 	 x��!
�����������������������
�x���2 � b�

�
� � 1� where � � 1��1� 	�� �7�51�

Then we immediately obtain the condition (7.49).

Proposition 7.2 A sufficient condition for the global stability of the fixed point of the
controlled Hénon system (7.46), (7.48) is

	 � �b� x� � 1� � 1
2
�3b� 1�

���������������������������
�b	 1�2 � 4a

�
�� �7�52�

Proof: Consider the following chain of inequalities (we denote Qk � Q�xk�):

2Qk�1 � �1� 	�	2f �xk� yk� 	 x��2
� �1� 	�	2f �xk� yk� 	 f �x�� x�� � f �xk� x�� 	 f �xk� x���2
� �1� 	�	2b�yk 	 x�� 	 �xk � x���xk 	 x���2
% �1� 	�	2b�yk 	 y�� � �xk � x���xk 	 x���2�

Here we denote f �x� y� � a	 x2 � by. Denoting �k � �xk 	 x�� � 0 and noticing
that �yk 	 y�� � �xk	1 	 x��, we have the following recursive inequality:

�k�1 % �1� 	�	1b�k	1 � �xk � x���k� % �1� 	�	1b�k	1 � �2� x���k�� �7�53�

It is easy to show that all positive solutions of (7.53) tend to zero (i.e. the con-
trol goal is achieved) if all the roots �1�2 of the equation �2 	 A�	 B � 0, with
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A � �2� x���1� 	�	1�B � b�1� 	�	1, are less than unity in absolute value.
Then we immediately obtain the condition (7.52).

7.3.6
Feedback Linearization Control of the Lorenz System

Consider the controlled Lorenz system with control appearing in the third equa-
tion:

�x1 � �x2 	 x1��
�x2 � rx1 	 x2 	 x1x3�

�x3 � 	
x3 � x1x2 � u�

Let y � x1. Then

Lf y � �y � �x1 � �x2 	 x1��
L2

f y � Lf �Lf y� � �x1 � � �x2 	 �x1� � 
��r � 1�x1 	 2x2 � x1x3

�
�

and, therefore, the relative degree is equal to 3 everywhere except the plane
x1 � 0. New coordinates can be chosen as follows:

z � ��x� 
 z1 � x1�

z2 � �x2 	 x1��
z3 � 

��r � 1�x1 � 2x2 � x1x3
�
�

x � �	1�z� 
 x1 � z1�

x2 � 1


z2 � z1�

x3 � 1
x1

1


z3 	 �r 	 1�z1 	 2


z2

! "
�

It is seen that the system is feedback linearizable for x1 �� 0. Thus for the Lor-
enz system there is no globally defined smooth feedback linearizing transforma-
tion. Feedback linearization allows us to stabilize the system to any fixed point
in any half-space

)
x1 � 0

*
, and

)
x1 � 0

*
is not suitable for global stabilization

of the Lorenz system. Another disadvantage is in that the approach ignores the
internal dynamics of the system and formally allows us to achieve any desired
dynamics of the closed loop system. In fact the achievement of arbitrary dynam-
ical behavior may require significant power of control, for example, if the initial
state is far from the desired one or the desired motion is rapidly changing.
Such a drawback is typical for a number of works based on conventional control
theory approaches.

Another problem is that of incomplete measurements. A standard approach
to output feedback control is using an observer-based controller that allows for
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systematic use of dynamic output feedback. Proportional feedback in the ex-
tended space �x� u� (i.e. dynamic feedback) aimed at achievement of the desired
dynamics of the closed loop system was proposed and examined in [29, 30].

The potential of dynamic feedback can be better exploited using an observer-
based framework that allows for systematic use of output feedback. A survey of
nonlinear observer techniques can be found in [31] (see also Sec. 5.2). Linear
high-gain observer-based control for globally Lipschitz nonlinearities was stud-
ied in [32].

Note that models of chaotic systems often do not satisfy a global Lipschitz
condition owing to the presence of polynomial nonlinearities x1x2, x2, etc.
Although trajectories of chaotic systems are bounded, this is not necessarily the
case when the system is influenced by control. Therefore special attention
should be paid to providing boundedness of the solutions by appropriate choice
of controls. Otherwise the solution may escape in finite time and it does not
make sense to discuss stability and convergence issues. The possibility of escape
in nonlinear controlled systems is often overlooked in application papers.

7.3.7
Speed-Gradient Stabilization of the Equilibrium Point for the Thermal Convection
Loop Model

One of the simplest experimental setups which can demonstrate complex oscil-
latory behavior is the chaotic thermal convection loop. In the literature the fol-
lowing controlled thermal convection loop model was considered [36]:

�x � �y	 x��
�y � 	y	 xz� �7�54�
�z � 	z� xy	 r � u�

where u is the control variable which is a fluctuation in the heating rate super-
imposed on the nominal rate r,  is the Prandtl number, and r is the Raleigh
number. This model can be obtained from the Lorenz system by replacing z	 r
with z and assuming that r � const and b � 1. For u � 0 and 0 � r � 1 the sys-
tem has one stable globally attracting equilibrium �0� 0�	r� that corresponds to
the no-motion state of the thermal convection. At r � 1 two additional
equilibrium points C� and C	 emerge: x � y � ! �����������

r 	 1
"

� z � 	1. The con-
vection equilibria lose their stability in the Andronov-Hopf bifurcation at
r � �� 4���	 2�. For larger values of the parameter r the system has no
more equilibrium points.

In [36] the on–off controller was proposed to stabilize the inherent unstable
equilibrium point of this system:

u � 		sgn�z� 1�� �7�55�
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Practical experimentation showed that the controller (7.55) stabilizes the ther-
mal convection in either clockwise or counterclockwise direction that corre-
sponds to the stabilization of one of the equilibria C� or C	.

It was proved in [3] that the controller (7.55) is a special case of the speed-gra-
dient algorithm in finite form (7.31) for the objective function

Q�x� y� z� � �x 	
�����������
r 	 1

"
�2�� �y	

�����������
r 	 1

"
�2 � �z� 1�2�

It was shown that any trajectory of the overall system tends to some rest point
contained in the set of points �x� y� z� such that

x � y� �x �
�����������
r 	 1

"
��x 	

�����������
r 	 1

"
�

��� ��� % 	� z � 	1
+ ,

� �7�56�

It yields convergence of the solution to the neighborhood of one of the inherent
equilibrium points C� or C	 for small 	.

7.4
Adaptive Control

7.4.1
General Definitions

In a variety of physical applications parameters of the system under control are
unknown. Information about the structure of the model may also be incom-
plete. It makes adaptive control schemes very promising. Most methods belong
to either direct or indirect (identification-based) parametric adaptive control
schemes. In the direct case the model of the system is represented in a para-
metric form:

�x � F�x� �� u�� y � h�x�� �7�57�

where � is a vector of unknown parameters. Based on (7.57), a parametric repre-
sentation of the controller is

u � *�x� u� 	��� �7�58�

where 	� is a vector of adjustable parameters that are changed according to the
adaptation law

	��t� � ��x�s�� u�s�� 	��s�� 0 % s % t�� �7�59�

Most existing results are based on linearly parameterized models (7.57) or lin-
early parameterized controllers (7.58). If the initial model is not linearly para-
meterized, one may try to transform it to a linearly parameterized form. The
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controller (7.58) is usually designed using model reference or feedback lineari-
zation approaches. Proofs are typically based on Lyapunov functions, quadratic
in original or in some transformed variables.

7.4.2
Adaptive Master-Slave Synchronization of Rössler Systems

Consider the Rössler system:

��1 � 	�2 	 �3
��2 � �1 � a�2
��3 � c � �3��1 	 b�

�	
 �7�60�

with output

�3 � �001���

Assume that the coefficients a� b� c are positive. From (7.60) one can easily see
that �3 � 0 implies ��3 � c � 0, from which it follows that whenever �3�0� � 0
then �3�t� � y�t� � 0 for all t � 0 (the graph of �3�t� cannot intersect the
line �3 � 0 since otherwise ��3 should be nonpositive for �3 � 0). Consider
the comparison function V � ��2

1 � �2
2��2� �3 � 0. Taking the time deriva-

tive of this function along the solutions of the Rössler system yields
�V � a�2

2 � c 	 b�3 % 2aV � c, which implies that the solutions (with �3�0� � 0)
are well defined on the infinite time interval 0���.

The problem we address is to design a dynamical system (slave) such that
some functions of its state vector converge toward �1�t�� �2�t�� �3�t�. One diffi-
culty of the design is that some parameters of the master system are unknown.
Another problem is that the equations of the slave system can depend on the
output of the master, rather than on its whole state vector of the master system.
From a control theory point of view this problem is often referred to as adaptive
observer design problem. Since unknown parameters enter the initial system
model nonlinearly, we introduce the following change of coordinates

�x1x2x3� � ��1�2 log �3�� y � log �3�

which is well defined as long as �3�t� � 0 for all t � 0.

�x1

�x2

�x3

�� � � 0 	1 0
1 a 0
1 0 0

�� � 
-.........../0...........1

A

x1

x2

x3

�� � � 	ey

0
	b

�� � 
-...../0.....1

f0�y�

�c
0
0

e	y

�� � 
-..../0....1

f1�y�

� �7�61�

y � x3 � Cx� C � �001��
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Suppose that the parameter c is unknown, � � c, and the problem is to design
an adaptive observer to estimate the variables x1 and x2 and the value of the un-
known parameter c. To do so, we first introduce a new variable � � �

2:

��1
��2

 �
� k1 	1

k2 � 1 a

 �
�1

�2

 �
� k1

k2

 �
e	y

where the constants k1 and k2 are chosen such that the matrix

k1 	1
k2 � 1 a

 �
is Hurwitz. Introduce the variable � � �

2:

�1
�2

 �
� x1

x2

 �
	 �

�1

�2

 �
� k1

k2

 �
y

Now let us rewrite the system in the ��� y� coordinates:

��1

��2

�y

�%�
�& � k1 	1 	k2

1 � k2

k2 � 1 a 	�k1k2 � k1 � ak2�
1 0 	k1

�%�
�& 

-................................../0..................................1
�A

�1

�2

y

�%�
�& 

�
	k1b	 ey

	k2b

	b

�%�
�& 

-.........../0...........1
�f0

� �

0

0

1

�%�
�& 

-../0..1
�B

��1 � e	y�-....../0......1
u

�

For the chosen values of k1� k2 it is possible to find a positive definite matrix
P � P� and a matrix L � �l1� l2� l3�� such that the matrix

��A	 LC��P � P��A	 LC� �7�62�

is negative definite and P�B � C�. Therefore, the adaptive observer equations
with the speed-gradient adaptation law can be chosen as follows:

�2�1

�2�2

�2y
�%�

�& � k1 	1 	k2
1 � k2

k2 � 1 a 	�k1k2 � k1 � ak2�
1 0 	k1

�%�
�& 2�12�22y
�%�

�& 

�
	k1b	 ey

	k2b

	b

�%�
�& � 2� 0

0

1

�%�
�& ��1 � e	y� �

l1
l2
l3

�%�
�& �2y	 y�

�2� � 		��1 � e	y��2y	 y�� 	 � 0�

7 Nonlinear and Adaptive Control of Chaos150



If the signal ��1�t� � e	y�t�� satisfies the so-called Persistency of Excitation condi-
tion (see, for example, [17]) (this is the case if y�t� is bounded) the estimate 2��t�
converges to its true value c and therefore one can estimate the variables x1�t�
and x2�t�:

2x1�t�2x2�t�
 �

� 2�1�t�2�2�t�
 �

� 2��t� �1�t�
�2�t�

 �
	 k1

k2

 �
y�t��

We carried out computer simulation to demonstrate the convergence property
of the designed adaptive observer for the following values of system parameters:
a � 0�2� b � 5�7� c � 0�2. For these values of parameters the system possesses
chaotic attractor and the initial conditions of the system were chosen in its do-
main of attraction: x1�0� � 2� x2�0� � 1� x3�0� � 1; the observer parameters were
chosen as k1 � 	5, k2 � 30, l1 � 0� l2 � 0� l3 � 	100, 	 � 8. The initial condi-
tions of the observer were 2�1�0� � 1�2�2�0� � 2�2y�0� � 	30� �1�0� � 0�
�2�0� � 0�2��0� � 0. Figure 7.1 (left) demonstrates the convergence of the adjus-
table parameter 2��t� to its true value, and the Fig. 7.1 (right) shows that the er-
ror between the variables x1�t� and x2�t� and their estimates decays with time.

As a simple exercise we propose the reader to design an adaptive observer for
the Rössler system under the additional condition that the parameter b is un-
known as well.

Let us design an adaptive observer for the Rössler system from the previous
example, yet this time we assume that the parameter a is unknown. Let Q be
the matrix

Q �
	a 	1 1
1 0 	a
0 0 1

�� � � Q	1 �
0 1 a
	1 	a 	�a2 	 1�
0 0 1

�� � �

Introduce a new variable z � �
3: z � Qx. Then the system (7.61) can be rewrit-

ten as follows:

�z1

�z2

�z3

�� � � 0 0 0
1 0 	1
0 1 0

�� � 
-.........../0...........1

A

z1

z2

z3

�� � � ce	y 	 b
	ey

ce	y 	 b

�� � 
-........./0.........1

f0�y�

� a
ey

	ce	y � b
y

�� � 
-.........../0...........1

f1�y�

�

y � z3 � Cz� C � �001�� �

Suppose a is unknown, � � a. Introduce the variable � � �
2:

��1
��2

 �
� 0 k1

1 k2

 �
�1

�2

 �
� k1

k2

 �
y� ey

	cey � b

 �
�
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where the constants k1 and k2 are negative, k1� k2 � 0. Introduce the variable
� � �

2:

�1
�2

 �
� z1

z2

 �
	 �

�1

�2

 �
� k1

k2

 �
y
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Fig. 7.1 a Convergence of the adjustable parameter to its true
value. b Estimation error versus time.

a

b



Then

��1

��2

�y

�%�
�& � 0 k1 	k1k2

1 k2 	�k1 � k2
2 � 1�

0 1 k2

�%�
�& 

-......................../0........................1
�A

�1

�2

y

�%�
�& 

�
�k1 � 1��ce	y 	 b�
k2�ce	y 	 b� 	 ey

ce	y 	 b

�%�
�& 

-.................../0...................1
�f0

� �

0

0

1

�%�
�& 

-../0..1
�B

��2 � y�-..../0....1
u

�

The triple ��A� �B�C� is strictly passifiable via output injection provided k1� k2 � 0,
that is, there is a positive definite P � P� such that (7.62) is negative definite
and P�B � C� and the adaptive observer for this system can be designed accord-
ing to the speed-gradient method as follows:

�2�1

�2�2

�2y
�%�

�& � 0 k1 	k1k2

1 k2 	�k1 � k2
2 � 1�

0 1 k2

�%�
�& 2�12�22y
�%�

�& 

�
�k1 � 1��ce	y 	 b�
k2�ce	y 	 b� 	 ey

ce	y 	 b

�%�
�& � 2� 0

0

1

�%�
�& ��2 � y�

�
l1
l2
l3

�%�
�& �2y	 y�

�2� � 		��2 � y��2y	 y�� 	 � 0�

where the gain L � �l1� l2� l3�� is chosen such that (7.62) is negative definite.
As before, if the function �2�t� � y�t� satisfies the Persistency of Excitation

condition, the estimate 2��t� converges to its true value a and one can estimate
the variables x1�t� and x2�t� as follows:

2x1�t� � 2�2�t� � 2��t���2�t� � y�t�� 	 k2y�t�2x2�t� � 	 2�1�t� 	 2��t�2�2�t� 	 2��t��1�t� 	 2�2�t��2�t�
� k1y�t� � k2

2��t�y�t� 	 2�2�t�y�t� � y�t��

To verify the theoretical results we performed a simulation with the following
parameters: a � 0�2� b � 5�7� c � 0�2, x1�0� � 2� x2�0� � 1� x3�0� � 1� k1 � 	3,
k2 � 	3, l1 � k1k2� l2 � k1 � k2

2 � 1� l3 � 	k2 	 100, 	 � 30. The initial condi-
tions of the observer were taken as 2�1�0� � 1� 2�2�0� � 2� 2y�0� � 0� �1�0� � 0�
�2�0� � 0� 2��0� � 0. The results of simulation are presented jointly in Fig. 7.2.
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7.5
Other Problems

Among other problems related to control of chaos the following ones are most
important.

Controllability Although controllability of nonlinear systems is well studied,
few results are available on reachability of typical control goals by small control.
A general idea, illustrated by many case studies is that the more a system is
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Fig. 7.2 a Convergence of the adjustable parameter to its true
value. b Estimation error versus time.

a

b



“unstable” (chaotic, turbulent) the “simpler,” or the “cheaper,” is to achieve exact
or approximate controllability.

Other control goals Among alternative control goals achieving the desired peri-
od, desired process dimension, desired invariant measure, desired Kolmogorov
entropy are studied in the literature. A method for the so-called tracking chaos
problem, following a time-varying unstable orbit, was proposed by Schwartz
and Triandaf in 1992 based on the continuation method for solving equations.

Identification A number of papers are devoted to identification of chaotic sys-
tems. In most of them conventional identification schemes are used. It has
been demonstrated that the presence of chaos facilitates and improves parame-
ter convergence.

Chaos in control systems Control of chaos should not be mixed up with chaos in
control systems. In the latter field that has been developed since the late 1970s,
conditions for chaotic behavior in conventional feedback control systems are un-
der examination.

7.6
Conclusions

It is seen from the publication statistics that the field is rapidly developing in
the beginning of the 21st century. Today, there are many efficient methods for
control of chaos in the literature. Using the methods of nonlinear and adaptive
control is very promising. However, special care should be taken to respect
“small control” requirement. Among methods of nonlinear control feedback lin-
earization and goal-oriented techniques are the most popular ones. They can
also be used for adaptive control.

Possibilities of controlling complex behavior by means of small control open
new horizons both in science and in technology. Such methods may be efficient
for solving problems where applying stronger control is not possible either be-
cause of lack of resources (as in many large scale systems: economies, energy
systems, weather control and others) or because intervening natural dynamics
is undesirable (for example, in biological and biomedical applications, environ-
mental systems). Development of new methods for control of chaos or “control
by tiny corrections” may be of utmost importance for sustained development of
humanity.
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Part II
Controlling Space-Time Chaos





Roman O. Grigoriev and Andreas Handel

8.1
Introduction

Many physical, chemical, and biological systems of interest evolve in a nonequi-
librium environment. As these systems are driven further out of equilibrium,
they tend to display progressively more complicated dynamics, with steady spa-
tially uniform states replaced first by nonchaotic patterned states and eventually
by spatiotemporal chaos. This complexity is often undesirable and considerable
benefits could be derived by forcing the system toward a less complex (but
usually unstable) steady or time-periodic state. In response to this challenge,
control of spatiotemporal chaos has emerged in recent years as a problem of in-
creasing fundamental and applied value.

Control of turbulent boundary flows [17], mechanical vibrations, and noise
[37] is already an indispensable component of industrial design. Many other sig-
nificant technological applications, such as mixing [62], optical fiber manufac-
ture [70], coating [4, 39], wide aperture semiconductor lasers [56], inertial con-
finement [67], combustion [81], and chemical reactions [10], could crucially ben-
efit from our ability to control (either suppress or enhance) the instabilities lead-
ing to complex spatiotemporal dynamics. Considerable effort is currently being
invested in control of ventricular fibrillation [79] and epilepsy [23].

Besides these practical applications, the ability to control spatiotemporal dy-
namics opens up a whole new direction in fundamental research by providing a
unique capability to study otherwise inaccessible unstable states of extended
nonequilibrium systems. This capability can be used, for instance, to experi-
mentally construct complete bifurcation diagrams [49], study the dynamics and
stability of isolated modes [22], detect and study unstable recurrent patterns [5],
or reproducibly impose initial conditions [74].

Although the first attempts to control spatiotemporally complex dynamics are
centuries old, a scientific approach has not been employed until 1904, when
boundary layer theory was developed by Prandtl [68]. Subsequent attempts to
suppress turbulence, from either empirical or linear stability perspective, lead to
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the creation of the field of flow control. More recently, control of low-dimen-
sional chaos in nonlinear systems, that originated with the work of Ott, Grebo-
gi, and Yorke [61] based on Floquet theory, has been extended to spatiotemporal
dynamics. These two, originally independent, tracks have now merged, as recent
studies (e.g., by Kawahara [47]) indicate.

The following classification [17] of various control approaches is helpful: By
passive control we will understand applying any time-independent perturbation
which tends to suppress the instability. Predetermined active control goes one
step further by generalizing the class of perturbations to include time depen-
dence. We will refer to these two approaches as open-loop control. In contrast,
the closed-loop control is based on feedback: it aims to stabilize an unstable
steady (or time periodic) state of the system by applying perturbations which de-
pend on the deviation from that state.

Below, we will concentrate on closed-loop control as the most advanced way
to influence the dynamics. Although it is more difficult to design and imple-
ment, closed-loop control offers a number of significant advantages over the
open-loop variety. First, closed-loop control can be systematically designed by
following a few rather general principles, while no systematic ways of designing
open-loop control exist. Closed-loop control is substantially more energy effi-
cient because the magnitude of feedback depends on the deviation from the tar-
get state: effectively the control is switched off in the absence of disturbances,
while the open-loop control is always on. Equally important from the practical
standpoint, closed-loop control is generally more flexible and robust: it can be
designed to handle noise and uncertainties in the modeling and parameters.
From the fundamental perspective, closed-loop control provides a unique cap-
ability to study unstable states inaccessible without control by changing their
stability properties, in contrast to open-loop control which replaces the unstable
states with different stable states.

Although the field of closed-loop control of complex systems is much younger
than the field of flow control (its roots can be traced to work by Lions on opti-
mal control of systems governed by PDEs [54] in early 1970s) it too has reached
a certain level of maturity. This can be attested by a number of successful ex-
perimental implementations in systems such as vibrating beams [13], chemical
reactions [65], patches of heart tissue [21], plasma drift waves [24], and fluid
convection in confined geometries [66, 76], all of which, in the absence of con-
trol, display temporal instabilities, but have a rather regular spatial structure.
Most of these examples use the technique of single-input single-output (SISO)
control, which is based on reconstructing the state of the system by making re-
petitive measurements of a single variable and then stabilizing one of the origi-
nally unstable steady or time-periodic states using a sequence of perturbations
of a single parameter of that system.

This approach aimed at low-dimensional (due to strong geometrical confine-
ment) systems breaks down, partially or completely, when applied to weakly
confined systems, whose dynamics is characterized by spatial disorder and is,
therefore, high dimensional. The dynamics of such systems is rather weakly de-
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pendent on the boundary conditions and, as a result, recovers the symmetries
inherited from the translational and rotational invariance of the unbounded
physical space. These symmetries lead to degeneracies in the evolution opera-
tors describing the dynamics near the target state, resulting in the failure of sin-
gle-parameter control. As previous studies (e.g., [26]) have shown, these degen-
eracies require the use of multipoint, or distributed, measurements (sensing)
and feedback (actuation), i.e., multiple-input multiple-output (MIMO) control.

8.1.1
Empirical Control

Several empirical methods have been developed to achieve control of weakly
confined systems without relying on the knowledge on the evolution equations.
Their complete description can be found elsewhere in this book. The simplest
one is a generalization of Pyragas’ time delay autosynchronization (TDAS) algo-
rithm [69] and can be used to stabilize an unstable time-periodic orbit (e.g., a
plane wave) with temporal period � by applying feedback proportional to the dif-
ference in the state of the system at times t and t	 �. The extended version of
this algorithm (ETDAS) suggested by Bleich and Socolar [8], constructs the feed-
back as a weighted difference between the states of the system as times
t� t	 �� t	 2�� � � �. (E)TDAS was found to have a limitation when applied to
spatially extended system in more than one spatial dimension, though: control
fails for the target states with an odd number of unstable eigenvalues [46, 58],
the origin of which can be traced to spatial symmetries [38]. The generalized
version of ETDAS (GETDAS) [57] goes around this limitation by replacing sca-
lar weights with matrices. Yet, even GETDAS fails if there are stationary modes
in the uncontrolled system [80], as is the case in weakly confined systems with
continuous translational and/or rotational symmetry, characterized by the exis-
tence of symmetry-related Goldstone modes with zero growth rates.

Other studies have shown the possibility to achieve control of unstable steady
or time-periodic patterns by applying feedback proportional to the instantaneous
local deviation of the system from the target state. This method is sometimes
referred to as (local) proportional control (LPC) [40] or, in the context of fluid
flows, opposition control [33]. Although this method is relatively simple and,
like ETDAS, does not require the knowledge of the dynamical equations, it re-
quires feedback to be applied to all degrees of freedom of the system (e.g., all
components of the velocity vector at every point in space for fluid flows [31]) to
be successful – a requirement that is essentially impossible to satisfy in practice.
If LPC is applied only to selected degrees of freedom (e.g., to one component of
the velocity everywhere in space [30] or to all components of the velocity along a
boundary [11]) the spatiotemporal chaos cannot be completely suppressed.
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8.1.2
Model-Based Control

If the equations governing the dynamics of the system are known, one can im-
prove on these empirical control methods. In the model-based approach, the de-
scription of the system is usually simplified by collapsing it along the strongly
confined spatial direction(s) 1) (say, z) using either mode truncation (e.g., as in
the analysis of Rayleigh-Bénard convection (RBC) [41, 76] or wide aperture
lasers [6]) or an approximation based on a perturbation expansion (e.g., as in
the lubrication, or long wavelength, approximation for thin film flows [27, 60]),
producing a reduced order model depending only on the extended (weakly con-
fined) directions (say, x and y). It is then assumed that spatially distributed feed-
back is applied by perturbing the system at all points �x� y� in the extended
directions by an amount proportional to the deviation of the system from the
target state (either a uniform state or a plane wave) at the same location �x� y�.
As a result, a system

�tv � f v� u�� �8�1 a�

u � kw� w � c � �v	 v0�� �8�1 b�

is obtained, where f �� �� and v�x� y� t� are, respectively, the evolution operator
and the state of the open-loop system, u�x� y� t� is the feedback (i.e., the distur-
bance applied to one of the system parameters), c is a constant vector describing
the relation between the system state and the measurement w�x� y� t�, and the
feedback gain k is the proportionality constant between the deviation from the
target state v0�x� y� t� and the feedback signal.

In the physical system the deviation can often be measured at one (or both)
of the boundaries, say z � 0 and z � lz (e.g., oxygen concentration on the sur-
face of platinum catalyst in CO oxidation [63]), in a plane z � z0 between the
boundaries (e.g., velocity for a turbulent shear flow [51] or temperature for RBC
[77]), or an integrated deviation for 0 � z � lz can be used (e.g., shadowgraphic
amplitude for RBC [42]). Similarly, feedback can be applied by changing the
boundary conditions at one (or both) of the boundaries (e.g., heat flux through
the boundary in RBC [42, 77]) or by applying an integrated disturbance (e.g.,
volumetric heating of the fluid in Marangoni-Bénard convection [74] or super-
imposition of the electromagnetic field with its filtered and time delayed version
in a He–Ne laser [53]). Since the closed-loop system is translationally invariant
in the extended directions, the eigenfunctions of the reduced order model are
given by either Fourier modes (for spatially uniform) or by Bloch-Floquet waves
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1) In nonequilibrium systems, confined direc-
tions usually correspond to the direction of
the flux driving the system out of equilibrium
(e.g., momentum transport in shear fluid
flows, heat flux in convection, etc.), while

there is no flux, on average, in the extended
directions [12]. Of course, it is possible that, in
large aspect ratio systems, zero-mean-flux direc-
tions can effectively become confined as well.



(for plane wave target states). Hence the linearized evolution equations block
diagonalize in the Fourier space, producing an infinite set of ODEs (state-space
representation)

��v � A�v� b�u�

�u � kc � �v� �8�2�

labeled by the wave number q � �qx� qy�, where �v�q� t� � + q�v	 v0� and
�u�q� t� � + qu are the Fourier transformed state and feedback variables,
A�q� t� � + q��f��v�v0

�+	1
q is the Jacobian of the open-loop system and the vec-

tor b�q� t� � + q��f��u�v0
�+	1

q describes how the feedback affects different de-
grees of freedom of the system. Finally, the feedback gain k is chosen to simul-
taneously stabilize all Fourier modes.

Although this physically motivated approach often works well, it too has lim-
itations. For instance, a constant gain k stabilizing all Fourier modes might not
exist, as, e.g., the analysis of the complex Ginzburg-Landau equation (CGLE) [7]
and lubrication equations describing evaporating liquid films [27] shows. An im-
proved version of this approach developed by one of us (RG) [27] and Bamieh et
al. [3] uses the results of linear stability analysis to systematically design the
feedback. The systematic approach shows that a stabilizing feedback can only
be found when A, b, and c satisfy certain restrictive conditions. These condi-
tions are often (but certainly not always) satisfied for systems described by only
a few coupled scalar fields. For instance, thin liquid films can be described by
one variable (e.g., film height [60]), RBC requires two variables (e.g., tempera-
ture and vertical velocity [77]), while single mode wide-aperture laser models are
three dimensional (e.g., complex amplitude of the electric field and carrier den-
sity [6]).

When a stabilizing feedback does exist, it often has to be wave number de-
pendent (as well as time dependent for time-periodic target states). Further-
more, optimal (in the sense of time-averaged deviation of the system from the
target state) feedback [3, 27] is generically wave number dependent and, there-
fore, nonlocal in the real space,

u �
3

dq+	1
q k�q�+ qw� �8�3�

such that the feedback at a particular spatial location depends on the deviation
from the target state at other locations. Several other theoretical [52] and experi-
mental [43, 55] studies of nonlinear optical systems have also found that Fourier
filtered feedback is required in order to stabilize unstable patterns.

The model-based approach becomes indispensable when A, b, and c do not
satisfy the restrictions alluded to above, which is the generic case. This requires
modifications to (8.1 b) and (8.2) with the goal of reconstructing the deviation
v	 v0 from the scalar measurement w (see e.g. [14] for details). Specifically,
(8.2) is replaced with
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��v � A�v� b�u�

�	v � A	v� b�u	 	k��w 	 c � 	v��
�u � k � 	v� �8�4�

where �w�q� t� � + qw, 	k is the filter gain, and both it and the feedback gain k be-
come vectors. Respectively, the first equation in (8.1 b) is replaced with
u � +	1

q �u. By subtracting the second equation in (8.4) from the first, one finds
that 	v � �v provided A� 	kc' (or A' � c	k') is stable, while �v � 0 provided
A� bk' is stable. We find that mathematically the problem of finding 	k given c
is equivalent to that of finding k given b. It is a standard control-theoretic result
that the feedback gain k and the filter gain 	k can be found provided A and b sa-
tisfy the controllability (or the weaker stabilizability) condition and A and c satisfy
the observability (or the weaker detectability) condition [14, 26]. This duality between
the feedback and sensing parts of the controller allows one to solve both the prob-
lem of state reconstruction and the problem of feedback control using the assump-
tion that the complete knowledge about the state of the system is available (i.e.,
replacing c with a unit matrix in (8.1 b)). A review by Kim [48] discusses the appli-
cation of this approach to control of turbulent boundary flows.

The model-based approach makes no assumptions regarding the number of
unstable directions and access to all degrees of freedom (for sensing or actua-
tion) is not required. This makes physical sense: for instance, in convective sys-
tems temperature perturbations also control the velocity, while in lasers the per-
turbations of the electric field also control the polarization and the population
inversion. However, the crucial step in the analysis – block-diagonalization of
the linearized evolution equations – hinges on the implicit assumption of trans-
lational (or rotational) invariance, which cannot always be justified.

For instance, the assumption that both sensing and feedback are spatially
continuous (in other words, independent sensing is done, or feedback applied,
at every point in the space of extended directions) is usually unrealistic,
although the development of micro-electro-mechanical systems (MEMS) could
change that. So far, systems for which both sensing and actuation can be done
optically represent the only exception. For instance, all-optical analog feedback
loops have proved effective for control of pattern formation in nonlinear optical
systems [43, 53, 55, 64], while the applicability of thermalized optical perturba-
tions for control of thin film flows has been demonstrated by Semwogerere and
Schatz [74] and Garnier et al. [22].

More typically, both sensing and feedback have to be implemented using an
array of discrete elements. Several theoretical studies of coupled ODEs [59],
CGLE [9, 45], and two-dimensional turbulence [31, 75] suggest that it is possible
to achieve control using LPC applied via an array of spatially localized sensors
and actuators, but that array should be rather dense. The existing convection ex-
periments achieved partial stabilization of the flow by using a large number of
small heaters (15 in [41], 24 in [76] and [49]), but provided little information on
the relation between spatial resolution and the degree of stabilization. This rela-
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tion, especially in the limit of sparse sensor/actuator arrays, is of fundamental
importance from both physical and control theoretic perspective. Several differ-
ent conjectures have been made regarding the density of the sensor/actuator ar-
ray necessary to achieve control. Some studies suggest that the distance between
the closest elements is determined by the correlation length [9, 45], while others
suggest that the number of elements in the array should equal the number of
unstable modes [1, 32]. Other studies [15, 25, 28] have shown that, for an appro-
priately chosen feedback, a much smaller density (limited by noise) of sensors/
actuators can be achieved.

In the following sections we will discuss the conditions affecting the density
and structure of the sensor/actuator array and describe how a stabilizing feed-
back gain can be computed. Although the generalization of our results to time-
periodic target states is, in principle, straightforward, we will limit our discus-
sion to steady states to make it more accessible. Furthermore, we will initially
assume that complete information about the system state is available and then
discuss how the results change if only partial information can be obtained using
an array of sensors. Finally, we will assume that the system has only one ex-
tended direction (say, x) and is laterally bounded, 0 � x � lx (we will drop the
index of lx below).

8.2
Symmetry and the Minimal Number of Sensors/Actuators

If feedback is applied via spatially localized actuators, how many such actuators,
at a minimum, are needed to suppress chaos in favor of a particular target
state? As the theory developed in [26] shows, the answer to this question de-
pends on the symmetries of the system and the target state, but not on the sys-
tem size or on how the feedback is computed. This is a fundamental issue that
has to be understood before moving on.

In a laterally bounded system the wave numbers will be discrete rather than
continuous, qx � � � � � q	2� q	1� q0� q1� q2� � � �. Defining the feedback signal applied
by actuators m � 1� 2� � � � �M as u � �u1� u2� � � � � uM�, we can write the evolution
equations describing our system as

��vn � An�vn � Bnu� n � � � � �	2�	1� 0� 1� 2� � � � � �8�5�

where B�q� � + q��f��u�v0
�, Bn � B�qn�, An � A�qn� and �vn�t� � �v�qn� t�. If we

denote the number of scalar fields describing the state of the system (i.e., the
dimensionality of v) as N, then An would be an N �N matrix and Bn would be
an N �M matrix.

Let 
k be the eigenvalues of the full block-diagonal Jacobian of the system

	A � diag�� � � �A	2�A	1�A0�A1�A2� � � �� �8�6�
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and let �k be the degeneracy of eigenvalue 
k. Further, let

�Ak �
An1

� �
�

An�

�%�
�& � �Bk �

Bn1

��
�

Bn�

�%�
�& � �8�7�

where the indices run over the values of n for which 
k is an eigenvalue of An.
It can be shown then [26], that the feedback u stabilizing the system (8.5) exists,
provided (i) the number M of columns of B (and hence of actuators) is no less
than the highest degeneracy of the unstable eigenvalues,

M � max
Re�
k��0

�k� �8�8�

and (ii) at least one of the columns of �Bk is nonorthogonal to the adjoint eigen-
vectors of �Ak for all k with Re�
k� � 0.

The degeneracy is usually determined by the symmetries of the evolution
equation and once these symmetries are identified, the situation usually simpli-
fies considerably. Let us look at some examples. Consider the complex Ginz-
burg-Landau equation with �-localized feedback

�tv � �v� �1� ib��2
xv	 �1� ic��v�2v� �1� id�

�M
m�1

��x 	 xm�um �8�9�

and periodic boundary conditions on a domain of length l � 2� (such that
qn � n). Assuming um to be real, linearizing (8.9) about the steady state v0 � 0
and Fourier transforming, we obtain the evolution equations for the real and
imaginary parts of �vn � �rn � i�sn:

��rn

��sn

� �
� An

�rn

�sn

 �
� Bnu� An � �	 n2 bn2

	bn2 �	 n2

 �
�

Bn �
cos�nx1� 	 d sin�nx1� � � � cos�nxM� 	 d sin�nxM�
d cos�nx1� � sin�nx1� � � � d cos�nxM� � sin�nxM�

 �
� �8�10�

The reflection symmetry of the evolution equation (8.9) and the target state
v0 � 0 has transpired in the degeneracy of the eigenvalues of the linearized sys-
tem, 
!	n � 
!n � �	 n2 ! ibn2. We find that �n � 2 for all n �� 0 and, conse-
quently, at least two actuators are needed to stabilize the chosen target state.
This is a special case of the general result proved in [26]: the minimal number
of independent feedback signals should be no less than the dimensionality of
the largest irreducible representation of the isotropy subgroup ,�v0 of the system,
which is defined as a set of all transformations with respect to which both the
open-loop evolution equation (i.e., (8.9) with u � 0) and the target state are in-
variant. In this particular case ,�v0 � O�2� �U�1� (spatial translations and reflec-
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tion plus the global phase symmetry v � ei�v) and its largest irreducible repre-
sentation is two dimensional.

The second lesson can be learned by considering part (ii) of the stabilizability
condition. Without loss of generality we can pick the origin of the coordinate
system such that x1 � 0, so that

�An � A	n 0
0 An

 �
� �Bn �

1 cos�nx2� � d sin�nx2�
d d cos�nx2� 	 sin�nx2�
1 cos�nx2� 	 d sin�nx2�
d d cos�nx2� � sin�nx2�

�%%�
�&& � �8�11�

It is easy to check that e' � �1� i�	1�	i� is an adjoint eigenvector of �An and the
condition (ii) is not satisfied whenever e'�Bn � 0 (or x2 � ��n). In other words,
stabilizability is lost whenever an unstable eigenfunction of the system, e.g.,
vn � sin�nx�, has nodes at the locations of both actuators.

Similar conclusions can be drawn for a laterally infinite system with nonlocal
coupling defined by an integral, as opposed to a differential, equation. Consider,
for instance, the following evolution equation:

�tv�x� t� � �v�x� t� �
3 �

	�
e	

�x	x� �2
22 v�x�� t�dx 	 v3�x� t� �

�M
m�1

��x 	 xm�um�t�� �8�12�

After linearization about the trivial steady state v0 � 0 and Fourier transforma-
tion (8.12) reduces to a set of ODEs

�vq � 
qvq �
�M
m�1

eiqxm um� �8�13�

with doubly degenerate eigenvalues


!q � ��
������
2�

"
e	

2q2

2 � �8�14�

Consequently, at least a pair of actuators is needed, and the spacing should sa-
tisfy condition (ii) with

�Aq � 
q 0
0 
q

 �
� �Bq � 1 e	iqx2

1 eiqx2

 �
� �8�15�

which requires qx2 �� �n for all integer n and all q such that 
q � 0. Defining
�min to be the smallest unstable wavelength, we can write the stabilizability con-
ditions as �x1 	 x2� � �min�2.

Summing up, we can formulate the following rule of thumb for control of
steady uniform states in translationally and reflectionally invariant one-dimen-
sional systems: At least a pair of actuators separated by less than half the wavelength

8.2 Symmetry and the Minimal Number of Sensors/Actuators 169



of every unstable mode is necessary to achieve stabilization. In higher dimensions
more actuators will be needed, as determined by the respective symmetry
group.

Introduction of mean flux in any of the lateral directions changes these re-
sults dramatically. For instance, adding a reflection symmetry-breaking term
�1� ia��xv to the right-hand side of (8.9) changes the eigenvalues to


!n � �	 an	 n2 ! i�bn2 	 n�� �8�16�

removing the reflection-related degeneracy for all n, 
!	n �� 
!n . Since now all
�n � 1, just one actuator may be sufficient (in one dimension). This reduction
in the minimal number of actuators provides, at least to some extent, the expla-
nation for the observation that if either mean flux is introduced [18] or if the
actuators are not stationary, but move through the system (regularly [75] or ran-
domly [20]), fewer of them are needed to suppress chaos. Indeed, the introduc-
tion of a term such as a � )v into the right-hand side of the evolution equation
(8.1 a) is equivalent to changing the reference frame to the one moving with ve-
locity a, in which the actuators, previously stationary, move with velocity 	a.

We conclude this section with a few general remarks. The stricter controllabil-
ity condition requires satisfaction of (i) and (ii) for all k, stable and unstable. We
should note, however, that spatially extended systems with a continuous spatial
variable cannot be made controllable as stable modes with arbitrarily small
wavelengths exist, so condition (ii) is impossible to satisfy. Second, using the
duality of feedback and sensing parts, we conclude that the same conditions (i)
and (ii) apply to an array of sensors.

Needless to say, one should not expect the results for the minimal number of
actuators (or sensors) to hold in practice for systems of arbitrary size. The main
reason for this is that linear stability analysis only considers the dynamics of
infinitesimal disturbances, while real disturbances always have a finite size. We
will look at the effect of disturbances in the next sections.

8.3
Nonnormality and Noise Amplification

If the system can be made formally stabilizable, control can only fail as a result
of failure of linear stability analysis when disturbances grow so large that non-
linear terms become nonnegligible. To determine the dynamics of disturbances,
however, we do need to define how the feedback is computed.

Again, to illustrate the main idea we will restrict our attention to a narrower
class of spatially extended systems, following our earlier study [35]. Specifically,
we will consider scalar translationally and reflection symmetric versions of
(8.1 a) in one spatial dimension with periodic boundary conditions. Examples of
this class of systems include such model equations as the real Ginzburg-Lan-
dau, Kuramoto-Sivashinsky, and Swift-Hohenberg equations. These model equa-
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tions describe the dynamics of generic, spatially extended systems close to sev-
eral common types of bifurcations [12] and thus are of particular importance in
the studies of spatiotemporal dynamics.

As in the previous section, we will assume that the feedback is applied
through an array of spatially localized actuators. Linearizing about a steady uni-
form state we obtain the following equation for the deviation from the target
state

�tv�x� t� � 	Av�x� t� �
�M
m�1

bm�x�um�t�� �8�17�

where 	A is a linear operator and bm�x� are the influence functions describing
the location and spatial extent of each of the M actuators. Assuming the state of
the system can be obtained either by direct measurements or via a state recon-
struction procedure described in Section 8.1.2 we can express the feedback sig-
nals um�t� as linear functions of the deviation

um�t� �
3 l

0
km�x�v�x� t�dx� �8�18�

where km�x� is the feedback gain that should be chosen such that the uniform
state is stabilized. The nonlocality of this feedback law is the price one has to
pay for the generality of this approach that will allow us to use a very sparse ar-
ray of actuators. In contrast, local proportional control (e.g., um�t� � kv�xm� t�
with bm�x� � ��x 	 xm�) generically breaks down as soon as the distance be-
tween actuators exceeds �min�2 (see e.g. [19]).

To simplify the problem of computing M feedback gains we can use the sym-
metry of the problem by making the actuators identical (e.g., by setting
bm�x� � b0�x 	 xm�) and placing the controllers in a regular array, so the closed-
loop system will retain a discrete translational symmetry (subgroup of continu-
ous translational symmetry of the open-loop system). However, placing the ac-
tuators in a periodic array will make the Fourier mode with the period equal to
twice the array spacing s � l�M uncontrollable and lead to the loss of stabiliz-
ability as long as that mode is unstable. We thus find that in a periodic array
one should choose s � smax � �min�2, so that the number of actuators scales
with the system size, M � 2l��min.

A significantly smaller number of actuators will be needed, if a periodic array
of pairs of actuators is used instead, with the spacing s1 in the pair smaller than
smax and the spacing s2 � 2l�M between the pairs potentially much larger than
smax. The resulting array will have a discrete translational symmetry
(x � x � s2) and a reflection symmetry about the midpoint between any neigh-
boring actuators. These symmetries dictate the following choice of influence
functions:

bm�x� � b0 x 	 �m 	 �� l
M

� �
� m 	 odd�

b0 x 	 �m 	 1� �� l
M

� �
� m 	 even�

�
�8�19�
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where we have defined � � s1�s2. For instance, four actuators would be placed
as two pairs, one pair at x � �1! ��l�4 and the other at x � �3! ��l�4. To pre-
serve the symmetries of the closed-loop system we also choose the gains km�x�
as translated and reflected versions of each other, mirroring the choice (8.19) we
have made for the influence functions, so that only a single unknown weight
function k0�x� needs to be determined (also see [3]).

Fourier transforming the linearized evolution equation (8.17) and the feed-
back law (8.18) we obtain the system

��vn � 
n�vn �
�M
m�1

Bm
n

��
p�	�

Kp
	m�vp � �M�v�n� �8�20�

where �vn, Bm
n , and Km

n are the Fourier coefficients of v�x� t�, bm�x�, and km�x�,
respectively, 
n � 
�qn� (with qn � 2�n�l) are the eigenvalues of the linearized
open-loop system, and M is the Jacobian of the closed-loop system.

At this point it is appropriate to mention that the choice of the influence
function b0�x�, which is determined by the physical construction of the actua-
tors, plays an important role in the control problem. For instance, the Fourier
spectrum of b0�x� should contain all unstable modes; modes missing in the
spectrum will be uncontrollable. On the other hand, if the spectrum contains
stable modes as well, the feedback stabilizing the unstable modes of the open-
loop system can destabilize some of the stable modes. This problem is referred
to as control spillover [32]. As a result, despite the block-diagonalization of the
open-loop system, the calculation of feedback has to include all modes that ap-
pear in the spectrum of b0�x�, both unstable and stable ones.

It turns out that the Fourier coefficients of k0�x� can be found analytically in
the limit of singularly localized influence functions, b0�x� � ��x�, as a function
of the eigenvalues 
�n of the closed-loop system. This results in the so-called
pole placement control. The details can be found in [35]. Here we will mention
the main result: the largest Fourier coefficient, and with it the maximum of
k0�x�, scales exponentially with the length of the system divided by the number
of controllers

kmax � e
l

Ml0 � �8�21�

where l0 is a characteristic length which, to leading order in l, is given by

l0 � �

3 �

	�
ln
�
max 	 
��q��
�
max 	 
�q�� dq

 �	1

� 
max � max
n


n �8�22�

(for large l the wave numbers qn are dense, so we can parameterize new eigen-
values using a functional form 
��qn� � 
�n).

This result shows that although in principle it is possible to find a stabilizing
feedback for any system size l and number of actuators M, the price one pays
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for making l large or M small is the exponential increase in the magnitude of
the feedback signal applied by the actuators. It is not difficult to imagine the
consequences of such a feedback: a small O�� initial disturbance would gener-
ate an O�kmax� perturbation applied by the nearby actuators resulting, at least
temporarily, in the amplification of that initial disturbance by roughly a factor
of kmax. Since the closed-loop system is linearly stable, all sufficiently small dis-
turbances will eventually decay, making this feedback-generated disturbance am-
plification transient. Mathematically, transient growth of disturbances can be re-
lated to the nonnormality of the Jacobian M of the closed-loop system and is
characterized by the transient amplification factor

	 � max
t��v�0�

�v�t�- -2

�v�0�- -2
� max

t
eMt
44 44

2� eMtmax
44 44

2� �8�23�

which measures the maximum amplitude of an evolved disturbance �v�t� (or
v�x� t�) for all possible initial conditions �v�0� (or v�x� 0�). The initial condition
producing the maximal amplification at time tmax is often called the optimal dis-
turbance �vopt and is given by the right singular vector corresponding to the larg-
est singular value of eMtmax [16]. For normal operators 	 � 1, but for nonnormal
ones it can be arbitrarily large. Several authors have introduced quantities simi-
lar to (8.23) to characterize transient growth [16, 71–73]. We should point out
that the transient amplification factor is analogous to transfer norms which
arise in the input–output description commonly used in control theoretic anal-
yses, including those concerning transient growth [2, 44, 50].

Under fairly general assumptions it can be shown [35] that transient amplifi-
cation does indeed scale with kmax:

	 � kmax

�
�max�
$ e

l
Ml0 � 
�max � max

n

�n� �8�24�

In case the full information about the system state is unavailable, one has to
use an array of sensors to reconstruct it from the local measurements. The
duality of this problem to the feedback problem allows us to immediately make
a couple of conclusions. First, the array of sensors should be built according to
the same principles as the array of actuators to ensure that the system state can
be reconstructed. Second, the total transient amplification will be given by the
product of those for each stage (sensing, feedback) [25, 34]. If the sensing stage
mirrors the feedback stage (same number and arrangement of sensors and ac-
tuators and sensing gain equal to feedback gain), we obtain

	total � 	2 � e
2l

Ml0 � �8�25�

Summing up, we have found that regardless of how small the magnitude  of
initial disturbances is, the transient growth in the feedback loop will amplify
them to an O�	� magnitude which, for sufficiently large spacing s2 � 2l�M be-
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tween controller pairs, will be large enough for the linear stability analysis to
break down and for control to fail. This is illustrated in Fig. 8.1 for the Kura-
moto-Sivashinsky equation

�tv � 	�2
xv	 �4

xv	 v�xv� �8�26�

Exactly when the breakdown occurs depends on (i) the magnitude of noise ,
(ii) the placement of actuators and the choice of feedback gain which affect
transient amplification factor 	, and (iii) the particular form of the nonlinear
terms which determines the limits of the validity of the linear approximation.
We address this last issue in the next section.
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Fig. 8.1 Control of the Kuramoto-Sivashinsky
equation (8.26) using localized feedback ap-
plied at the four points marked with circles.
a Control succeeds for a system of size

l � 55. Note the strong initial transient local-
ized around the actuators and preceding the
asymptotic decay. b Control fails for a sys-
tem of larger size l � 60.

a

b



8.4
Nonlinearity and the Critical Noise Level

The effect of nonlinear terms can be considered from different perspectives.
The simplest argument suggests that, as long as the evolution equations are
nondimensionalized to get rid of very large or very small parameters, the impor-
tance of nonlinear terms can be judged based simply on their order of magni-
tude. We will limit our scope to the most common type of nonlinearities found
in spatiotemporal dynamics, those having the form of a power of the distur-
bance, occasionally with a spatial derivative in the mix (e.g., quadratic nonlinea-
rities in the logistic coupled map lattice [15, 28], Kuramoto-Sivashinsky equation
[1], Navier-Stokes equation [48, 75] or Boussinesque equations [77], cubic nonli-
nearities in the CGLE [7] and Swift-Hohenberg equation [35], quartic nonlineari-
ty in thin film equations [27, 60] and so on). An upper bound for the break-
down of the linear control approach is immediately obvious: If a disturbance 

is transiently amplified such that 	 � O�1�, the nonlinear terms become im-
portant and the linear approach becomes invalid. This estimate gives the upper
bound for the noise level

max � 		1� �8�27�

Numerical integration performed for a generalized (real) Ginzburg-Landau
equation with a custom nonlinear term f �v�,

�tv � v� �2
xv� f �v�� �8�28�

and with feedback applied at one of the boundaries,

v�0� t� � 0� v��l� t� �
3 l

0
k�x�v�x� t�dx� �8�29�

shows that for nonlinearities with an odd power p, e.g., f �v� � v3 or v5, one does
indeed find the scaling (8.27) at large l [29]. For even powers, e.g., f �v� � v2 or
v�xv, one instead finds a different scaling law

max � 	�� � � 	 p
p	 1

� �8�30�

This scaling can also be understood using order of magnitude arguments and
employing the idea of bootstrapping originally introduced by Trefethen et al.
[78] in the context of shear flow (in)stability. The idea of the argument is that
the purely linear growth leading to the estimate (8.27) is preempted by a posi-
tive-feedback loop involving transient amplification and nonlinearity. The critical
noise level in this case can be found by equating the order of magnitude of the
initial (primary) disturbance with the magnitude of the nonlinear terms acting
on the amplified disturbance, which act as a secondary disturbance that is
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further transiently amplified, O�� � O��	�p�. Solving for  one immediately
obtains (8.30). The justification of the scaling law for the model (8.28) and
(8.29) with an arbitrary power p can be found in [29].

One could ask if the scaling exponents in (8.27) and (8.30) or even the power-
law scaling itself obtained for a particular model equation are generic and hence
our understanding of the effect of nonlinear terms complete. Unfortunately, the
answer is negative on both counts. The situation is far more complicated even
in the framework of the simple model considered here. One can see this by
studying the limit of small, rather than large, system size, as was done in [36].
In this limit all calculations can be done analytically.

Without repeating the details of the analysis we will summarize the results.
The system size l is chosen such that only one Fourier mode is unstable and
one mode is very weakly stable. Feedback is chosen to make the stable mode
weakly stable as well, so that the dynamics of the closed-loop system in the
Fourier space is characterized by two slow, nearly degenerate, modes and an in-
finite number of fast (strongly) stable modes. Adiabatic elimination of the fast
modes reduces the dynamics to the subspace spanned by the two slow modes.
The analysis performed for the cubic and the quadratic nonlinearity then shows
that the basin of attraction of the target state is bounded by the stable manifold
of one (for quadratic) or two (for cubic nonlinearity) saddle-type steady states
that emerge in the vicinity of the target state as a result of feedback (see
Fig. 8.2). The shape and size of the stable manifold determine the critical noise
level. Computing the amplification factor 	 one can find that the power law scal-
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Fig. 8.2 The phase portrait of the model
(8.28) with the quadratic a and the cubic b
nonlinearity in the subspace parameterized
by the amplitudes a1 and a2 of the two slow
modes. The filled and the open black dots

show the nodes and saddles, respectively.
The blue and red curves show the stable
and unstable manifolds, respectively, of the
saddles. The black curves are the typical tra-
jectories.

a b



ing max � 	� is an exceptional case. More typically max is not uniquely deter-
mined by 	, but also depends on the time tmax at which the maximal transient
amplification is achieved.

The relation between max and 	 provides the last piece of the puzzle, relating
the environmental noise, the symmetry of the system, the density of the sen-
sor/actuator array, and the choice of the closed-loop eigenvalues through equa-
tions such as (8.22), (8.24), and (8.30).

8.5
Conclusions

The field of feedback control of nonlinear spatially extended systems has grown
too large in the past ten or so years to give credit to all researchers who have
contributed to its development. In this chapter, we discussed some of the recent
results, concentrating mostly on localized feedback control. From the discussion
presented in these pages it should be clear that our understanding has reached
a level of maturity necessary to address real problems of interest.

On the other hand, many problems remain unresolved. For instance, the
feedback control of spatially and temporally periodic states has received much
less attention than control of uniform steady states, with numerical studies over-
whelming analytical investigations. The nonlinear stability of closed-loop sys-
tems is another area where progress has been limited, with the majority of stud-
ies concentrating on low-dimensional models rather than true spatiotemporal
dynamics. Another fundamental problem awaiting solution is the problem of
‘‘targeting”, as it is referred to in the context of low-dimensional systems, which
becomes progressively more challenging as the dimensionality of the system in-
creases.
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Stefano Boccaletti and Jean Bragard

We discuss some issues related with the control of space–time chaotic states in
the framework of the one-dimensional complex Ginzburg-Landau equation
(CGLE). We address the problem of control over turbulent regimes. In particu-
lar, we are interested in lowering the number of controllers which are spatial lo-
cation where the perturbation is applied. We implement in parallel a local con-
trol technique for restoring an unstable plane wave solution. We show that the
system extension does not influence the density of controllers needed in order
to achieve control.

9.1
Introduction

At first glance, controlling chaos may sound counter intuitive: one can find it
difficult to understand how the concept of control could be applied to the con-
cept of chaos. In fact, a huge literature of the nineties in the physics commu-
nity has proved that these two terms can be reconciled, by showing that tiny
perturbations applied to a chaotic system are sufficient to control its dynamics,
driving it toward a desired predetermined behavior.

The problem can be stated as follows: given a system (or a model equation
representing to a good accuracy the dynamics of a specific process), how can
one impose that such system performs a predetermined operation? When the
dynamical system is inherently chaotic, two options are possible. One can select
parameters so as to drive back the system to a region where the dynamics is re-
stored to a regular dynamics, and this process is usually referred to as suppres-
sion of chaos [31]. Alternatively, one can take advantage of the great richness in
the structure of the chaotic attractor, where infinite unstable periodic solutions
are embedded. In this second case, usually referred to as control of chaos [12],
one can properly select very tiny (in some cases vanishingly small) perturba-
tions able to force the appearance of a specific periodic behavior or a desired
portion of the chaotic trajectory. Historically, the control of chaos grew as a new
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discipline as a consequence of the awareness of the omnipresence of chaos in
dynamical systems.

The huge increase in the literature devoted to control of chaos traces back to
the beginning of the nineties. After the seminal work by Ott-Grebogi-Yorke
(OGY) [42], there has been a constant interest in the control of chaos, and many
alternative approaches have been suggested, as the time delayed control method
[49], and the adaptive method [8]. Furthermore, chaos control was theoretically
proved in a large variety of time discrete, as well as time continuous systems
[12] and even in the case of delayed dynamical systems [9].

The large body of literature devoted to this subject is rooted in the crucial role
that chaos control can play in many practical applications, such as communica-
tions with chaos [25, 40], secure communication processes [4, 10, 18, 21, 33,
46]. Furthermore, experimental control of chaos has been achieved in many dif-
ferent areas such as chemistry [47], laser physics [38, 39, 51], electronic circuits
[27], and mechanical systems [19].

In a second step, the interest switched to the application of control schemes
in spatially extended systems. After some preliminary attempts [3] to control
spatiotemporal chaos, attention has turned to the control of two-dimensional
patterns [36, 37], or of coupled map lattices [23, 43], or of particular model equa-
tions, such as the complex Ginzburg-Landau equation (CGLE) [41] and the
Swift–Hohenberg equation for lasers [7, 26].

While for time chaotic systems the different proposed schemes for chaos con-
trol have found several experimental verifications, in the extended case experi-
mental realizations are so far limited in the field of nonlinear optics [6, 30, 44,
50] and also in the control of Kármán vortex street in two-dimensional simula-
tions of fluid turbulence [24, 45]. The main reason for this substantial lack of
experimental verifications is that not all the proposed schemes for control of
spatiotemporal chaos are straightforwardly implementable. For instance, many
methods use dense space-extended perturbations, i.e., perturbations that have to
be applied at any point of the system, and this requirement represents a serious
limitation for any experimental implementations. In coupled map lattices, few
examples of global control [43], or control with a finite number of local pertur-
bations [23] have been reported. Some relevant examples in the neural network
control (modeled by coupled map lattices) have also been treated [22].

The most relevant question that arises when considering spatially extended
systems is therefore to assess whether the perturbation has to be dense in
space, i.e., it must be applied to all points of the considered system. In this pa-
per, we review some results about conditions for controlling chaos in spatially
extended systems [11], with reference to the complex Ginzburg-Landau equation
(CGLE). In the first two sections, after recalling the basic properties of CGLE,
we will show that it is not necessary to apply control to all points of the sys-
tems, but we can rely on a finite number of local controllers. We will answer
the question about the time one has to wait in order to restore a regular dy-
namics from a chaotic one. Furthermore, we will address issues on the minimal
number of local controllers that still provides control over the dynamics, and
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how strong the applied forcing must be in order to drive the system to a regular
behavior. In the third section, we will show the results of using a parallel exten-
sion of the Pyragas’ technique [49]. The last section overviews some still open
problems.

9.2
The Complex Ginzburg-Landau Equation

In the rest of this paper, we will test control schemes over the celebrated one-di-
mensional complex Ginzburg-Landau equation (CGLE). This equation has been
extensively investigated in the context of space–time chaos, since it describes
the universal dynamical features of an extended system close to a Hopf bifurca-
tion [2, 17], and therefore it can be considered as a good model equation in
many different physical situations, such as in laser physics [16], fluid dynamics
[32], chemical turbulence [34], bluff body wakes [35], or ring of Josephson’s junc-
tions [29]. In fact, the importance of the CGL is well known in solid state phys-
ics since the pioneering work of Ginzburg and Landau [20], in the phenomeno-
logical description of the superconductivity transition. An interested reader will
find an account of the GL theory in Abrikosov [1].

In CGLE, a complex field A�x� t� � ��x� t�ei��x�t� of modulus ��x� t� and phase
��x� t� obeys

�A � A� �1� i���2
xA	 �1� i
� � A �2 A� �9�1�

Here, dot denotes temporal derivative, �2
x stays for the second derivative with re-

spect to the space variable 0 % x % L (L being the system extension), � and 


are real coefficients characterizing linear and nonlinear dispersion. This model
equation arises in physics as an “amplitude” equation, providing a reduced uni-
versal description of weakly nonlinear spatiotemporal phenomena in extended
continuous media in the proximity of an Hopf bifurcation [2].

Different dynamical regimes occur in Eq. (9.1) for different choices of the pa-
rameters �� 
 [15, 53].

In particular, Eq. (9.1) admits plane wave solutions (PWS) of the form

Aq�x� t� �
�������������
1	 q2

�
ei�qx��t� 	 1 % q % 1� �9�2�

where q is the wavenumber in Fourier space, and the associated temporal fre-
quency is given by

� � 	
 	 ��	 
�q2� �9�3�

The stability of such PWS can be analytically studied below the Benjamin-Feir-
Newel (BFN) line (defined by �
 � 	1 in the parameter space). Namely, for
�
 � 	1, one can define a critical wavenumber
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qc �
��������������������������������������

1� �


2�1� 
2� � 1� �


5
�9�4�

such that all PWS are linearly stable in the range 	qc % q % qc. Outside this
range, PWS become unstable through the Eckhaus instability [28].

When crossing from below the BFN line in the parameter space, Eq. (9.4)
shows that qc vanishes and all PWS become unstable. Above this line, one can
identify different turbulent regimes [15, 53], called respectively amplitude turbu-
lence (AT) or defect turbulence, phase turbulence (PT), bi-chaos, and a spatio-
temporal intermittent regime. The borders in parameter space for each one of
these dynamical regimes are schematically drawn in Fig. 9.1, together with the
BFN line. Along this review, we will concentrate on PT and AT, since they con-
stitute the fundamental dynamical states of the fields, and their main properties
have received considerable attention in recent years including the definition of
suitable order parameters marking the transition between them [14, 54, 55].

Phase turbulence (PT) is a regime where the chaotic behavior of the field is
dominated by the dynamics of ��x� t�. In PT the modulus ��x� t� changes only
smoothly, and is always bounded away from zero. At variance, AT is the dynam-
ical regime wherein the fluctuations of ��x� t� become dominant over the phase
dynamics. The complex field experiences therefore large amplitude oscillations
which can (locally and occasionally) cause ��x� t� to vanish. As a consequence,
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Fig. 9.1 (�,
) parameter space for Eq. (9.1).
The lines delimit the borders for each one of
the dynamical regimes produced by Eq. (9.1),
and the Benjamin-Feir-Newel (B-F-N) line
for stability of the plane wavesolutions.

Amplitude turbulence (AT) and phase turbu-
lence (PT) are the main dynamical regimes
of the CGLE (see text for their detailed de-
scription).



at all those points (hereinafter called space–time defects or phase singularities)

the global phase of the field � � arctan
Im�A�
Re�A�
! "

shows a singularity.

All simulations presented here were performed with a Crank-Nicholson,
Adams-Bashforth scheme which is the second order in space and time [48],
with a time step �t � 10	2 and a grid size �x � 0�25. Three system sizes
(L � 100� 103� 104) have been considered, and in all cases periodic boundary con-
ditions [A�0� t� � A�L� t�� have been imposed.

9.2.1
Dynamics Characterization

A first interesting parameter characterizing the CGLE dynamics is the defect
density. By counting all defects appearing during a numerical simulation, one
can define the defect density by

nD � Ndef

LT
� �9�5�

where L is the system size and T is the integration time during which the num-
ber of phase defects Ndef is summed up. Numerically, phase defects at time t
have been counted as those points xi where the modulus ��xi� t� is smaller than
a numerical threshold fixed to 2�5� 10	2 and that are furthermore local mini-
ma for the function ��x� t�.

Figure 9.2 shows nD versus the parameter 
 at � � 2 for different system
sizes ranging over two orders of magnitude. The quantity nD is clearly an inten-
sive parameter (from a thermodynamic sense), and is a good indicator for
differentiating between AT and PT regime. It is interesting to note, however,
that the transition between AT and PT is not sharp and depends of the system
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Fig. 9.2 Defect density as a function of 
 for different system
sizes. Open circles, squares, and diamonds are for
L � 100� 103� 104, respectively.



size. The complete characterization of this transition is still a question of debate
[14].

A second important parameter in the characterization of the CGLE is the nat-
ural average frequency. Such a frequency is calculated from long numerical sim-
ulations of CGLE by averaging in space the unfolded phase � defined in �

rather than in 0� 2��. We have

� � lim
t��

���x� t��x
t

�9�6�

where �� � ��x stands for spatial average.
Figure 9.3 reports � versus the parameter 
 at � � 2. In order to construct

Fig. 9.3, we have integrated the CGLE for a very long simulation time (usually
ts � 15�000) after eliminating the transient behavior occurring in the first
tt � 5�000. We also have tested the sensibility of the results by choosing differ-
ent initial random conditions.

It should be emphasized that all initial conditions were chosen to have a zero
average phase gradient, because the frequency in the PT regime is highly sensi-
tive to the average phase gradient [14].

A third classical indicator is the linear spatial auto-correlation function

C��� � ��A�x� t�A�x � �� t���t �9�7�

where �� � ��t stands here for a time average. It has been theoretically predicted
[16] that the defects have a dynamical role in mediating the shrinking process
of �. Figure 9.4 strikingly illustrates this fact for the CGLE. The AT regime (sol-
id line) is for parameters � � 2 and 
 � 	1�05 and the parameters for the PT
regime (dashed line) are � � 2 and 
 � 	0�87. The decays to zero are not expo-
nential but we can still define the correlation length as the value of � for which
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Fig. 9.3 Natural averaged frequency � (see text for definition)
versus 
 for � � 2. The same symbol convention is used for
the system size L as in Fig. 9.2.



C��� � 1�e, in doing so we get approximately � � 10�8 and � � 470 for the AT
and PT regimes, respectively, and for the larger system size used, i.e.,
L � 10�000. Still it is important to note that in the insert of Fig. 9.4, the correla-
tion for the PT regime (soft turbulence) does not follow a monotonic decay. In
the following, we will show that this initial steep decay of the cross correlation
function even for the PT regime debilitate the process of chaos control and it is
presumably responsible for the low performance of the Pyragas control scheme
(to be defined in the following section).

From this preliminary discussion, one learns that the CGLE dynamics can be
characterized by some intensive indicators as the density of defects, the natural
frequency or the correlation length. With increasing the system extension (L),
the values of these three parameters stay roughly constant, for system sizes
large enough to prevent the dynamics from being affected by any “finite size”
effects.

9.3
Control of the CGLE

After having characterized the dynamics of the CGLE, we will tackle the prob-
lem of its control. In particular, we will address the issue of whether control
can be achieved for a certain number of controllers (extensive case) or rather for
a certain density of controllers (intensive case). In this section, we will finally
point out that it is the density rather than the number of controllers that mat-
ters for the control of the spatiotemporal dynamics. For this purpose, we will
test a control strategy for two system sizes (L � 1�000 and L � 10�000) that dif-
fer by a decade and that are both in the “large” system size limit.

Let us begin with the problem of controlling space–time chaos in the AT re-
gime. For this purpose, we set � � 2 and 
 � 	1�05. In a previous analysis [11]
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Fig. 9.4 Linear spatial auto-correlation lengths for the AT
(solid line) and PT (dashed line) regime of the CGLE (see text
for parameter values). The system size L is fixed to 10�000.



we have used a system size of L � 64 which is more than two orders of magni-
tude smaller than the larger one reported here, and have demonstrated that the
control of space–time chaos is doable. Control of space–time chaos here would
imply stabilization of a given unstable periodic pattern out of the AT regime.
We therefore select a goal pattern g�x� t�, represented by any of the plane wave
solutions in Eq. (9.2), which are all unstable in the AT regime.

In order to drive the dynamics to the desired goal pattern we add to the right-
hand side of Eq. (9.1) a perturbative term U�x� t� of the type

U�x� t� � 0� for x �� xi�

U�x� t� � Ui�t�� for x � xi�
�9�8�

where i � 1� � � � �M and xi � 1� �i	 1�� are the positions of M local equally
spaced controllers, mutually separated by a distance � (xi�1 	 xi � �). The con-
troller distance � will indeed be a crucial parameter in our studies. It indicates
in some sense how dense the controllers must be in order to attain the goal dy-
namics, and we will show that (i) such density has to be relatively large for the
control to be effective and (ii) such density is indeed independent of the system
size L. In our previous analyses [11], the perturbations were selected by using
the adaptive algorithm [8]. In such a case, however, a full control of the pertur-
bation strength applied to the system is not always guaranteed, and, in some
cases, the perturbation can occasionally reach unacceptably large values. This
represents a limitation of our previous approach, especially if one wants to ap-
ply this scheme on a real experiment. We here will turn to the simpler Pyragas
control scheme where the strength of the perturbation K0 is fixed externally by
the operator. The perturbation takes the form

Ui�t� � K0�g�xi� t� 	 A�xi� t��� �9�9�

Figure 9.5 exemplifies the control task of one of the unstable plane wave for
K0 � 0�125 and � � 0�25 and a system size (L � 1�000). The control procedure
is effective in the AT regime, and is associated with the suppression of all de-
fects. The arrow indicates the time when the control is switched on.

The control process described above also works for the PT regime, as shown
in Fig. 9.6. In the following, we move to compare quantitatively the difference
between the two control processes in the AT and PT regimes and for two differ-
ent system sizes. Our evidence will indicate that the PT regime is only slightly
more easily controllable for the parameters selected in the present study which
leads to the conclusion that the Pyragas control scheme does not fully exploit
the large correlation length of the soft PT regime.

In order to make such quantitative comparison, we monitor the time evolu-
tion of the difference between the goal solution and the field A

E�t� � 1
L

3
�A�x� t� 	 g�x� t�� dx� �9�10�
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where the factor 1�L accounts for averaging over space. Figure 9.7 reports the
time evolution of E�t� for the AT (solid line) and PT (dashed line) regimes. It is
apparent from the figure that the difference between controlling a PT or AT re-
gime is not significant when selecting K0 � 0�5 and � � 0�5. Similar results are
found for L � 1�000 and L � 10�000.

In order to gather more information on the control process, we define the tran-
sient time � needed for control as the time at which the error E�t� becomes smaller
than a given threshold (in what follows we set the threshold to be 10	2).

This allows us to study the influence on control of the two main parameters
used in our scheme, namely the fixed strength of the control K0 and the dis-
tance between two adjacent controllers �, for the two chosen system sizes
L � 1�000 and L � 10�000.

As one would expect, the transient time � is an increasing function of �, at a
fixed value of K0. Furthermore, we observe that there is a threshold for control-
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Fig. 9.5 Space (vertical)-time (horizontal)-
plots of the real part of A (a) and modulus
of A (b) in the AT regime (
 � 	1�05). Time
is increasing from 0 to 300 and the control
is switched on at t � 100. The parameters
for the control are K0 � 0�125 and � � 0�25.

The goal dynamics is chosen such that the
system size L � 1�000 contains two wave-
lengths of the desired PWS. The associated
frequency � � 1�0495 is calculated from the
dispersion relation (9.3). The system size L
is 1�000.

a

b



ler density below which the control method fails in stabilizing the PWS for any
value of the coupling strength K0. An example of this behavior is reported in
Fig. 9.8, which shows how � increases with � for K0 � 4, for both AT and PT re-
gimes. Figure 9.8 confirms that the density of controllers is indeed the im-
portant quantity that enables control. The two system sizes L � 1�000 and
L � 10�000 are represented by diamonds and squares symbols, respectively and
the filled and open symbols are for the AT and PT regimes, respectively. From
Fig. 9.8, one concludes that controlling a PT regime is only slightly easier than
controlling the AT regime which indicates that the Pyragas method is presum-
ably not the best in controlling the PT regime.

In addition, one would also intuitively expect � to be a decreasing function of
K0 at fixed �, reflecting the fact that an initial choice of a larger control strength
helps the system to attain more rapidly the desired goal behavior. Figure 9.9
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Fig. 9.6 Space (vertical)-time (horizontal)-
plots of the real part of A (a) and modulus
of A (b) in the PT regime (
 � 	0�87). Time
is increasing from 0 to 300 and the control
is switched on at t � 100. The parameters
for the control are K0 � 0�125 and � � 0�25.
The goal dynamics is chosen such that the

system size L � 1�000 contains two wave-
lengths of the desired PWS. The associated
frequency � � 0�8695 is calculated from the
dispersion relation Eq. (9.3). The system size
L is 1�000. Note the appearance of few de-
fects in the transient after the control is
switched on.

a

b



confirms this fact by reporting the dependence of the control time � with the
control strength K0 at two fixed density of controllers � � 0�25 and � � 0�5 (dia-
monds and triangles, respectively) and for the two cases AT and PT (filled and
open symbols, respectively). The system size is fixed to L � 10�000.
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Fig. 9.7 Time evolution of the control error (see text for
definition) for the AT (solid line) and PT (dotted line)
regimes. The control parameters are K0 � 0�5 and � � 0�5.
The system size L is 10000.

Fig. 9.8 Dependence of the control time �

with the separation of the controllers � for two
different system sizes (L � 1�000 is repres-
ented with square symbols and L � 10�000
is represented with diamond symbols).

Open and filled symbols are for the control
of the PT and AT regimes, respectively. The
control parameter K0 � 4 is fixed in all the
simulations.



9.4
Conclusions and Perspectives

In this article, we have reconsidered the problem of controlling a spatiotemporal
state generated by a CGLE into an unstable plane wave solution. In the present
study, we have considered two different system sizes (L � 1�000 and
L � 10�000) shown to be in the large system size limit. Control of spatiotempor-
al chaos is achieved for sufficient large control strength and density of control-
lers. It is also interesting to note that the result of Bragard and Boccaletti [13]
concerning the integral behavior of the synchronization is also valid in the case
of chaos control in the limit of dense control spacing. Let us recall that it states
that if the distance between the controllers is doubled the strength must be also
doubled in order to achieve control in the same time.

The questions that we leave open for further studies are the following: will a
further increase in the size of the system eventually compromising the ability
of control? In the thermodynamic limit (L ��), for instance, one would really
need an infinite number of controllers. Apart of being very difficult to realize in
practice, one may ask if control is still “stable” in this thermodynamic limit. An-
other relevant question concerns the selection of equally spaced controllers. We
believe that it does not represent an optimal choice for achieving stabilization of
PWS especially in the PT regime (soft turbulence). An answer to this question
would result from comparatively testing the effectiveness of different controller
positioning functions, or from giving analytical conditions for optimal controller
placing. In this context, a promising approach has been proposed that connects
control of spatiotemporal chaos with the Floquet control theory [5, 52].
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Fig. 9.9 Dependence of the control time � with the control
strength K0. The separation between the controllers is fixed to
� � 0�25 (diamonds) and � � 0�5 (triangles). AT and PT
regimes are represented by filled and open symbols,
respectively. Note the logarithmic scales for both axes.
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Alexander Ahlborn and Ulrich Parlitz

10.1
Introduction

One of the first attempts to tame chaotic systems was proposed in 1989 by
Hübler and Lüscher [1] who devised unidirectional control methods for driving
nonlinear systems to some goal dynamics. At the same time Ott, Grebogi, and
Yorke (OGY) developed a sophisticated control technique based on local approxi-
mations of the flow [2] that was published in 1990 and stimulated an avalanche
of publications on applications and alternative chaos control methods [3–5]. One
of these techniques is time delay autosynchronization (TDAS) first suggested by
Pyragas [6]. Similar to OGY-control TDAS aims at stabilizing UPOs embedded
in the chaotic attractor of the system to be controlled. From a practical point of
view, however, TDAS is much easier to implement than OGY control, for exam-
ple by means of analog electronic circuits. For a general system

�x � f �x� u� �10�1�

with state vector x TDAS requires a time delayed value gx�t	 ��� of some ob-
servable gx�t�� both entering the control signal

u�t� � k gx�t	 ��� 	 gx�t��� �� �10�2�

The parameter k is the gain of the feedback loop, g denotes a (suitable) mea-
surement function, and � is the delay time typically chosen to equal the period
of the UPO to be stabilized. In this case, the control signal vanishes on the peri-
odic orbit, i.e., the UPO is not distorted by TDAS but only its stability properties
are changed. Therefore, this kind of stabilization is also called noninvasive con-
trol. In 1994, a generalization of TDAS was suggested called extended TDAS
(ETDAS) [7, 8] where the feedback signal
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u�t� � k �1	 R�
��
n�1

Rn	1gx�t	 n��� 	 gx�t��
6 7

�10�3�

� k gx�t	 ��� 	 gx�t��� � � Ru�t	 �� �10�4�

with R �� 	 1� 1 is based on an infinite sequence of delayed observables
gx�t	 n��� whose delay times n� are integer multiples of some fundamental de-
lay time �. As can be seen from Eq. (10.4) the ETDAS-control signal can be gen-
erated using the TDAS scheme (10.2) with an additional delayed control signal
u�t	 ��. Detailed investigations showed that ETDAS provides larger stability re-
gions and periodic orbits with higher stability compared to TDAS. For stabiliz-
ing fixed points (steady states) Chang et al. [9, 10] suggested to consider the
limit �� 0 and R � 1 in Eq. (10.4) resulting in a single pole high-pass filter

�u�t� � 	�0u�t� 	 k �gx�t�� �10�5�

with cut-off frequency �0 � �1	 R���.

10.2
Multiple Delay Feedback Control

(E)TDAS proved to be very useful for stabilizing UPOs but it is less efficient for
steady states. This is partly due to the fact that the control signal vanishes for
any �-periodic solution. To impose a constraint that is fulfilled for constant solu-
tions, only a second feedback term is necessary with a different delay time �� re-
sulting in

u�t� � k gx�t	 ��� 	 gx�t��� � � �k gx�t	 ���� 	 gx�t��� �� �10�6�

If the ratio of delays ���� is irrational, then there exists no periodic orbit on
which the control signal vanishes. Only for fixed points x0 (with gx� � const.)
the differences in Eq. (10.6) vanish and the control signal equals zero resulting
in a noninvasive control. In general, more than two delay lines may exist and
the gain factors of the delayed and the not delayed signals may be different.
The control signal of such a multiple delay feedback control (MDFC) [11–13] is
written as

u�t� � k0 � k1ag1x�t	 �1�� 	 k1bg1x�t�� � � � �
� kMagMx�t	 �M�� 	 kMbgMx�t�� �10�7�

with M different delay times �1� � � � � �M and M different observables gm. With
asymmetrical gains (kma �� kmb) this control signal provides in general an inva-
sive control scheme and if a solution of the original system is to be stabilized
additional constraints have to be imposed on the gain factors kma and kmb [13].
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However, if a fixed point is to be stabilized noninvasive control can also be im-
plemented by choosing the constant gain k0 appropriately. This option can be
used, for example, to overcome some limitations of delayed feedback due to
controllability requirements as will be discussed in Section 10.4. Here, we shall
first focus on symmetric MDFC (kma � kmb � km) with vanishing bias k0 and
later discuss examples where asymmetric control is superior.

10.2.1
Linear Stability Analysis

For many experimental and theoretical systems it turned out that MDFC is
more suitable for fixed point stabilization than (E)TDAS or single pole high
pass filtering (10.5) [12, 13]. This can best be seen by a linear stability analysis
of the vector field f in the vicinity of a fixed point x0. 1) For simplicity we shall
consider the case of an additive control force

�x�t� � f x�t�� � u�t�� �10�8�

Application of a delayed feedback in the form of Eq. (10.7) results in an infinite-
dimensional control problem with an infinite number of eigenvalues to be cal-
culated upon linear stability analysis. Fortunately, only a finite number of eigen-
values larger than some given constant (e.g., larger than zero) occur [14] facili-
tating the search for eigenvalues with positive real parts. Stabilization of the
fixed point x0 is successful if all eigenvalues � of the controlled system possess
a negative real part Re���. Therefore, to decide whether the feedback is success-
ful or not one has to calculate the eigenvalue � with the largest real part of the
transcendental characteristic equation det ���� � � 0 based on the characteristic
matrix

���� � �I 	Df �x0� 	U�x0� ��� �10�9�

where I denotes the unit matrix, Df �x0� is the Jacobian of the unperturbed sys-
tem at the fixed point x0 and

U�x0� �� �
�M
m�1

kmae	��m 	 kmb

� �
Dgm�x0� �10�10�

is the feedback matrix based on the Jacobian matrices Dgm�x0� of the measure-
ment functions.
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1) In the presence of coexisting fixed points, ba-
sins of attraction, initial conditions and the
choice of control parameters decide to which

fixed point the system dynamics converges in
the end. Thus, for every fixed point an individu-
al stability analysis has to be performed.



10.2.2
Example: Colpitts Oscillator

To give an illustration of MDFC we consider the electronic Colpitts oscillator
[13, 15] shown in Fig. 10.1 that is described by a three-dimensional set of differ-
ential equations

C1
dUC1

dt
� 	�Ff 	UC2� � � IL � C1

T
u�t�

C2
dUC2

dt
� �1	 �F�f 	UC2� � 	G0UC2 � IL 	 I0 �10�11�

L
dIL

dt
� 	UC1 	UC2 	 RIL �Ucc�

where UC1 �UC2 are capacitor voltages, IL is the current through the inductivity,
I0 � �UC2 �Ucc��R1, and

IE � f UBE� � � IS

�
exp

UBE

Ut

 �
	 1

�
�10�12�

is the emitter current of the transistor. A typical time scale of oscillations for
the system running without control is given by

T �
��������������������
L

C1C2

C1 � C2

�
�10�13�

resulting in a natural period of oscillations of T0 � 2�T , if the control signal

u�t� �
�M
m�1

kmaUC1�t	 �m� 	 kmbUC1�t� �10�14�

is switched off. Chaotic dynamics occurs for the free running case (u�t� � 0) if
parameters are fixed to L � 91 �H, R � 33�, R1 � 242�, C1 � 68 nF,
C2 � 68 nF, Is � 14�34 fA, Ut � 0�027 V, �F � 0�99, Ucc � 5 V, G0 � 0. The Col-
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Fig. 10.1 Colpitts oscillator.



pitts oscillator possesses an unstable fixed point at x0 � �UC1 �UC2 � IL�
� �5�1759�	0�7502� 0�0174�. For the calculation of the stability diagrams shown
in Fig. 10.2 we started with a grid in the complex plane, computed det�����
using Eqs. (10.9) and (10.10) and detected those � values for which det����� is
already close to zero. These � values were then used as initial conditions for a
damped Newton’s algorithm to determine the exact roots of the characteristic
equation det����� � 0.
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Fig. 10.2 Stability diagrams of the controlled
Colpitts oscillator (10.11), using MDFC
(10.14) with (a), (b) two, (c), (d) three and
(e),(f) four delay times (km � 1�35, �3 � 3�1,
�4 � 1�32). (a), (c), (e) Combinations of de-
lay times �1�T and �2�T leading to fixed
point stabilization are colored. The color

scaling is given by the stability function
max0�	Re���� where � denotes the eigenva-
lue with the largest real part Re���. (b), (d),
(f) Stability function max0�	Re���� versus
�1�T and �2�T . Note that (b), (d), (f) are ro-
tated compared to (a), (c), (e), respectively.



Figure 10.2 shows the resulting stability diagrams of the controlled Colpitts
oscillator with identical symmetric gains kma � kmb � km � 1�35 and k0 � 0. The
diagrams show the stability function max0�	Re���� color coded versus �1�T
and �2�T where � denotes the eigenvalue with the largest real part.

In the white areas fixed point stabilization fails and the diagonal in the
�1�T–�2�T parameter plane in Fig. 10.2 (a) corresponds to TDAS control
Eq. (10.2) with a single delay time �1�T � �2�T � ��T . 2)

As can be seen, with TDAS steady state stabilization is not possible for delay
times � larger than � 2T . In contrast, MDFC enables successful fixed point con-
trol for all delay times �m�T � 0�2� 14� if delay combinations are chosen that lie
within some stripes running in parallel to the diagonal. These stripes are sepa-
rated by a horizontal distance corresponding to approximately one half of the
natural period T0 � 2�T of the Colpitts oscillator. Highest stability for MDFC
using two delay times is obtained for the two peaks in the upper right corner of
the diagram (in parallel to the diagonal) in Fig. 10.2 (b) occurring for indepen-
dent delay times �1�T �� �2�T .

However, the use of different delay times can be further exploited. Application
of a third delay time leads to a significant enlargement of stability regions shown
in Fig. 10.2 (c) and (d) for �3�T � 3�1 and fixed gains (k1 � k2 � k3 � 1�35)
resulting in even higher stability (� 	0�37). In contrast to this the highest sta-
bility value of TDAS is � 	0�17 (ETDAS for R � 0�7: � 	0�3) [13]. Using addi-
tionally a forth delay time �4�T � 1�32 steady state stabilization is possible for
the whole parameter plane �1�T � �2�T � 0�2� 14� as shown in Fig. 10.2(e) and
(f). The larger the delay times are chosen the lower is the achieved stability of
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Fig. 10.3 MDFC fixed point stabilization of
the Colpitts oscillator (10.11) using three
delay times. (a) Three cross sections of the
MDFC parameter space for fixed �3�T � 3�1
and k2 � k3 � 1�35. Fixed point stabilization

is successful in the parameter regions
marked in black. (b) Stability region versus
�1�T, k1, and k2 showing control parameter
combinations leading to fixed point stabiliza-
tion (�2�T � 1�8, �3�T � 3�1, and k3 � 1�35).

2) All stability plots shown in Fig. 10.2 start
with delay times �i � 0�2 to make sure that

at least two delay times are active for every
�1–�2 combination.



the considered fixed point but in contrast to (E)TDAS stabilization is still pos-
sible. Figure 10.3 (a) shows the extended stability regions in parameter space ob-
tained with MDFC based on three delay times. For this three-dimensional pro-
jection the gains of the second and third delay time are set to k2 � k3 � 1�35
and �3�T � 3�1. Parameter combinations of �1�T , �2�T and k1 resulting in fixed
point stabilization are marked black to visualize how stability regions change
for varying gain k1.

10.2.3
Comparison with High-Pass Filter and PD Controller

We shall now compare the performance of MDFC with conventional control
techniques like a single pole high-pass filter Eq. (10.5) or a PD controller

u�t� � kpUC1 � kd
dUC1

dt
� �10�15�

Figure 10.4 (a) shows the stability function max0�	Re���� versus feedback gain
k and cut-off frequency �0 of the high pass filter.

As can be seen, a maximum stability of � 0�3 can be achieved. In compari-
son, MDFC with k1 � 0�27, k2 � 1�56, k3 � 0�28, �1 � 3�613, �2 � 2, �3 � 3�111
yields a stability of max0�	Re���� � 0�4767. Figure 10.4 (b) shows results for a
conventional PD-controller. Here, the same stability function max0�	Re���� is
plotted (color scaled) versus the gains kp and kd exhibiting a maximum value of
about 0�462. This is comparable to the stability achieved with MDFC but the
gain factors kp and kd required (see Fig. 10.4 (b)) are much higher than the
MDFC parameters given above.
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Fig. 10.4 Fixed point stabilization of the Col-
pitts oscillator using (a) a single pole high
pass filter (10.5) and (b) a PD-controller
(10.15). Stability function max0�	Re����

(color scaled) versus (a) feedback gain k
and cut-off frequency �0 and (b) propor-
tional gain kp and differential gain kd .



10.2.4
Transfer Function of MDFC

To improve the intuitive understanding of the proposed MDFC scheme we shall
now change to the frequency domain. Fourier transformation of the control sig-
nal Eq. (10.14) provides the transfer function

T�f � �
�M
m�1

kmae	i2�f �m 	 kmb �
	u�f �
	UC1�f �

�10�16�

linking the output 	u�f � linearly to the input signal 	UC1�f �. Figure 10.5 (a) shows
the Fourier spectrum of the unperturbed Colpitts system (10.11). Figure 10.5 (c)
reveals the absolute value of the transfer function �T�f �� for the case of a single
delay time (�1�T � 10� k1a � k1b � 1, solid line), two active delays
(�1�T � 10� �2�T � 5� k1a � k1b � k2a � k2b � 1, dash-dotted line), three active
time delays (�1�T � 10� �2�T � 5, �3�T � 3�1, kma � kmb � 1�m � 1� 2� 3, dotted
line), and four individual delay times (�1�T � 10, �2�T � 5, �3�T � 3�1,
�4�T � 1�32, kma � kmb � 1�m � 1� 2� 3� 4, dashed line). The notch at f � 0 is
necessary for fixed point stabilization guaranteeing a noninvasive feedback sig-
nal since a frequency lying in a notch is not fed back [9]. Consequently, the
other notches for f � 0 have to be placed within the Fourier space such that all
(main) frequencies (corresponding to dominant UPOs embedded in the chaotic
attractor) are fed back by the control signal. Since �1 and �2 do not eliminate all
frequencies (nonvanishing control signal) of the oscillator this holds for the Col-
pitts oscillator only after activation of the third and forth delay time. Corre-
sponding phases are shown in Fig. 10.5 (d) providing for multiple delays a
smoother shape than TDAS with a single delay time does.

An example for fixed point stabilization in the presence of only two delay
times is shown in Fig. 10.5 (e) and (f) where the feedback is defined in a way
avoiding any notches in the relevant part of the frequency domain. The addi-
tionally activated third and fourth time delay only shift the eigenvalues to more
stable ones in terms of negative real parts. Delay times are set to �1�T � 7 (sol-
id line), �1�T � 7, �2�T � 5 (dash-dotted line, feeding back all main frequen-
cies), �1�T � 7, �2�T � 5, �3�T � 3�1 (dotted line) and �1�T � 7, �2�T � 5,
�3�T � 3�1, �4�T � 1�32 (dashed line). Phases presented in Fig. 10.5(f) are more
or less constant for f � 0�1� 0�35� in contrast to the phase jumps if only one de-
lay time is switched on.

Until now all gain factors kma� kmb have been chosen mutually equal (sym-
metric) to guarantee a vanishing control signal for each feedback term consist-
ing of the difference of a single delayed signal and its undelayed counterpart.
However, choosing the gains kma� kmb individually it is possible to adjust the
characteristics of the transfer function Eq. (10.16) to the investigated control
problem in a more flexible way [13]. For example, Fig. 10.5 (g) and (h) show the
filter characteristics with asymmetric gains k1a � 1�3, k1b � 0�7, k2a � 0�4,
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k2b � 1�0, k3a � 0�8, k3b � 0�5, k4a � 0�4, k4b � 0�7 for the same delay times as
in Fig. 10.5 (e) and (f) providing a noninvasive control signal if all delay times
are switched on.
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Fig. 10.5 (a) Fourier spectrum of the unper-
turbed Colpitts oscillator (10.11) and trans-
fer function of a high-pass filter with cut-off
frequency f0 � �0�2� � 0�08. (b) Corre-
sponding phase of the high-pass filter.
(c),(e),(g) Absolute value of the transfer
function (10.16) for different choices of delay
times and gain factors: (c) Symmetric gains
kma � kmb � 1, one delay time �1�T � 10
(solid line), two delay times �1�T � 10,
�2�T � 5 (dash-dotted line), three delay
times �1�T � 10, �2�T � 5, �3�T � 3�1
(dotted line), and four delay times
�1�T � 10, �2�T � 5, �3�T � 3�1 and
�4�T � 1�32 (dashed line). The fixed point is
stabilized if three or four delay times are
used, but control with one or two delays
fails because the notches [�T�f �� � 0] are

located in the range of main frequencies of
the free running system (compare spectrum
in Fig. 10.5 (a)). (e) For control parameters
kma � kmb � 1 and �1�T � 7 (solid line),
�1�T � 7, �2�T � 5 (dash-dotted line),
�1�T � 7, �2�T � 5, �3�T � 3�1 (dotted
line), �1�T � 7, �2�T � 5, �3�T � 3�1 and
�4�T � 1�32 (dashed line) no notches are
located in the range of the main frequencies
and fixed point stabilization is possible
already with two or more delay loops.
(g) Same delay times as in (e) but different
asymmetric gains: k1a � 1�3� k1b � 0�7�
k2a � 0�4� k2b � 1� k3a � 0�8� k3b � 0�5�
k4a � 0�4� k4b � 0�7. (d),(f),(h) Correspond-
ing phases marked the same way as in
(c),(e),(g), respectively.



10.3
From Multiple Delay Feedback Control to Notch Filter Feedback

The investigation of transfer functions of MDFC showed that successful feed-
back is related to a smart placement of notches in the frequency domain to sup-
press specific frequencies. Therefore, as an alternative one can approximate the
MDFC transfer function locally by linear notch filters. This leads to notch filter
feedback (NFF) [16] showing similar behavior within the relevant part of the
Fourier spectrum as MDFC does. For illustration we consider again the Colpitts
oscillator exhibiting chaotic motion (Fig. 10.6 (b)) for the free running system
(u�t� � 0) and the TDAS control signal

u�t� � k UC1�t� 	UC1�t	 �� � �10�17�
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Fig. 10.6 Colpitts oscillator Eq. (10.11)
controlled by different feedback schemes.
(a),(b) Spectrum and time series of the free
running system, respectively. Absolute value
of the transfer function �T�f �� and time

series of the controlled system (feedback
switched on at t � 0) for: (c), (d) TDAS
control (10.17), (e), (f) single notch filter
control (10.19), (g), (h) two notch filters
control (10.20).



coupling to the first component of Eq. (10.11). Adjusting the control parameters
to k � 	0�72 and � � 6�66 stabilizes the period-one orbit visible in Fig. 10.6 (d).
The placement of notches corresponds in Fig. 10.6 (c) to the fundamental fre-
quency of the considered UPO and its harmonics. Thus, all troubling frequen-
cies in the broad band spectrum (Fig. 10.6 (a)) not belonging to the UPO are
suppressed. Nearly the same result can be obtained, if a suitable notch filter re-
places Eq. (10.17) neglecting the higher harmonic notches of the TDAS scheme.
Suitable notch filters can, for example, be implemented by the well-known Wien
filter

�VC1 �
1

RC
Vin � 2Q 	 1

Q
VC2 	 VC1

 �
�VC2 �

1
RC

Vin �Q 	 1
Q

VC2 	 VC1

 �
�10�18�

Vout � 1
Q

VC2

with filter resonance frequency f � �2�RC�	1 and filter quality Q responsible
for the filter steepness. The feedback signal is given by

u�t� � k Vin�t� 	 Vout�t� �� �10�19�

VC1 and VC2 correspond to capacitor voltages in the electronic realization of the
Wien filter, Vin and Vout denote the filter’s input and output signal, respectively.
In this special case UC1 of Eq. (10.11) is used as input signal leading to the re-
sult shown in Fig. 10.6 (f). The feedback is based on a single notch filter
Eq. (10.18) using the parameters R � 10460�, C � 0�1 mF, Q � 16�9, k � 0�75.
As can be seen in Fig. 10.6 (e) the corresponding transfer function has no notch
for f � 0 and thus describes an invasive control scheme. One may, however,
use a high-pass filter for the input signals or subtract a fixed value to eliminate
these offsets and render the control scheme noninvasive.

Similar to MDFC, stabilization of fixed points by NFF requires two or more
notch filters connected in parallel. For the control signal

u�t� � k1 V �1�
in 	 V �1�

out

� �
� k2 V �2�

in 	 V �2�
out

� �
�10�20�

all spectral components are eliminated and the steady state is reached after tran-
sients if resonance frequencies f1�2 and qualities Q1�2 are suitably chosen. Using
the filter transfer function of Fig. 10.6 (g) leads to fixed point stabilization pre-
sented in Fig. 10.6 (h). Parameters are k1 � k2 � 0�75, Q1 � 16�9, Q2 � 14�9,
C1 � C2 � 0�1 mF, and R1 � 10460�, R2 � 3150�.

To compare NFF based on two notch filters with MDFC a linear stability anal-
ysis is performed in the vicinity of the fixed point of the Colpitts oscillator
Eq. (10.11). In contrast to MDFC the NFF stability analysis yields a characteristic
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polynomial with a finite number of roots whose real part has to be analyzed.
Figure 10.7 shows the resulting stability function max0�	Re���� versus filter
resonance frequencies f1�2 � �2�R1�2C�	1 if the ac coupled component of UC1 is
used as input signal for the notch filters. The fixed point is stabilized, if all ei-
genvalues possess negative real parts. Thus, the larger the stability values in
Fig. 10.7 the more stable is the applied feedback. The maximum stability is
� 	0�4 which is in the range of MDFC and more stable than (E)TDAS as well
as its limit case of a single pole high-pass filter. Highest performance is
achieved, if the filter resonance frequencies do not coincide with the oscillator’s
main frequencies � 0�15 f0 and � 0�09 f0 (minimum visible as a white spot in
Fig. 10.7) and are chosen mutually different from each other. This is clear since
frequencies lying in a notch are not fed back and steady state stabilization is
not possible. The main advantage of NFF is its easy implementation in analog
hardware to control, for example, very fast dynamical systems.

10.4
Controllability Criteria

Similar to some limitations of delay control of UPOs [17, 18] there also exist re-
strictions for fixed point stabilization using (E)TDAS. Chang et al. [9] showed
that a single pole high-pass filter cannot stabilize steady states with an odd
number of real positive eigenvalues. In the following we shall demonstrate that
for fixed point stabilization the odd number problem can be overcome by using
MDFC with asymmetrical gains or using NFF without ac-coupling.
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Fig. 10.7 Fixed point stabilization for the
Colpitts oscillator Eq. (10.11) using NFF with
two notch filters. Stability function
max0�	Re���� versus resonance frequencies
f1 and f2 (k1 � k2 � 1�5�Q1 � Q2 � 0�8).

The system is stabilized, if the eigenvalue �

with the largest real part Re��� possesses
negative sign. Thus, the larger the peaks the
more stable is the feedback.



10.4.1
Multiple Delay Feedback Control

For simplicity we consider an MDFC scheme where a variable of the state vec-
tor is observed and where the control signal is added to the differential equation
describing the dynamics of this variable. 3) The stability of the controlled system
is determined by the characteristic function

S��� � det ����� � det �I 	Df �x0� 	U�x0� ��� �10�21�

� �n �
�n	1

j�0

cj�
j � �u���

�n	1

j�0

dj�
j� �10�22�

where �u��� denotes the Laplace transform of the control signal. The characteris-
tic function S��� is composed of a purely polynomial part with parameters cj

(resulting from the free running system) and a polynomial-transcendental part
with parameters dj (resulting from the feedback). For finite control gains and
coefficients cj and dj the limit lim��� S��� � � holds. Stabilization is possible
if the control parameters can be chosen in a way such that the function S���
possesses no roots in the right half of the complex plane (i.e., no roots with pos-
itive real parts).

To show that this goal cannot always be achieved let us first consider
(E)TDAS control (10.4) with

�u��� � k
e	�� 	 1

1	 Re	��
� �10�23�

Here �u��� vanishes at the origin � � 0 and the characteristic function at � � 0

S�0� � det	Df �x0�� � �	1�n detDf �x0�� �
8n

j�1

�	ej� � c0 �10�24�

depends only on the Jacobian matrix Df �x0� of the n-dimensional free runn-
ing system and its eigenvalues ej, and not on the control parameters. For an
odd number of real positive eigenvalues an odd number of negative factors
occurs in the product in Eq. (10.24) and S�0� � 0. Since S��� restricted to the
real axis is a continuous function the boundary conditions S�0� � 0 and
lim��� S��� � � imply the existence of at least one unstable eigenvalue in the
right half plane – independently of the feedback gains. Therefore, using
(E)TDAS it is not possible to remove this instability.

If we apply MDFC instead of (E)TDAS the Laplace transform Eq. (10.23) is re-
placed by

�u��� �
�M
m�1

kmae	��m 	 kmb �10�25�
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which (in contrast to Eq. (10.23)) does not vanish for � � 0. Thus the character-
istic function at the origin

S�0� � c0 �
�M
m�1

kma 	 kmb

� �
d0 �10�26�

depends on the (differences of the) gain factors kma 	 kmb. This dependence can
be exploited to shift S�0� to positive values. Since the limit lim��� S��� � � is
still valid the characteristic function possesses now an even number of roots on
the positive real axis whose number depends on the control scheme and the un-
derlying dynamical system. In contrast to the (E)TDAS case discussed above
there exists at least no fundamental obstacle to stabilize the fixed point with
properly chosen control parameters. Therefore, in general, two delay terms are
required to control a fixed point with an odd number of positive eigenvalues:
one delay term (with asymmetric gains) to construct an extended system with
S�0� � 0 and a second delay term to stabilize this extended system using
(E)TDAS. Using appropriate values for the gain constant k0 in Eq. (10.7) (that
does not enter the characteristic function (10.26)) this control scheme can be
made noninvasive for any given (unstable) fixed point.

10.4.2
Notch Filter Feedback and High-Pass Filter

The same problem to stabilize fixed points with an odd number of positive ei-
genvalues occurs for a single pole high-pass filter and for NFF with ac coupled
input. In the case of a single pole high-pass filter [9] the value of the character-
istic function at zero is given by

S�0� � �0 det 	Df �x0�� � �0

8n

j�1

�	ej�� �10�27�

where ej are the eigenvalues of the Jacobian matrix Df �x0� at the fixed point x0

and �0 � 0 is the cut-off frequency (see (10.5)). Similar to the (E)TDAS case
S�0� is negative if an odd number of positive eigenvalues exists and this implies
the existence of a root of S��� on the positive real axis that cannot be removed
by any choice of the control parameters �0 and k.

For NFF the characteristic function reads

S��� � det �I 	 A� � �N �
�N	1

j�0

aj�
j� �10�28�

where A denotes the Jacobian matrix of the full N-dimensional system consist-
ing of the dynamical system and the feedback controller (e.g., a Wien filter im-
plementation of NFF). For � � 0 we obtain
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S�0� � �M
0

8M
m�1

�2
m

8n

j�1

�	ej� �10�29�

if M notch filters are applied with resonance frequencies �m � 2�fm � 0. To
guarantee a noninvasive feedback input signals are ac coupled with cut-off fre-
quency �0 � 0. Again S�0� � 0 if an odd number of positive eigenvalues exists
resulting in at least one root within the interval 0�� for any choice of the con-
trol parameters. Without ac coupled input signals the proof given above does
not hold any longer and it is possible to stabilize unstable fixed points with odd
numbers of positive eigenvalues using NFF. In this case one may subtract a
suitable constant from the control signal to obtain a noninvasive control scheme
for a given fixed point.

10.5
Laser Stabilization Using MDFC and NFF

A challenging task for all chaos control methods is the stabilization of steady
states of intracavity frequency doubled solid state lasers generating blue and
green light. With this type of lasers chaotic intensity fluctuations occur if the
pump rate exceeds some critical threshold [19]. During the past 20 years, var-
ious attempts have been made to solve or at least to reduce these fluctuations
using optical solutions or feedback control applied to an appropriate system pa-
rameter (e.g., the laser’s pump current). However, most control methods failed
for medium or higher pump rates, in particular for so-called type II chaos with
active modes in two orthogonally polarized directions [20, 21].

Our own experiments confirmed the observation that it is nearly impossible
to stabilize a compact frequency doubled laser (type II chaos, main frequencies
between 1 and 1.5 MHz, system latency � 0�5 �s) using conventional P-control-
lers, TDAS, or a single pole highpass filter in the feedback loop. On the other
hand, both MDFC [12, 22] and NFF [16] have been applied successfully in ex-
periments and simulations to stabilize the steady state of this chaotic laser exhi-
biting high frequency intensity fluctuations.

The experimental setup is shown in Fig. 10.8 (a), where the laser’s pump cur-
rent w0 provided by a current source is influenced by the feedback signal via a
bias-T. The laser emits infrared radiation of wavelength 1064 nm as well as fre-
quency doubled green laser light with a wavelength of 532 nm. Both light emis-
sions are separated from each other by a frequency selective beam splitter. Input
signals for MDFC and NFF are optionally the two ac coupled orthogonally polar-
ized infrared intensities �Ix and �Iy or the ac component of the green intensity �G.
Using the infrared signals the pump current modulation for MDFC may be
written as

�w�t� � ax�Ix�t	 �x� 	 bx�Ix�t� � ay�Iy�t	 �y� 	 by�Iy�t� �10�30�
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and with the green laser light intensity

�w�t� � ax
�G�t	 �x� 	 bx

�G�t� � ay
�G�t	 �y� 	 by

�G�t�� �10�31�

In both cases, two delay times, �x and �y, are typically in the range of
�x � 0�6 �s and �y � 2�8 �s. All control parameters ax� bx� ay� by� �x� �y are chosen
experimentally to achieve fixed point stabilization. Figure 10.8 (b) shows a suc-
cessful laser stabilization using MDFC. Before the control signal is switched on
at t � 0 s intensity fluctuations are visible which are then damped out by the
feedback until the noise level is reached. In this laser experiment three to four
lasing modes are active. This case was also simulated [22] with an extended
(multimode) laser model describing an inhomogeneous end-pumped YAG crys-
tal. MDFC provides stability for the whole range of three mode operation in-
cluding additional slow sinusoidal modulation of the pump current without any
uprising chaotic dynamics (occurring without control).

The fact that asymmetrical gains turned out to be more efficient for stabiliza-
tion than symmetrical ones [22] was also confirmed experimentally [12] where
asymmetric MDFC was superior to symmetric MDFC and TDAS.

For NFF using two notch filters according to Eqs. (10.18) and (10.19) the
pump current modulation is given by the difference

�w�t� � k1 V �1�
in 	 V �1�

out

� �
� k2 V �2�

in 	 V �2�
out

� �
�10�32�

of the filtered output Vout and the filter input signals V �1�
in and V �2�

in . Here the
two ac coupled orthogonally polarized infrared intensities �Ix and �Iy or the ac
component of the green intensity �G can be used as input to implement a non-
invasive stabilization of the laser [16]. The experimental adjustment of the filter
resonance frequencies is relatively easy for a suitably chosen filter quality Q.
Simulations at a fixed pump rate w0 � 1�247 [16] reveal that stability regions are
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Fig. 10.8 Suppression of chaotic intensity
fluctuations of a frequency doubled Nd : YAG
laser using MDFC as defined in Eq. (10.30).
(a) Experimental setup. (b) Time series
showing the orthogonally polarized ac

coupled infrared signals �Ix (upper trace) and
�Iy (lower trace). After activation of feedback
control at t � 0 the chaotic fluctuations are
suppressed. Similar results have been
obtained with NFF control [16].



most enlarged if the quality Q is not chosen too high and feedback gains k1

and k2 are chosen different (asymmetric).

10.6
Controlling Spatiotemporal Chaos

Feedback control can also be applied to extended spatiotemporal (chaotic) sys-
tems [23]. In particular, (E)TDAS has been used to control a large number of
spatially extended systems to achieve various goal dynamics [24–32]. Further-
more, efficiency of the delayed feedback methods can significantly be improved
by spatially filtering the applied control signal [33].

10.6.1
The Ginzburg-Landau Equation

As prototypical example of a spatiotemporal chaotic system we shall employ the
two-dimensional complex Ginzburg-Landau equation (GLE)

�tf � �1� ia�)2f � f 	 �1� ib�f �f �2 � u �10�33�

with periodic boundary conditions and an external control signal u�x� t� that will
be used to stabilize and manipulate the occurring spatiotemporal chaos. �t and
) denote the temporal and the spatial derivatives, respectively. For numerical
integration of Eq. (10.33) a fourth order Runge-Kutta scheme in time is com-
bined with a spectral method in space based on a spatial grid of 90� 90 ele-
ments. Depending on the parameter values a and b the complex solution
f � f �x� t� of the free running GLE (10.33) exhibits different types of spatiotem-
poral chaos.

The GLE (10.33) possesses an unstable steady state solution f �x� t� � 0 which
can be stabilized by means of a P-controller or (delayed) feedback control.
Furthermore, traveling plane waves

f �x� t� � f0ei�k0�x	�0t� �10�34�

with wave vector k0, frequency �0 and amplitude f0 comprise unstable solutions of
the GLE (see stability analysis in [36]). Substituting (10.34) into the GLE (10.33)
one obtains the relations �0 � k2

0�a	 b� � b and f0 �
�������������
1	 k2

0

�
where

k2
0 � k0 � k0 % 1. In the one-dimensional case this kind of UPOs embedded in

the chaotic attractor of the system can be stabilized by means of TDAS [34, 35].
For higher dimensional systems, however, the torsion [17, 18] required for
(E)TDAS to work is not guaranteed any more and (E)TDAS fails if ab � 	1 [36].

We shall now show that this limit can be overcome by using asymmetric de-
layed feedback and the stability range can be extended by using several indepen-
dent delay times.
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10.6.2
Controlling Traveling Plane Waves

To stabilize unstable plane waves (10.34) we use a control signal

u�x� t� �
�M
m�1

kmaf �x� t	 �m� 	 kmbf �x� t� �10�35�

and assume that the controlled plane wave is given as

f �x� t� � fce
i�kc�x	�0t�� �10�36�

If this plane wave is substituted in (10.35) one obtains

u�x� t� �
�M
m�1

kmae	i�0�m 	 kmb

� �
f �x� t� � T��0�f �x� t� �10�37�

with transfer function T��0�. Inserting the plane wave solution (10.36) and the
corresponding control term (10.37) into the GLE (10.33) results in

1	 k2
c 	 f 2

c � ReT��0�� � 0

�0 	 ak2
c 	 bf 2

c � ImT��0�� � 0
�10�38�

where k2
c � kc � kc. ImT��0�� and ReT��0�� denote the imaginary and real part

of the feedback’s transfer function T��0�, respectively. Combining both con-
straints of Eq. (10.38) we can eliminate the amplitude fc and obtain the disper-
sion relation

k2
c � k2

0 � �k2 �10�39�

where

�k2 � bReT��0�� 	 ImT��0��
b	 a

�10�40�

describes the wavenumber shift due to the feedback control. Since k2
0 % 1 the re-

lation k2
c � 0 is fulfilled if �k2 � 	1. If the condition

bReT��0�� � ImT��0�� �10�41�

holds �k2 vanishes and control results in a traveling plane wave with same
wavenumber kc � k0 as the free running system but different amplitude
fc �

�������������������������������
f 2
0 � ReT��0��

�
.

The magnitude of the wavenumber shift depends on the shape of the transfer
function T��� that can be adjusted with the parameters of the control loop. To
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illustrate this dependence we show in Fig. 10.9 (a) and (b) the value of �k2 (gray
scaled) in the control parameter plane �1–k1b for MDFC with one and two delay
times, respectively. Below some critical values of the gain k1b control fails and
the plane wave remains unstable (light gray shading in Fig. 10.9). Control with
�k � 0 occurs for specific values of �1 and k1b. Since the parameter values of
the GLE are in this case a � 1�1 and b � 	1 the TDAS controllability criterion
ab � 	1 derived in [36] is not fulfilled. Therefore, symmetric delayed feedback
control with k1a � k1b fails as can also be seen in Fig. 10.9 (a), where the dashed
line at k1b � 0�3 � k1a lies in the unstable region. In contrast, asymmetric de-
layed feedback enables stabilization if the gain k1b is sufficiently high, including
parameter combinations where �k2 vanishes (see Fig. 10.9 (a)).

Similar to the results obtained with the Colpitts oscillator and several other
dynamical systems application of an additional feedback loop with a different
delay time �2 � 7�2 results in increasing stability, here visible as a reduced size
of the unstable region shown in Fig. 10.9 (b).

10.6.3
Local Feedback Control

The kind of homogeneous feedback control of the GLE considered so far is in-
teresting from a theoretical point of view because it allows some analytical treat-
ment. Practically, however, it is very difficult to implement a delayed feedback
where signals are homogeneously measured and applied at all points in space.
In contrast to the idealized case described by Eqs. (10.33) and (10.35) any experi-
mental sensor of finite size will measure the activity of the process of interest
in terms of spatial averages in some sensor region. Furthermore, control signals
may be applied at some specific locations, only. Therefore, we shall introduce
now control cells describing small spatial areas where spatially averaged observa-
tions are measured and/or where the control signal is applied [37].
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Fig. 10.9 Stabilization of plane wave solu-
tions (10.34) of the GLE (10.33) with a � 1�1
and b � 	1 using the delayed feedback
signal (10.35). In the gray-shaded regions of
the control parameter space �1–k1b stabiliza-
tion is successful and results in a gray-
scaled wavenumber shift �k2 (10.40).

(a) Single delay feedback with k1a � 0�3. The
dashed line denotes the particular case of
symmetric feedback (k1a � k1b) that fails to
stabilize the plane waves. (b) MDFC with
two delay times and fixed control parameters
k1a � 0�3� k2a � 0�1� k2b � 0�3� �2 � 7�2.



For many experiments or practical applications it is desirable to use only a
small number of control cells. We will present in the following different exam-
ples of manipulated Ginzburg-Landau dynamics where only very few control
cells are employed.

In the first example, turbulent dynamics (Fig. 10.10 (a)) occurring with Eq.
(10.33) for a � 1�1 and b � 	1 is locally turned into traveling waves. Here
MDFC as illustrated in Fig. 10.10 (g) is applied to selected control cells shown
as white rectangles in Fig. 10.10. Figure 10.10 (b) shows the control transient
and Fig. 10.10 (c) the resulting plane waves between the two rows of controllers.
Delay times and gain factors equal �1 � 25, �2 � 62, �3 � 94 and k1a � 0�33,
k1b � 0�67, k2a � 0�365, k2b � 0�68, k3a � 0�405, k3b � 0, respectively. Note that
since ab � 	1 control using homogeneous (E)TDAS would fail in this case [36].
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Fig. 10.10 Color-coded phase of the complex
solution of the two-dimensional Ginzburg-
Landau equation (10.33) for �a � 1�1�
b � 	1� (a–c) and �a � 	1�45� b � 0�34�
(d–h). Without feedback turbulent dynamics
(a) or spiral waves (d) occur. With MDFC
applied at some control cells (marked in
white), a control transient is observed (b),
(e) and the complex dynamics is converted
to plane waves (c),(f) traveling with constant
velocity. Here, signals from each control cell

are fed back with and without delay as illu-
strated in (g) for a single control cell.
(h) Spatiotemporal evolution of dynamics in
a vertical section of Fig. 10.3(e) located at
x � 	20. Feedback with parameter set P is
activated at t � 300. For t � 700 feedback
parameters are changed from set P to pa-
rameter set S resulting in slower traveling
plane waves. The values of both control
parameter sets P and S are given in the text.



Figure 10.10 (d)–(f) shows how chaotic spiral dynamics occurring for a � 	1�45
and b � 0�34 can also be converted to plane waves using local MDFC. Here again
MDFC sketched in Fig. 10.10 (g) is used with control parameters �1 � 20, �2 � 59,
�3 � 89, k1a � 0�13, k2a � 0�4, k3a � 0, k1b � 0�43, k2b � 0�49, and k3b � 0. To vi-
sualize the temporal dynamics, Fig. 10.10 (h) shows the phase values in a vertical
section of the x–y plane at x � 	20 as a function of time t. First feedback control is
activated at t � 300 using the parameter set P � ��1 � 20� �2 � 59� �3 � 104�
k1a � 0�13� k2a � 0�4� k3a � 0� k1b � 0�43� k2b � 0�49� k3b � 0�. Spiral waves occur-
ring between the two rows of control cells are converted into plane wave fronts that
are accelerated until they reach their (constant) maximum speed. For t � 700
the feedback parameters are changed to set S � ��1 � 20� �2 � 59� �3 � 104�
k1a � 0�23� k2a � 0�32� k3a � 0�1� k1b � 0�43� k2b � 0�21� k3b � 0�. As can be seen
in Fig. 10.10 (h) this control parameter set results in plane waves traveling with
a lower velocity. In this way time scales (e.g., periods of oscillations) of local activity
can be modified in a wide range. If only very few and therefore spatially widely
separated control cells are used a phenomenon similar to diffraction occurs where
spiral waves wriggle around the control cells without being influenced substan-
tially. Thus the more control cells are used the more stable are the results. Simula-
tions show that, for a small number of activated control cells their distance should
not exceed the spatial correlation length. Best performance is achieved for control
cells in a horizontal distance of one half of the spatial correlation length, and gains
that have been adjusted experimentally.

For the previous examples we used individual MDFC at each cell, i.e., signals
from a given cell were used to control the same cell (see Fig. 10.10 (g)). This is
of course not the only way how feedback can be applied to a spatially extended
system. In general, (delayed) signals from different control cells can be com-
bined and the resulting signal can be applied to some other control cell. Two ex-
amples for such more sophisticated MDFC strategies are presented in
Fig. 10.11. The parameters a � 	1�45 and b � 0�34 of the GLE (10.33) are the
same as for Figs. 10.10 (d)–(h) resulting in chaotic spiral waves if no control is
applied (Fig. 10.11 (a) and (d)). The control cells are grouped in small line seg-
ments and their wiring (including three delays �1, �2 and �3) is given in
Fig. 10.11 (g) and (h) for the top and bottom row, respectively. With the config-
uration in the top row a spiral wave is generated (Fig. 10.11 (b)) and trapped
(Fig. 10.11(c)) in the center. Control parameters chosen for this case are
k1a � 0�22, k2a � 0�1, k3a � 0�35, k1b � 0�3, k2b � 0�5, k3b � 0�0 with delay times
�1 � 41, �2 � 27, �3 � 49. The rotation direction of the spiral wave can be ma-
nipulated by changing the feedback parameters. Furthermore, it is important to
choose the spatial distance of complementary control cells within a certain
range, such that spiral waves have enough space to develop. If the controlled re-
gion is chosen too small or too large several spiral waves or other turbulent
structures occur.

With the geometry of control cells used in the bottom row of Fig. 10.11, two
spiral waves rotating in opposite direction occur during transient (Fig. 10.11 (e))
once feedback is switched on. These two spirals, however, are unstable and only
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one spiral survives due to competing dynamics. In the long time evolution bent
wave fronts emitted by one spiral are straightened under the influence of the
feedback control and then caught up again by the next spiral wave located at
the opposite side of the controlled region (Fig. 10.11 (f)). The whole dynamics is
thus some sort of wave-baseball with one spiral acting as a pitcher and the other
one as the catcher. For this example the coupling scheme shown in
Fig. 10.11 (h) was used with parameters k1a � 0�11, k2a � 0�25, k3a � 0�32,
k1b � 0�27, k2b � 0�2, k3b � 0�39, �1 � 57, �2 � 29, and �3 � 79.

10.7
Conclusion

Multiple delay feedback control (MDFC) is an efficient method for stabilizing
(unknown) steady states and provides new options for controlling and manipu-
lating complex spatiotemporal dynamics. The main difference compared to
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Fig. 10.11 Color-coded phase dynamics of
the Ginzburg-Landau equation (10.33) for
a � 	1�45 and b � 0�34. First row: trapping
of a rotating spiral wave using control
scheme (g). Second row: generation and

annihilation of plane waves using control
scheme (h). (a),(d) Chaotic spiral waves
without control, (b),(e) control transient,
(c),(f) final, controlled dynamics. Parameters
of the control schemes are given in the text.



Pyragas’ delayed feedback (TDAS) and its extensions (ETDAS) is the use of sev-
eral independent delay times and asymmetric gains factors. In this way more
specific control transfer functions can be implemented and one can bypass
some fundamental obstacles when trying to stabilize fixed points with an odd
number of positive eigenvalues. Furthermore, MDFC control can be to some ex-
tent approximated by notch filter feedback (NFF). Both, MDFC and NFF are
well suited for practical applications because they can easily be implemented in
electronic hardware. As an example, we presented experimental results where a
chaotic frequency doubled Nd :YAG laser was stabilized by MDFC as well as
NFF. The full potential of MDFC applied to a spatiotemporal system still has to
be explored. The examples given here indicate that it not only offers new means
for suppressing chaotic fluctuations but more interestingly provides a large tool-
box for specific and sophisticated manipulations of complex spatiotemporal
structures, such as (guided) plane waves, and trapped or interacting spiral
waves.
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Part III
Controlling Noisy Motion





Natalia B. Janson, Alexander G. Balanov, and Eckehard Schöll

11.1
Introduction

In Part I of this book the fundamental principles of control of irregular oscilla-
tions are discussed. Irregularity of motion generally means its unpredictability,
which, when it comes to engineering applications, one is usually keen to avoid
or at least to minimize. In contrast, when it comes to biological systems, too
much regularity might be regarded as a sign of a certain disfunction. For exam-
ple, the normal heart rhythm of a healthy human at rest is not periodic, but is
moderately irregular [1], while the perfect periodicity can be life threatening.
Also, epileptic seizure or Parkinsons’ disease are accompanied by the unusually
regular activity of big clusters of neurons in brain [2, 3]. Hence, in some situa-
tions one needs to make the motion in the system more disordered.

Also, the need might arise to speed up or to slow down the motion, or to
change the shape of oscillations or waves in the system or medium under study.
Finally, one might be interested in suppressing the unwanted oscillations or
waves altogether.

Most generally, we define control as the adjustment of the properties of the
motion in the system in a desired way by applying some external perturbation.

Irregularity can arise from two main sources. First, the dynamics of the sys-
tem where the motion occurs can be deterministically chaotic, which would
generally imply sensitivity to the choice of initial conditions: the negligibly
small error in the initial conditions grows exponentially with time, and this
makes forecasts of the future trajectories impossible. The phase space of such
systems contains a countable set of unstable periodic orbits with different peri-
ods. If for the purposes of control one needs to turn chaotic motion into a peri-
odic one, this could be achieved by applying a small force to the system in an
intelligent way, so that one of the unstable orbits becomes stable [4–6]. There
are at least three general approaches that realize this idea: a continuous external
perturbation [7], a time-discrete conditioned perturbation [8], and a feedback
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loop in the form of the difference between the current state of the system and
its state some � time units ago [9].

The second source of irregularity in the motion occurs due to the inevitable
presence of random fluctuations, or noise, in any real macroscopic system. Even
if without these fluctuations the system would have behaved in an ordered pre-
dictable way, e.g., performing periodic motion, the presence of noise makes the
behavior of such a system irregular and hence unpredictable. Obviously, the sit-
uation becomes even more complicated if without noise the system was already
in the state of deterministic chaos: noise just adds to the complexity of its mo-
tion.

In [10] the systems were considered that without noise performed periodic or
deterministically chaotic oscillations. These systems were subjected to the exter-
nal noise that made their oscillations less regular. Delayed feedback in Pyragas
form was shown to be capable of manipulating the regularity, or coherence,
within certain ranges.

There is a separate class of motion that is fundamentally different from that
described above: it occurs only due to the external fluctuations that are applied
to the system. If these fluctuations are removed (even hypothetically), the mo-
tion will cease altogether. A famous example of such motion occurs in a bistable
potential with a particle, to which a weak external periodic forcing is applied.
Without noise, because the forcing is weak, the particle oscillates within the
same well only and cannot reach the neighbouring well. However, as external
noise is applied, the particle can occasionally jump between the wells. This situ-
ation is associated with the well-known stochastic resonance (SR) phenomenon
[11, 12]. In [13, 14] the methods for the control of SR were introduced.

Finally, it might be that without noise, the system demonstrates no motion at
all, and only application of noise initiates some oscillations. A famous example
of such systems are excitable neurons, in which random fluctuations arise due
to the conducting ion channels, synaptic noise, and noise resulting from the
coupling to a large number of other neurons emitting signals [15].

In nonlinear systems, the noise-induced motion can be quite irregular at
small noise, but, counterintuitively, its regularity can grow with the increase of
noise strength, reaching the maximum at some moderate noise. After that max-
imum, the further increase of noise makes the motion less regular. This is the
renowned phenomenon of coherence resonance (CR) [16–18]. The systems that
demonstrate noise-induced oscillations and CR are sometimes called CR oscilla-
tors. The noise-induced phenomena are prominent in many areas of science,
e.g., physics, biology, chemistry, etc. [19–25].

It should be noted that the properties of noise-induced oscillations, like time-
scales, shape, coherence (regularity), are defined jointly by the structure of the
phase space of the system, and by the statistical properties of the applied noise.
The obvious ways to achieve the desired kind of motion could be to change
either the system structure, or the statistical properties of noise, or both. How-
ever, in applications to real-life systems, and especially in biological ones, the
detailed structure of the system under study is often unknown, and even if it
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were known, one would not want to intrude in an invasive way that could
change it. At the same time, noise is defined by the environment and is also
not subject to manipulation. The method capable of amending the features of
noise-induced behavior should be noninvasive, i.e., not interfering with the sys-
tem structure, and ideally not requiring the knowledge of it. It should also be
sufficiently simple for realization.

In [26] the modified method of [8] was used to control noise-induced motion
in FitzHugh-Nagumo system in an excitable regime. In [27] an external periodic
force was proposed for the control of noise-induced oscillations in a pendulum
with a randomly vibrating suspension axis.

In this chapter we will describe a more general and universal control method:
the delayed feedback control proposed by Pyragas [9] for the control of determi-
nistic chaos, which the author considers in more detail in Chapter 3. The idea
of the method is as follows: it is known that deterministically chaotic motion is
due to the existence of a chaotic attractor, whose skeleton in the phase space is
formed by a countable set of unstable periodic orbits with different periods. We
want to make the system oscillate periodically. Assume that the only informa-
tion known about the system comes in the form of its experimental realization
s�t�, that is formally expressed as some generally nonlinear scalar function, or
functional, of its dynamical variables. Assume in addition that we know the per-
iod T0 of one of the unstable periodic orbits. Then application of a feedback
force F�t� constructed as

F�t� � K�s�t	 �� 	 s�t��� �11�1�

where K is the feedback strength, and � is time delay being equal to the orbit
period T0, can make this orbit stable [9], provided the value of K lies within a
certain range. A remarkable feature of this method is that once the control is
achieved, i.e., the system starts to oscillate periodically with period T0, the con-
trol force F�t� vanishes completely, i.e., this kind of control is noninvasive. The
conditions for K for successful control have been thoroughly studied in [28–32].

One might ask “What happens if we do not know the period of the orbit?“.
One can guess the approximate value of this period by observing realizations
s�t� of the system, or by examining the peaks of the Fourier power spectrum.
Another merely experimental approach is to apply feedback F�t� as in Eq. (11.1)
with different values of � and to monitor the values of F�t�: once � achieves T0,
the system oscillates periodically with period T0, and F�t� becomes zero at all
times [9]. Note that this happens only if the value of K is chosen (guessed) cor-
rectly. Also, note that if � is not exactly T0, but close to it, the system might still
oscillate periodically, but with period slightly different from T0, in which case
the control force F�t� will not be zero. The full diagram of possible regimes in
the (�,K) plane for a paradigmatic example of a chaotic system was revealed in
[33].

Pyragas’s control method is perhaps the most universal at the moment, since
it does not require the knowledge of the evolution equations of the system un-
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der study, or of the phase space structure, or even the location of the unstable
periodic orbit. It has also the advantage of being noninvasive in the sense that
the control force vanishes as soon as the desired periodic regime is achieved. Fi-
nally, its experimental implementation is quite simple: one only needs to record
the signal s�t� of the system and to feedback the force F�t� as in Eq. (11.1).

The idea to apply the Pyragas method for the control of noise-induced motion
[34, 35] has arisen from the observation that such motion is in some respect
similar to deterministic chaos. Although no deterministic periodic orbits are in-
volved in the formation of noise-induced trajectories in the phase space, the
phase portrait itself may look like a smeared-out limit cycle. Moreover, the no-
tion of a “stochastic limit cycle” was proposed in [36]. A stochastic limit cycle
can be formally introduced if one considers an appropriate projection of the
phase portrait on some manifold (plane or surface), and calculates a two-dimen-
sional probability distribution density on this manifold. If this distribution has
a shape reminiscent of a crater, at least qualitatively, one can define a closed
curve through its edges (highest points), and call this a stochastic limit cycle.

One can also introduce an average period for such a limit cycle. Of course,
both the shape and the period of a stochastic limit cycle will be defined only in
a statistical, averaged, sense. In addition, the motion around the stochastic limit
cycle can be smeared out to a smaller or larger extent, and also the instanta-
neous periods of oscillations can deviate from the average period more or less.
This means that the noise-induced motion can have different degrees of regular-
ity.

Hence, noise-induced motion does possess a characteristic shape and time-
scale of its oscillations. The idea is to try to apply the Pyragas delayed feedback
in order to adjust the average period, the regularity, and perhaps the shape of
noise-induced oscillations, by analogy with the deterministically chaotic ones.

11.2
Noise-Induced Oscillations Below Andronov-Hopf Bifurcation and their Control

As an example, consider the van der Pol system which is a famous paradigm
for a nonlinear oscillator, under the influence of noise and delayed feedback

�x � y�

�y � ��	 x2�y	 �2
0x � K�y�t	 �� 	 y� � D��t�� �11�2�

Here, � is the bifurcation parameter: in the absence of noise (D � 0), if � is posi-
tive, the system demonstrates self-sustained limit-cycle oscillations, and if it is
negative, the attractor is a stable fixed point. At � � 0, a supercritical Andronov-
Hopf (AH) bifurcation occurs. �0 � 0 defines the frequency of self-sustained os-
cillations that occur just after the bifurcation, i.e., at 0 � �
 1. ��t� is Gaussian
white noise with zero mean and unity variance,
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���t�� � 0�

���t���t��� � ��t	 t��� �11�3�

D is the strength of noise, � is the delay, and K � 0 is the delayed feedback
strength. The term K�y�t	 �� 	 y�t�� represents the feedback force F�t� as in
Eq. (11.1), where the system observable is taken to be the variable y of
Eqs. (11.2).

If � satisfies 	2�0 � � � 0, without noise and feedback (D � 0, K � 0), the
system exhibits only damped oscillations that are illustrated by the phase por-
trait and realization in Fig. 11.1 (a) and (b). They effectively die out after some
sufficiently long time interval. However, inclusion of noise (D � 0) induces os-
cillations that are not damped. In Fig. 11.1 (c) and (d) the phase portrait and rea-
lization are shown for Eqs. (11.2) at small noise D � 0�003. For this and all
other illustrations we fix �0 � 1.
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Fig. 11.1 Phase portraits and realizations of oscillations in the
van der Pol system (11.2) at �0 � 1, � � 	0�01. (a) and (b)
No noise, no feedback; (c) and (d) noise-induced oscillations
at D � 0�003 without feedback; (e) and (f) noise-induced
oscillations at D � 0�003 with feedback K � 0�2 and
� � 6�28 � Te

0.



11.2.1
Weak Noise and Control: Correlation Function

Consider Eqs. (11.2) at small negative � (� � 0� ��� 
 1), i.e., just below the An-
dronov-Hopf bifurcation, and at small D 
 1. Since noise is weak, oscillations
occur mostly in the close vicinity of the origin and rarely leave it (see
Fig. 11.1 (c) and (d)). In this case, Eqs. (11.2) linearized around the fixed point
can serve as a good approximation

�x � y�

�y � �y	 �2
0x � K�y�t	 �� 	 y�t�� �D��t� � �11�4�

Equations (11.4) can be rewritten in the matrix form as

dx � �2Ax� 2Bx�t	 ���dt� 2DNdt� �11�5�

where

x � x

y

 �
� 2A � 0 1

	�2
0 �	 K

 �
� 2B � 0 0

0 K

 �
�

2D � 0 0

0 D

 �
� N � 0

�

 �
� �11�6�

It is easy to show that x� � � y� � � 0, where �� denotes averaging over the en-
semble of realizations of the random process.

Assume that at the time t0 the state vector was x�t0�, and we know the values
of x�t� in the interval t � t0 	 �� t0�. Then for t � t0, the solution of Eq. (11.5) is

x�t� � exp �t	 t0�2A� �
x�t0� �

3 t

t0

exp �t	 s�2A� � 2Bx�s	 �� � 2DN�s�
� �

ds� �11�7�

Multiply Eq. (11.7) by xT �t0� (superscript T means transpose), average over the
ensemble of realizations, and take into account that �2DNxT� � 20 (20 is the 2�2
matrix with all zero components), to obtain the correlation matrix 2R�t0� t�

2R�t0� t� � 	xx�t0� t� 	xy�t0� t�
	xy�t0� t� 	yy�t0� t�

 �
� �x�t0�x�t�� �x�t0�y�t��

�x�t0�y�t�� �y�t0�y�t��
 �

of the random process in Eqs. (11.4) [37]. Namely,

2R�t0� t� � exp �t	 t0�2A� �2R�t0� t0� �
3 t

t0

exp �t	 s�2A� �2B2R�t0� s	 ��ds� �11�8�

Assigning t0 � t	
 we can rewrite
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2R�t	
� t� � exp 
2A� �2R�t	
� t	
�

�
3 


0
exp �
	 s�2A� �2B2R�t	
� s� t	
	 ��ds�

If we consider a stationary process in Eqs. (11.4), its correlation matrix will not
depend on the time t, but only on the argument 
. Hence, we can choose any
convenient value of t which in our case would be t � 
. This gives us

2R�
� � exp 
2A� �2R�0� � 3 


0
exp �
	 s�2A� �2B2R�s	 ��ds�

By differentiating the above equation with respect to 
, we obtain the following
linear delay-differential equation for 2R:

d2R
d


� 2A2R� 2B2R�
	 ��� 2R�	
� � 2R�
�� �11�9�

where the expression on the right-hand side describes the fact that the correla-
tion and cross-correlation functions 	xx, 	xy, and 	yy of the stationary pro-
cesses x�t� and y�t� are even. A full analytical solution of this equation is avail-
able in [38, 39]. It can also be shown [37] that

2A2R�0� � 2R�0�2AT � 2R���2BT � 2B2RT��� � 2D2DT � 20� �11�10�

The characteristic equation of (11.9) is

�2 � 	�2
0 � ��	 K��� K�e	��� �11�11�

The eigenvalue � is generally a complex number � � p� iq, and separating
Eq. (11.11) into real and imaginary parts gives the following equations for p
and q:

p2 	 q2 � �2
0 	 p�� K�p	 pe	p� cos q�	 qe	p� sin q�� � 0� �11�12�

2pq	 q�� K�q� pe	p� sin q�	 qe	p� cos q�� � 0� �11�13�

11.2.2
Weak Noise and No Control: Correlation Time and Spectrum

For the uncontrolled case K � 0, Eqs. (11.12) and (11.13) have two roots
�1�2 � p0 ! iq0, where

p0 � �

2
� q0 �

����������������
�2

0 	
�2

4

�
� �0� �11�14�
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Now, let us assess quantitatively the effect of delayed feedback on the regularity
of noise-induced oscillations of the observed variable y�t�. Regularity can be
most universally characterized by the correlation function 	yy�
�: the faster it
decays, the more disordered the process is. However, in order to assess how
quickly the given function decays, it is convenient to introduce the correlation
time tcor, e.g., as [40, 42]

tcor � 1
	yy�0�

3 �

0
�	yy�
��d
� �11�15�

Smaller tcor means faster decay and a less regular process. The solution of
Eq. (11.9) for 	yy�
� at K � 0 is

	yy�
� � C exp�p0
� cos�q0
�� �11�16�

where C is a constant of integration. Using the definition (11.15) and the fact
that 	yy�0� � C, the correlation time is

tcor �
3 �

0
exp�p0
�

�� cos�q0
�
��d
 � �p0� exp

�p0��
q0

	 1

 �
� 2q0 exp

�p0��
2q0

exp
�p0��

q0
	 1

 �
p2

0 � q2
0

� � �

�11�17�

If �p0� 
 1, then exp
�p0��

q0
. 1� ��p0�

�0
, and the expression above is approximately

equal to

tcor .
�p0� ��p0�

q0
� 2q0 1� ��p0�

2q0

 �
��p0�

q0
p2

0 � q2
0

� � �
�p2

0

q0
� 2q0 � ��p0�

��p0�3
q0

� ��p0�q0

. 2
��p0� � �11�18�

The same approximate result can be obtained more easily [41] without evaluat-
ing the integral in Eq. (11.17). One can take into account that p0 � 0 and
�p0� 
 1, and note that the envelope C exp�p0
� of 	yy decreases slowly, as com-
pared to cos�q0
�, i.e., during one full period of cosine C exp�p0
� hardly
changes. Then the integral on the left-hand side of Eq. (11.17) can be approxi-
mated by the average of cosine over its period 2��q0, multiplied by the integral
of the exponential term, i.e.,

tcor � q0

2�

3 2��q0

0

�� cos�q0
�
��d
3 �

0
exp�p0
�d
 � 2

��p0� � �11�19�

However, one should remember that if �p0� 
 1 does not hold, this approxima-
tion becomes inaccurate, and one should use the full expression in Eq. (11.17).
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Now, let us consider the characteristic quantity that is associated with the
timescales of the random process, namely, the Fourier power spectral density,
which in the following will be referred to as spectrum for brevity. The spectrum
of random oscillations is introduced via the Wiener-Khintchine theorem as the
Fourier transform of the correlation function. The spectrum arising from 	yy

defined by Eq. (11.16) is

Syy � �2

��2 	 q2
0�2 � �2p2

0

�

which is a Lorentzian with the central frequency q0 � �0 (see Eq. (11.14)) and

the width �p0� � ���2 .

11.2.3
Weak Noise and Control: Correlation Time

At K �� 0, Eqs. (11.12) and (11.13) have an infinite number of characteristic
roots �j � pj ! iqj, j � 1� 2� � � � �. Hence, the solution of Eq. (11.9) is

	yy�
� �
��
j�1

Cje
pj
 cos qj
� �11�20�

Here, the constants Cj should be defined using the prescribed initial conditions
which we do not discuss here (for more details see [37–39]).

The numerical solutions for pj and eigenperiods Te
j � 2��qj are shown in

Fig. 11.2 (a) and (b) for �0 � 1, � � 	0�01 and K � 0�2 depending on �. One can
see that as � grows, all pj tend to approach the �-axis from below. Branches with
different pj are oscillating and crossing each other, but at any � there exists a
largest pj � pmax, which is always negative. The period of the highest spectral
peak (grey circles in Fig. 11.2 (b)) always coincides with the eigenperiod Te

j of
the least stable eigenmode, i.e., the one with the largest real part pj. Hence,
whenever two branches of pj cross over with increasing �, the dominant eigen-
period jumps to the next branch. This provides an explanation of the strongly
nonmonotonic, discontinuous evolution of the dominant spectral peak of the
noise-induced motion under delayed feedback.

We note here that the same characteristic equation (11.11), and as a conse-
quence Eqs. (11.12) and (11.13), arise if one analyzes the stability of the fixed
point of Eqs. (11.2) without the account of stochastic input (D � 0). It is easy to
show that the delayed feedback in the form used does not change the number
or the position of the fixed points existing in the uncontrolled system. Hence,
the fixed point of the van der Pol equation remains the only fixed point when
the feedback is applied. The analysis of its stability will lead us to Eq. (11.11).

A natural question to ask here would be whether the feedback is capable of
inducing any bifurcation of the fixed point in the system that could change its
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stability properties and give rise to a different stable solution. For example, can
the feedback induce an Andronov-Hopf bifurcation and result in the appearance
of a stable periodic solution, which would turn the oscillations in Eqs. (11.2)
from noise-induced to noise-influenced ones? A bifurcation would occur if at least
one pj crosses zero. Figure 11.2 (a) shows the typical behavior of pj which does
not suggest such a possibility. But this should be checked rigorously.

The condition for bifurcation is p � 0. We substitute this into Eq. (11.13) and
find

K 	 �

K
� cos q�� �11�21�

Since � � 0, and we consider K � 0, this condition is never fulfilled, and we can
conclude that the delayed feedback used does not lead to bifurcation.

From Eq. (11.21) it follows that if p is close to 0, and ��� 
 K , then cos q� . 1,
i.e.,

q � 2�n
�

�11�22�

and the respective eigenperiod Te is
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Fig. 11.2 Eigenvalues and correlation time of
the van der Pol system at �0 � 1, � � 	0�01,
D � 0�003 and K � 0�2, as functions of �.
(a) Dots: real parts pj of the eigenvalues �j

found from Eqs. (11.12) to (11.13). Grey cir-
cles: pmax. (b) Dots: eigenperiods Te

j � 2��qj,
where qj are the imaginary parts of the
eigenvalues from Eqs. (11.12) to (11.13). Grey
circles: periods Ts

j of the highest spectral

peaks obtained by numerical simulation.
Crosses: periods Ts

j of other spectral peaks.
Te

0 � 2��q0 � 2���0 is the eigenperiod with-
out feedback K � 0. (c) Correlation time es-
timated numerically (solid line), analytically
using Eq. (11.26) (dashed line), and the
maxima tmax

cor�n estimated with Eq. (11.28) (cir-
cles). (d) Variance of control force
Eq. (11.29) versus �.



Te � 2�
�q� �

�

n
� �11�23�

Thus, for the values of � at which pmax is close to 0, the eigenperiods Te depend
linearly upon � [34].

Finally, let us investigate at which values of � the largest pj � pmax approaches
zero most closely. Substitute Eq. (11.22) into Eq. (11.12) to find

� � 2�n
�0

� nTe
0� �11�24�

Hence, the largest pj is closest to zero at the values of delay � that are multiples
of the eigenperiods Te

0 of the uncontrolled system. In Fig. 11.2 (b) black dots
show the eigenperiods Te

j versus � obtained by numerically solving Eqs. (11.12)
and (11.13). Indeed, in agreement with Eq. (11.23), around � � nTe

0, the Te
j

whose corresponding real part pj is the largest, behaves almost piecewise linear-
ly.

The numerically simulated phase trajectory and realization of Eq. (11.2) with
control applied at K � 0�2 and � � Te

0 are shown in Fig. 11.1 (e) and (f). One
can see that at least during the given observation time the oscillations look
more regular.

Equation (11.18) establishes that the correlation time tcor in the absence of
control is approximately inversely proportional to the value of the real part p of
the eigenvalue � of characteristic equations (11.12) and (11.13) at K � 0, if the
absolute value of p is sufficiently small. The closer p is to zero, the larger the
correlation time, and the more regular the system behavior is.

Looking at Fig. 11.2 (a), we observe that in the presence of control, when the
largest pj � pmax approaches zero, it is quite well separated from all other pj.
Hence, we can speak of the dominating eigenmode, and the correlation func-
tion in Eq. (11.20) can be approximated by

	yy�
� � 2
y���K�epmax
 cos qmax
� � � �11�25�

where 2
y���K� � 	yy�0� is the variance of y that depends on the parameters of

the feedback. By analogy with Eq. (11.18), we infer that the correlation time tcor

with control should be inversely proportional to the value of pmax corresponding
to this dominant eigenmode, i.e.,

tcor � 2
�pmax � �11�26�

and it achieves its maxima as pmax becomes closest to zero, i.e., at � � nTe
0. In

Fig. 11.2 (c) the estimate of tcor according to Eq. (11.26) is shown by the dashed
line, while pmax was taken from Fig. 11.2 (a). The “true” tcor estimated from the
numerical simulation of the realizations of Eqs. (11.2) is given in Fig. 11.2 (c) by
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the solid line. One can see that the two curves agree quite well for small �, but
they start to diverge at � larger than roughly three Te

0. The approximate and the
exact value of tcor differ if the largest pj is not well separated from the other pj’s.

Let us now determine tcor at the optimum values � � nTe
0. In the following

we will omit the superscript max for brevity. Note that at �p� 
 1, we can ap-
proximately use the Taylor expansion exp�	p�� . 1	 p�. Substituting this into
Eq. (11.13) we obtain

2p	 �� K 	 K � Kp� � 0�

or

p � �

2� K�
� �11�27�

Then the maxima tmax
cor�n, n � 0� 1� 2� � � �, of the correlation time tcor with the de-

layed feedback control, taking account of Eq. (11.24), are given by [41, 43]

tmax
cor�n �

2
��p� �

4
���� 1� K�

2

 �����
��nTe

0

� 4
���� 1� �Kn

�0

 �
� �11�28�

In Fig. 11.2 (c) the tmax
cor�n are shown by circles. In agreement with Eq. (11.28), the

maxima of the numerical tcor indeed lie approximately on the straight line, at
least for smaller �.

A quantity immediately relevant when one considers control, is the force re-
quired to produce the observed change. Consider the normalized control force
�F, which is the control force F divided by the feedback strength K , namely

�F�t� � y�t	 �� 	 y�t�� �11�29�

Since �y� � 0, the time average of �F is zero. Hence, the convenient quantity that
would characterize the applied effort is the variance ��F2�, which can be ex-
pressed as [41]

��F2� � 2 �y2� 	 �y�t�y�t	 ���� � � 22
y���K� 	 2	yy��� �11�30�

� 22
y���K� 1	 epj� cos qj�

� �
where the approximation (11.25) for the correlation function 	yy��� is used.
Note that 2

y is the variance, or total power, of the process, that can be calcu-
lated, e.g., through the power spectral densities (spectrum) as

2
y �
3 �

	�
S���d�

For the estimates of spectrum see Section 11.2.4–11.2.6.
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In Fig. 11.2 (d) the numerical estimate of ��F2� is given as a function of � for
K � 0�2. It is interesting that the minima of ��F2� correspond to the maxima of
tcor. That means that less force is required to control more regular behavior.
However, as we expected, in contrast to the deterministic case, this force never
vanishes.

11.2.4
Weak Noise and Control: Spectrum

In order to characterize the timescales of noise-induced oscillations, it is conve-
nient to consider the spectrum of the process, which in principle can be ob-
tained as a Fourier transform (FT) of the correlation function 	yy given by
Eq. (11.20). Since the FT is a linear operation, the full spectrum will be the sum
of FTs of all components of 	yy, i.e., the superposition of Lorentzians with dif-
ferent widths pj and different central frequencies qj (e.g., [39]) 1). We can test
this inference by comparing the spectral peak periods Ts

j obtained by numerical
simulation and the eigenperiods Te

j � 2��qj obtained by solving numerically
Eqs. (11.12) and (11.13). The respective graphs are given in Fig. 11.2 (b): eigen-
periods Te

j are shown by dots, while circles and crosses show the periods of the
spectral peaks Ts

j , and they coincide remarkably. Also, the highest spectral peak
has the period (circles) that coincides with the eigenperiod of the least stable ei-
genmode and changes almost piecewise linearly with �.

However, in [41] a more direct method to obtain the spectrum of the process
described by Eq. (11.4) is used. The linearized van der Pol equations (11.4) can
be written as a single stochastic delay differential equation (SDDE) of the sec-
ond order:

�x 	 � �x � �2
0x 	 K� �x�t	 �� 	 �x�t�� � D��t�� �11�31�

Consider the Fourier transform of Eq. (11.31) which can be expressed as

	x��� � D	����
�2

0 	 �2 � i��� i�K�ei�� 	 1� � �11�32�

where 	x��� and 	���� denote the Fourier transforms of x�t� and ��t�, respec-
tively. Since y�t� � �x�t�, the FTs of x and y are related as

	y��� � 	i�	x���� �11�33�

By applying the Wiener-Khintchine theorem [40], we can derive the spectra of
the processes ��t� and y�t�. We use Eq. (11.3) for � [42]

�	����	������� � ���	 �����2��� �11�34�
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1) In order to obtain the spectrum this way, one
has to find the coefficients Cj: this can be

done, but will involve some further calculations
using the approach of e.g. [38, 39].



We can also obtain the power spectral density S��� of y via

�	y���	y������ � ���	 ���S���� �11�35�

It yields

S��� � D2

2�
�2

��2 	 �2
0 � �K sin �����2 � �2��	 K�1	 cos �����2 � �11�36�

In Fig. 11.3 a series of power spectral densities at small D � 0�003 is shown for
K � 0�2 and three different values of �: (b) � � 0 (no control), (c) � � 3�4 (mini-
mal regularity), and (d) � � 37�7 (maximal regularity) (see Fig. 11.2 (c) for refer-
ence). Shaded grey areas depict numerically obtained spectra, and black lines
show the analytical approximation (11.36). One can see that the analytical spec-
tra match the numerical ones with quite good accuracy.

11.2.5
Any Noise and No Control: Correlation Time

In the previous section we used a linear approximation (11.4) of Eqs. (11.2),
which was valid under the assumption that the noise intensity D is small. How-
ever, as the noise in the system grows, the effect of the nonlinearity becomes
more and more pronounced, and the simple linearization, Eq. (11.4), is no long-
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Fig. 11.3 Spectra of oscillations in the van
der Pol system (11.2) at �0 � 1, � � 	0�01,
D � 0�003, K � 0�2, and different values of
�. (a) Density plot of the analytical spectrum
from Eq. (11.36) in the (�� T) plane with
T � 2���, where � is the spectral frequency.
The spectral power is indicated by grey-

shading: bright shading corresponds to large
power. (b)–(d) Spectra from numerical simu-
lation (black line) and from Eq. (11.36)
(shaded). (b) � � 0 (no control), (c) � � 3�4
(minimal regularity), (d) � � 37�7 (maximal
regularity).



er valid. To take into account the strength of noise, one can use the mean field
approximation [43] which extends standard mean field approaches [44] by a self-
consistency condition. Consider the coefficient ��	 x2�t�� in the second equa-
tion (11.2). This coefficient obviously depends on the current value of x at each
time t. However, it might be reasonable to consider its value on average,
namely

�	 x2�t�� � � �	 �x2�� � � �	 Rxx�0� � ��� �11�37�

For a stationary process in Eqs. (11.2), �x� � 0, so Rxx�0� is in fact the variance
which also does not depend on time. Hence, �� is a constant, and Eq. (11.37)
simply leads to an effective rescaling of the bifurcation parameter of Eq. (11.4).
For the uncontrolled case K � 0, we have a 2D Ornstein-Uhlenbeck process x�t�

dx � 	Axdt� 	DNdt� 	A � 0 1
	�2

0 ��

 �
� 2D � 0 0

0 D

 �
� N � 0

�

 �
� �11�38�

with the effective parameter �� (cf. with Eqs. (11.5) and (11.6)). For �� � 0, the
variance matrix 	R�0� obeys the following equation [40]:

	A	R�0� � 	R�0�	AT � 	D	DT � 	0 �11�39�
or

0 1

	�2
0 ��

 �
Rxx�0� Rxy�0�
Rxy�0� Ryy�0�

 �
�

Rxx�0� Rxy�0�
Rxy�0� Ryy�0�

 �
0 	�2

0

1 ��

 �
� 0 0

0 D

 �
0 0

0 D

 �
� �11�40�

This matrix equation can be rewritten as a set of linear algebraic equations

2Rxy�0� � 0�

Ryy�0� 	 �2
0Rxx�0� � ��Rxy�0� � 0�

	�2
0Rxx�0� � ��Rxy�0� � Ryy�0� � 0�

	�2
0Rxy�0� � ��Ryy�0� 	 �2

0Rxy�0� � ��Ryy�0� � 	D2�

whose solution is

Ryy�0� � 	D2

2��
Rxy�0� � 0

Rxx�0� � D2

	2���2
0
�
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The last expression can be substituted into Eq. (11.37) to obtain

�� � �� D2

2���2
0
� �11�41�

2��2�2
0 	 2����2

0 	D2 � 0�

�� � �

2
!

�����������������������
�

2

� �2
� D2

2�2
0

5
�

The root with a “minus” sign has no physical meaning, since it gives a zero val-
ue for �� in the limit D � 0. The final expression is

�� � �

2
�

�����������������������
�

2

� �2
� D2

2�2
0

5
� �11�42�

This approach, that was used in [43] for determining ��, is self-consistent, since
the mean-field approximation x2� � of the nonlinearity is calculated self-consis-
tently as the variance of the resulting effective Ornstein-Uhlenbeck process. It
shows that the effect of noise in the nonlinear system is to shift the effective bi-
furcation parameter further away from the Hopf bifurcation. Now we are able
to find an analytical expression for the correlation time tcor, which extends the
result of Eq. (11.19) beyond the limit of weak noise and gives the explicit depen-
dence of tcor upon the noise intensity D:

tcor � 2
��p0� �

4
����� � �11�43�

It is in excellent agreement with numerical simulations of the nonlinear van
der Pol system over a large range of noise intensities [43].

11.2.6
Any Noise and Control: Correlation Time and Spectrum

The use of the mean field approximation (11.37) for the uncontrolled case has
resulted in a renormalized bifurcation parameter due to noise, i.e., substitution
of � by ��, Eq. (11.42). In analogy with Section 11.2.3, one can extend the use of
this approximation to the controlled case. Namely, the estimates (11.26) and
(11.28) for the correlation time can be turned into

tcor � 2
��pmax� �11�44�

tcor�n
max . 4

����� 1� �Kn
�0

 �
� �11�45�
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The values of tcor obtained by numerical simulation for moderate noise intensity
D � 0�1 is shown in Fig. 11.4 (b) as a function of �. One can see that the values
of tcor at the maxima are considerably smaller that those for small noise in
Fig. 11.2 (c), as expected. The approximation of tcor by Eq. (11.44) is shown by
the dashed line, and of tmax

cor�n by Eq. (11.45) by grey circles.
It is interesting to check how the regularity of noise-induced oscillations de-

pends upon the noise intensity D, and also how good the analytical mean field
approximations Eqs. (11.44), (11.45) and Eq. (11.42) are. Figure 11.5 depicts the
correlation time at K � 0�2 as a function of noise intensity D at three different
values of �: 0 (no control), 3�4 (the first minimum of tcor) and 6�28 (the first
maximum of tcor). Maxima and minima are taken from Figs. 11.2 (c) and
11.4 (b), and they approximately coincide for different D. Circles show the
results of numerical simulation, shaded grey are approximations using
Eq. (11.44), and the black solid line shows the estimate using Eq. (11.45) which
is available only for optimal � � 2�n��0 and hence cannot be used for � � 3�4.
Black lines and circles are in an impressive agreement, which matches the re-
sults of [43]. Approximation (11.44) matches the numerics slightly better than
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Fig. 11.4 Characteristics of the random pro-
cess in the van der Pol system with control
equation (11.2) for moderate noise as a
function of �. �0 � 1, � � 	0�01, D � 0�1,
and K � 0�2. (a) The largest real part of the
eigenvalue pmax obtained by solving numeri-

cally Eqs. (11.12)–(11.13); dashed line: with
�, black line: mean field approximation ��

Eq. (11.42). (b) Correlation time tcor: numeri-
cal estimate (solid line), mean field approxi-
mation using Eq. (11.44) (dashed line) and
using Eq. (11.45) for maxima (grey circles).

Fig. 11.5 Correlation time of the van der Pol
system (11.2) oscillations as a function of
noise intensity D at �0 � 1, � � 	0�01,
K � 0�2 and different values of �. Circles
show the estimates from numerical
simulation, shaded grey shows the mean
field approximation using Eq. (11.44), and

the solid black line using Eq. (11.45). The
values of � indicated in the figures corre-
spond to: no control (� � 0), control with
the minimal regularity (� � 3�4), and control
with the first maximum of regularity
(� � 6�28).



Eq. (11.45) for the optimal �, but from the figures the difference is hardly visi-
ble. For the nonoptimal � � 3�4, Eq. (11.44) becomes inaccurate, as expected.

The spectrum can also be estimated analytically in the framework of the self-
consistent mean field approximation by replacing � with �� in Eqs. (11.31) and
(11.36):

S��� � D2

2�
�2

��2 	 �2
0 � �K sin �����2 � �2���	 K�1	 cos �����2 � �11�46�

The spectra for moderate noise intensity D � 0�1 are shown in Fig. 11.6: numer-
ical (shaded grey), analytic using Eq. (11.46) (black lines), and for comparison
analytic estimates for small noise (shaded black). The same values of � are used
as in Fig. 11.3. One can compare the deviations of the two different analytical
estimates from the numerical data and make sure that the rescaled bifurcation
parameter �� indeed provides more accurate estimates for larger noise.

11.2.7
So, What Can We Control?

The above sections have described the effects of the delayed feedback added to
the van der Pol equation below the Andronov-Hopf bifurcation with noise. One
might ask “What is the relevance of these results to control?” Remember that
we were aiming at adjusting the properties of noise-induced oscillations by sui-
tably choosing the parameters of the control scheme. Let us summarize our ob-
servations.

Note that the introduction of the feedback is strongly influencing the appear-
ance of the spectra (Figs. 11.3 and 11.6). First, in addition to the main spectral
peak that exists without the feedback, new peaks appear. Second, the central fre-
quencies, heights, and widths of these peaks move with �. For a better illustra-
tion of spectral properties, it is convenient to extract all spectral peaks and to in-
troduce their periods Ts

j � 2���j� j � 1� 2� � � �, where �j are the central peak fre-
quencies.
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Fig. 11.6 Spectra of oscillations in the van
der Pol system (11.2) at �0 � 1, � � 	0�01,
D � 0�1, K � 0�2, and different values of �:
Syy obtained by numerical simulation
(shaded grey), estimated analytically with
mean field approximation (11.46) (black

line), and estimated analytically without
mean field approximation (11.36) (shaded
black). (b) � � 0 (no control), (c) � � 3�4
(minimal regularity), (d) � � 37�7 (maximal
regularity).



In Fig. 11.2 (b), the basic period Ts
bas

2) is shown by light-grey circles, while
other Ts

j are denoted by crosses, all depending on �. If the spectrum normalized
by the total power of oscillations can be interpreted as the distribution of power
over frequencies, then the basic period can be understood as the most probable
period of oscillations. Notably, each peak period Ts

j coincides to a good accuracy
with the respective eigenperiod Te

j , and Ts
bas coincides with Te

j for which �pj� is
the smallest (not obvious from the figure, but verified). This can be interpreted
as follows: noise excites various eigenmodes in the system; the less stable the
mode is (the smaller its �pj�), the higher the respective spectral peak.

We observe that the evolution of Ts
bas depends in an almost piecewise linear

way upon �. This means that the most probable period of oscillations can be ad-
justed by the feedback in a desirable way, which effects the control of time-
scales. Also, the heights and the widths of spectral peaks vary with �. The shape
of the peaks defines the shape of the autocorrelation function, and consequently
the correlation time. This means that by changing � one is able to control the
regularity of noise-induced oscillations.

11.3
Noise-Induced Oscillations in an Excitable System and their Control

Consider a very different kind of noise-induced motion: oscillations in excitable
systems [45]. An excitable system remains in the rest state if it is not perturbed
externally. It responds to an external perturbation in a selective way: if the per-
turbation is below a certain threshold, the system returns to its rest state, and if
it exceeds this threshold, the system performs an excursion in the phase space
[16, 17]. Excitability is an inherent property of certain neurons [46], as well as
some chemical reactions [47] and semiconductor nanostructures [48].

A paradigmatic example of an excitable system is a simplified FitzHugh-
Nagumo system

�
dx
dt
� x 	 x3

3
	 y� �11�47�

dy
dt
� x � a� K�y�t	 �� 	 y� � D��t��

We choose the parameters � � 0�01 and a � 1�1 such that in the absence of
feedback the only attractor of the system is a stable node. Here, as in Eq. (11.2),
� is a time delay, K � 0 is the feedback strength, and D is the intensity of Gaus-
sian white noise � with zero mean.
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2) By basic period we mean the inverse of the
frequency of the highest peak in the Fourier
power spectrum of oscillations. By mean peri-
od we mean the average time of phase trajec-

tory return to some secant surface. These two
periods coincide only in purely periodic oscilla-
tions.



First, we illustrate the behavior of system (11.47) by phase portraits and reali-
zations (see Fig. 11.7). It is convenient to characterize the motion of an excitable
system in the phase plane with the help of nullclines, which are the lines de-
fined by �x � 0 and �y � 0: they separate different directions of motion in the
phase space and intersect at the fixed point.

In Fig. 11.7 (a), (c), and (e) the nullclines are shown by grey dashed lines, and
the directions of the phase flow are very roughly indicated by the arrows. Be-
cause � is chosen to be small, the motion between the fixed point and the
right-hand branch of the cubic parabola, and between the right-hand maximum
of the parabola and left-hand branch, occurs almost instantly, and the respective
parts of trajectories are almost parallel to the x-axis.

Figure 11.7 (a) and (b) illustrates the behavior of the system without random
fluctuations (D � 0). If the initial conditions are set above the grey shaded area,
the system follows the phase flow and comes back to the fixed point (thick
lines). If the initial conditions are set inside the grey shaded area, the phase
point being carried by the phase flow, performs a large excursion in the phase
plane and only after that settles down at the fixed point (thin line).
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Fig. 11.7 Phase portraits and realizations of
the FitzHugh-Nagumo system (11.47) at
� � 0�01, a � 1�1. (a) and (b) No noise, no
feedback; (c) and (d) noise-induced oscilla-
tions at D � 0�09 without feedback; (e) and
(f) noise-induced oscillations at D � 0�09
with feedback K � 0�2 and � � 5 (maximal

regularity, see Fig. 11.9 (b)). In (a) dashed
lines show the nullclines, and arrows show
schematically the directions of the phase
flow, and the shaded area outlines the set of
initial conditions from which the system
would perform a big excursion.



Figure 11.7 (c) and (d) illustrates Eq. (11.47) with noise D � 0�09 but without
control K � 0. If the current value of D��t� is small, the system stays in the
vicinity of the fixed point, but if the fluctuation is such that the phase point is
thrown into the shaded area, the system performs the large excursion in the
phase plane before returning to the fixed point. The instantaneous period of os-
cillations contains two components: time of escape from the vicinity of the fixed
point (activation time) and time of travel along the branches of the parabola
(excursion time) [49]. Figure 11.7 (e) and (f) illustrates Eq. (11.47) with noise
D � 0�09 and with control K � 0�2 and � � 5.

The stability of the fixed point can be checked analytically using the standard
approach. It has been shown that delayed feedback does not induce Andronov-
Hopf bifurcations in Eqs. (11.47). The global character of oscillations renders
the local approach used for the van der Pol system in Section 11.2 inappropri-
ate. Therefore, in this section we present only the results of numerical simula-
tion. As an observable of random processes in the FitzHugh-Nagumo system
we choose the variable y.

11.3.1
Coherence Resonance in the FitzHugh-Nagumo System

The FitzHugh-Nagumo system (11.47) is a well-known example of a system
demonstrating coherence resonance (CR). The correlation time estimated from
numerical realizations of Eq. (11.47) is shown in Fig. 11.8 (a) by grey circles as a
function of noise intensity D. One can see that at small D, tcor is small, which
means small regularity of oscillations. As D increases from zero, the oscillations
remarkably become more ordered which is manifested in the growth of their
correlation time. tcor achieves a maximum at D � 0�09, and then starts to decay.
Note that noise-induced oscillations in the van der Pol system do not have this
property (see Fig. 11.5): with increasing noise their correlation time decreases
monotonically.
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Fig. 11.8 (a) Correlation time and (b) basic periods of
oscillation versus D of the realizations of the FitzHugh-
Nagumo system (11.47) at a � 1�1, � � 0�01, with K � 0
(grey circles), with K � 0�2 at � � 4�12 (black diamonds), and
� � 2�9 (white diamonds), obtained by numerical simulation.



Here, it is interesting to reveal how the timescales of noise-induced oscilla-
tions depend on D. We calculate the spectrum of oscillations for each value of
D, extract the highest spectral peak and estimate its period Ts

bas. In Fig. 11.8 (b)
grey circles show the basic period Ts

bas of noise-induced oscillations versus noise
intensity D without feedback. One can see that this period changes with noise
quite substantially. Hence, the system is not robust with regard to noise, which
might be viewed as a disadvantage in certain situations.

11.3.2
Correlation Time and Spectrum when Feedback is Applied

By analogy with our studies of the van der Pol system, we will be interested in
the regularity and the timescales of oscillations depending on the parameters of
the delayed feedback, when the control with the above parameters is applied.

Let us choose a noise intensity at which the system demonstrates most regular
oscillations without feedback, D � 0�09. The correlation time of noise-induced
oscillations for fixed K � 0�2 is shown in Fig. 11.9 (b) in dependence on �. As
with the van der Pol system (Fig. 11.2 (c)), it oscillates with �, and on average
grows. However, the maxima of regularity are observed not almost exactly at the
multiples of the basic period without control Ts

bas � 4�12 as in the van der Pol
system, but first at some value close to � � 5, and then at some values that can
be regarded as its multiples only very roughly.

At the same time, the timescales change with � as well: in Fig. 11.9 (a) the
spectral periods Ts

i are shown as black dots, while the basic period Ts
bas is de-

noted by grey circles. Again, like in the van der Pol system, the periods behave
almost piecewise linearly. The maximal regularity is observed when Ts

bas be-
comes close to its value 4�12 without the feedback, which happens at � � 5.

The spectra of noise-induced oscillations for fixed K � 0�2 and different � are
shown in Fig. 11.10. In (a) the general view of the spectrum in dependence on
� is shown by grey shading, where brighter regions correspond to larger power.
One observes the same qualitative appearance of this plot as with the van der
Pol system: the spectrum changes with � quite substantially: the number of
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Fig. 11.9 (a) Spectral peak periods Ts
i and (b) correlation time

versus � from the realizations of the FitzHugh-Nagumo sys-
tem (11.47) at a � 1�1, � � 0�01, D � 0�09, and K � 0�2, ob-
tained by numerical simulation.



peaks changes, the peaks move, and their heights and widths vary. In
Fig. 11.10 (b)–(d) several cross sections of this picture are shown with � set equal
to: (b) 0 (no control), (c) 2�9 (most irregular oscillations), (d) 5 (the first maxi-
mum of tcor).

Finally, let us consider whether the feedback can make the system more ro-
bust with respect to changes in the noise intensity. We fix K � 0�2 and fix � at
two values: � � 2�9 with minimal regularity, and � � 4�12 at which regularity is
larger than without feedback. The basic peak periods Ts

bas are shown in
Fig. 11.8 (b) as white and black diamonds, respectively. In both cases, the de-
layed feedback reduces the range of variation of Ts

bas under a change in noise
intensity. At the same time, the correlation time (Fig. 11.8 (a)) behaves in quali-
tatively the same way as without feedback, namely, it becomes maximal at
approximately the same noise intensity. However, the quantitative value of tcor is
substantially lower at � � 2�9, and substantially higher at � � 4�12 for the whole
range of D.

11.3.3
Control of Synchronization in Coupled FitzHugh-Nagumo Systems

The effect of time delayed feedback control upon noise-induced oscillations in
two linearly coupled FitzHugh-Nagumo systems as a simple model of two inter-
acting neurons has also been investigated [50]. Application of delayed feedback
to only one of two subsystems can be shown to be able to change coherence
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Fig. 11.10 Spectra of oscillations in the Fitz-
Hugh-Nagumo systems (11.47) at a � 1�1,
� � 0�01, D � 0�09, K � 0�2, at different
values of �, obtained from numerical

simulations. (a) Density plot of the spec-
trum. (b) � � 0 (no control), (c) � � 2�9
(minimal regularity), (d) � � 5 (maximal
regularity) (cf. Fig. 11.9 (b))



and timescales of noise-induced oscillations either in the given subsystem, or
globally. It is also able to induce or to suppress stochastic synchronization un-
der certain conditions. The coupled system without control displays a 1 :1 syn-
chronization tongue in the �D1�C� parameter plane, given by the noise strength
D1 in the first subsystem and the coupling strength C. Frequency and phase
synchronization occurs in the same area of the parameter plane. If the first of
the two interacting subsystems is subjected to local delayed feedback, it is possi-
ble to manipulate the global dynamics of the system of interacting oscillators.

The delayed feedback can be applied to the system in different states of syn-
chrony, e.g., moderately synchronized, weakly synchronized, and strongly syn-
chronized. In all three cases, 1 :1 synchronization can be either improved or
weakened, depending upon the choice of � and K. Like the correlation times,
the synchronization index is modulated nonmonotonically as a function of the
delay time �, indicating that there is resonance-like behavior for certain values
of �. Perfect synchronization can only be achieved if the uncontrolled state is al-
ready sufficiently synchronized. The mechanism behind the action of the de-
layed feedback can be understood on the basis of the discussion in the previous
subsection. The feedback applied to a single excitable system is able to change
the timescales and coherence of noise-induced oscillations. When the system
subjected to the feedback is coupled to another system, the shift of the time-
scale of the former will lead to a proportional shift of the timescale of the latter.
The exact magnitude of the shift in the second subsystem will depend on the
closeness of the two subsystems to the state of synchronization. Only if the two
subsystems are sufficiently 1 :1 synchronized from the beginning, the shift in
the second system can be expected to match the shift in the first system.

An important observation is that the delay-induced increase of coherence of
the global dynamics is most frequently accompanied by the growth of the de-
gree of synchronization. However, a large synchronization index does not always
mean high coherence: delayed feedback can induce, or make stronger, the syn-
chronization between the two subsystems, but the state of each subsystem, and
their global dynamics, can become more disordered at the same time. The con-
verse is also true.

It is remarkable that delayed feedback control can influence global character-
istics of the two coupled systems although the control is only applied locally to
a subsystem. It is thus possible to enhance or destroy the regularity of oscilla-
tions and the stochastic synchronization of the two systems by choosing appro-
priate control parameters, in particular a suitable delay time.

11.3.4
What can We Control in an Excitable System?

We have revealed that in analogy with a system below an Andronov-Hopf bifur-
cation, as considered in the previous section, the properties of oscillations in an
excitable system can be changed by means of delayed feedback control. One can
change the most probable periods and the regularity of oscillations. In addition,
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delayed feedback makes the system more robust with regard to the strength of
noise and stabilizes both the basic period and the regularity of its oscillations.

Recently, an experimental work [51] has confirmed that the delayed feedback can
enhance the regularity of the noise-induced motion in an excitable system repre-
sented by an electrochemical cell, for the appropriate values of time delay �.

11.4
Delayed Feedback Control of Noise-Induced Pulses in a Model
of an Excitable Medium

In Section 11.3 we have considered the noise-induced oscillations in a single
excitable system. However, the excitability can be the property of the spatially
extended medium, in which each point can be perceived as an excitable unit,
and all points are coupled to their neighbours. In excitable media, noise can in-
duce waves and lead to the formation of quite coherent spatiotemporal patterns
[52, 53], to maintain the existing patterns [47], and even to support wave propa-
gation [54]. This phenomenon has been attracting increasing attention, also for
its potential importance for, and applicability in, neuroscience [55, 56] and cardi-
ac dynamics [45, 57].

In this section the effect of the delayed feedback on the noise-induced spatio-
temporal patterns in an excitable medium is assessed. As a model a famous
paradigm for an excitable medium was chosen: the Oregonator equations that
describe the Belousov-Zhabotinsky (BZ) chemical reaction. This reaction can be
relatively easily implemented in an experiment, so a realistic situation was sim-
ulated that reproduced the conditions of a real experiment.

11.4.1
Model Description

The photosensitive version of the BZ reaction has become a prototype system
for experimental studies of noise-induced phenomena in spatially extended
excitable media [53, 54, 58]. It can be described by the modified Oregonator
equations having the following form [59]:

�tu � 1
�
�u	 u2 	 w�u	 q�� �Du�

2
xu�

�tv � u	 v �

�tw � 1
��
�fv� �	 w�u� q�� � Dw�

2
xw� �11�48�

Here, the variables u, v, w are concentrations of bromous acid, the oxidized
form of the catalyst, and bromide, respectively. Du and Dv are the constants of
spatial diffusion for the variables u and v. In what follows the following parame-
ters will be fixed as in [60]: q � 0�002, f � 1�4, 1�� � 11�7, 1��� � 1059, and
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Du � 1, Dw � 1�12. Note that Eqs. (11.48) is a one-dimensional approximation
of a medium that is effectively two-dimensional (if the thickness can be ne-
glected). The length of the medium is set L � 19�2, and periodic boundary con-
ditions are used.

The intensity of light applied to the medium is linked to the parameter � in
Eqs. (11.48), which is the principal control parameter for this study. If there
were no spatial diffusion (Du � Dw � 0), the dynamics of the system (kinetics)
would have been qualitatively similar to the one in a single FitzHugh-Nagumo
system (11.47). For � � 4�24� 10	3 the system is excitable, and the kinetics has
a single stable steady state. If � is less than 4�24� 10	3, the kinetics demon-
strates self-sustained oscillations.

Noise has to be introduced in the model, and the most natural and simple
way to do this from the viewpoint of an experiment would be to make � vary
randomly in time around some mean value �0

��x� t� � �0�1� ��x� t��� �11�49�

�0 was fixed at 0�005 for which the system is excitable. In a real experiment
with a photosensitive BZ medium, the applied fluctuations of light are essen-
tially the same within a certain small portion of the medium. Also, the light
fluctuations are never infinitely fast, i.e., never delta correlated. To simulate this,
the spatial domain was divided into N cells of equal size � � L�N. To each cell
number i� i � 1� 2� ����N� correlated noise 	�i�t� with zero mean is applied ac-
cording to

d
dt
��x� t��x��i	1���i�� �

d
dt
	�i�t� �

1
�ou
�		�i � �i�t��� �11�50�

where �i�t� is Gaussian white noise. The correlation function of 	�i�t� is

�	�i�t�	�j�s�� � �ij
2 exp�	�t	 s���ou�� �11�51�

Here �ij denotes the Kronecker delta (0 if i �� j and 1 if i � j), �ou is the correla-
tion time of the Ornstein-Uhlenbeck (OU) process described by Eq. (11.50) and
2 � ��2� is its intensity which is chosen same for all cells. The parameters of
noise were fixed at the values that provided a maximally coherent spatiotempor-
al dynamics:  � 0�5, �ou � 0�5 and � � 1�2 [61].

An important factor that has to be taken into account is that � cannot be neg-
ative, since it is proportional to the applied illumination. Therefore, in the simu-
lations the values of � were eliminated that were less than zero, and also larger
than 2�0 in order to preserve symmetry in the noise distribution. The following
procedure was adopted: Eq. (11.50) was integrated, and at each time step it was
checked whether for all i the values of 	�i�t� fell within the interval 	1� 1�. If for
some i this condition was not satisfied, the integration of Eq. (11.50) was contin-
ued for the given i only, until a suitable value of 	�i�t� emerged. When all 	�i�t�
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were as required, they were fed into Eqs. (11.48). Obviously, the stochastic pro-
cess obtained in this way was no longer of OU type. However, its correlation
time and noise intensity deviated by less than 10� from the respective values of
an OU process.

As noise is applied to the given point x, it takes on average ta time units to
excite (“activate”) the medium locally. At the chosen parameters of noise activa-
tion time ta is negligibly small. After the point x of the medium achieves its ex-
cited state, it returns to its rest state during a “refractory period” tr . During tr ,
at the given position x the medium cannot be excited again.

In the presence of spatial diffusion (Du �� 0, Dw �� 0), at the excited point x a
pair of pulses nucleate and then propagate in opposite directions with the same
constant velocity. In order to prevent nucleations on the border of the medium,
for this study periodic boundary conditions were adopted. As a result, each
pulse from the simultaneously nucleated pair inevitably meets another pulse
from the same pair, or from another pair, and they both annihilate (see
Fig. 11.14).

This mechanism leads to the formation of quite distinct patterns in space-
time, a typical example being shown in Fig. 11.11 (a). Here, the values of u�x� t�
are plotted in logarithmic scale.

11.4.2
Characteristics of Noise-Induced Patterns

Before assessing the effect of delayed feedback on Eqs. (11.48), we need to intro-
duce convenient parameters characterizing the whole medium, since it would
be cumbersome to describe each point of it. The simplest way to overcome this
problem is to introduce the space-averaged activator concentration of u�x� t�
[62, 63]
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Fig. 11.11 Noise-induced spatiotemporal patterns in the
Oregonator model (11.48). u�x� t� is shown in logarithmic
scale (a) without control, (b) with control at K � 0�3 and
� � 5�25. Small steps parallel to the x-axis in (b) manifest
application of control force.



�u�t� � 1
L

3 L

0
u�x�� t�dx� �11�52�

and hence to deal with the description of a one-dimensional realization instead
of a function of two variables. Figure 11.12 (a) shows �u corresponding to the
space–time plot in Fig. 11.11 (a). The realization exhibits pronounced spikes, so
interspike intervals Ti can be introduced as the intervals between the successive
crossings by the variable u�t� of a threshold 0�03 from above to below (see
Fig. 11.12 (a)). The basic timescale of the noise-induced pattern can be character-
ized by the mean interspike interval �Ti�, where �� denotes the average over all
spikes.

Also, a sequence of Ti ’s contains information on the temporal regularity of
the pattern: the more regular the pattern is in time, the more periodically �u
spikes, i.e., the less the Ti’s change from one spike to another and the less their
variance is [64]. The temporal coherence can be measured as the normalized
variance RT of Ti

RT �
����������������������������
��Ti 	 �Ti��2�

�
��Ti�� �11�53�

The smaller the RT , the more regular the oscillations are in time.
However, one also needs to characterize how regular the pattern is in space.

Note that one spike in u�t� persists while the medium still propagates the initial
perturbation generated by noise. If more than one pair of pulses are nucleated
almost simultaneously, the total propagation time for all these pairs is less than
for one pair (see third and fourth stripes from the left in Fig. 11.14 (b)), and the
respective spike will be narrower. We can introduce the ith spike duration �i as
the time during which �u � 0�03, and the average spike duration ��i� as a mea-
sure of spatial regularity (homogeneity) [61].

11 Control of Noise-Induced Dynamics250

Fig. 11.12 Space-average activator concentration �u�t� in the
Oregonator model (11.48) (a) without control and (b) with
control at K � 0�3 and � � 5�25. The dashed line shows the
control force F�t�.

(a)

(b)



11.4.3
Control of Noise-Induced Patterns

In experiments with the photosensitive BZ medium the feedback can be most
easily realized via the applied illumination, hence here it was introduced into
the parameter � as follows [64]

��x� t� � �0�1� ��x� t�� � F�t�� �11�54�
where

F�t� � KsH�s�� s � v�x0� t	 �� 	 v�x0� t�� �11�55�

Here H�s� is the Heaviside function (0 for s � 0 and 1 for s � 0), K is the feed-
back strength, � is the time delay, and x0 � L�2 � 9�6 is the detection point cho-
sen arbitrarily. Note that delayed feedback is nonlinear here, and the reason be-
hind the choice of this particular form of it is that � should take only positive
values. Since feedback can only increase the value of �, this means that the con-
trol force can only suppress the activity in the system. This is a crucial differ-
ence from the control scheme used in Sections 11.2 and 11.3.

Also, it is important to note that in a real experiment the monitored variable
is the v-field. That is why the feedback signal had to be formed from the obser-
vations of this variable at point x0.

The effect of delayed feedback with � � 5�25 and K � 0�3 on the noise-in-
duced patterns is illustrated in Fig. 11.11 (b), where u�x� t� is shown in logarith-
mic scale. Small steps parallel to the x-axis in (b) manifest the application of
the control force, when the activity in the system is being suppressed. Already
from the space–time plots it is clear that the feedback can produce a remarkable
effect on the system: the pulses arrive at more equal time intervals, and each
stripe of activity is narrower, since more than one pair of pulses are more likely
to be initiated almost simultaneously.

In order to gain deeper insight into the effect of the feedback, we fix the feed-
back strength K � 0�2 and study how the variation of the time delay � influ-
ences the properties of noise-induced motion.

The three characteristics �Ti�, RT , and ��i� of this motion depending on � are
given in Fig. 11.13. All the quantities oscillate with a characteristic timescale
close to the mean interspike interval �T0

i � . 8 without feedback [64].

Mean interspike interval �Ti� The plot contains almost linear segments
(Fig. 11.13 (a)), which can be associated with the entrainment of timescales by
delayed feedback as in Sections 11.2 and 11.3. The principal difference from the
above results is that �Ti� is always larger than �T0

i � because the feedback force
in the form (11.55) can only postpone the nucleation of the new pulse pairs.

Temporal regularity RT Delayed feedback increases RT for � less but close to 5,
at which it has a global minimum (Fig. 11.13 (b)). Note that this minimum
occurs at a value of � close to the refractory period tr (see Fig. 11.14).
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Fig. 11.13 Mean interspike interval �T�, temporal coherence
RT and spatial coherence � versus � at K � 0�3, for
Oregonator model (11.48) [64].

Fig. 11.14 Schematic illustration of the
noise-induced pattern formation in Oregona-
tor model equations (11.48), and of its
delayed feedback control, provided the noise
is strong, i.e., activation time is negligible.
Black areas indicate the excited state, grey

areas the refractory state, and hatched areas
indicate where the positive feedback is
applied. (a) No feedback. (b) Feedback is
applied, with the top graph indicating the
respective profiles of v�x0� and of the feed-
back force F.



Spatial regularity ��i� is less than ��0
i �, the latter being the value without feed-

back control, for all the values of time delay � studied (Fig. 11.13 (c)). The feed-
back increases the number of simultaneous nucleations of pulse pairs, and
hence increases spatial regularity (homogeneity) of the pattern.

Note that the effect of the delayed feedback in the excitable medium is some-
what similar to the one in a single excitable unit (Section 11.3), and is different
from that in the system below an Andronov-Hopf bifurcation (Section 11.2),
where maximal improvement of coherence was obtained for � close to the mean
period �T0

i � of oscillations without feedback. The effect is also markedly differ-
ent from the linear delayed feedback control of noise-induced patterns in a glob-
ally coupled reaction–diffusion system used to model a semiconductor nano-
structure [65] described in Section 11.5.

11.4.4
Mechanisms of Delayed Feedback Control of the Excitable Medium

Here we consider the mechanisms underlying the behavior of the system sub-
jected to delayed feedback control.

Figure 11.14 sketches the patterns shown in Fig. 11.11. In (a) the situation
without control is illustrated: from the steady state (white areas) an excitation
starts (black stripes), followed by a refractory state (grey areas) which lasts time
tr for each element of the medium. After this time has elapsed, each element
recovers its steady state and can get excited again. The probability of a new nu-
cleation is then proportional to the portion of the medium that has recovered
the steady state. With the chosen noise parameters, a new nucleation occurs
with probability close to 1 immediately after the whole medium has passed the
refractory period, but often this happens even before that.

In Fig. 11.14 (b) the medium in the presence of feedback force is illustrated.
The upper panel shows the value of v�x0� t�, and the feedback force (hatched
area) starts only after the moment indicated by the vertical bar. A positive force
is applied to the whole medium, � time units after the element at x0 gets ex-
cited, and its duration is marked by hatched area in the lower panel. This force
inhibits activity in the medium resulting in an effective increase of the refrac-
tory period of the medium and thus of Ti. From this it follows directly that �Ti�
depends linearly on � when � % tr . When the force vanishes, all elements of the
medium recover the steady state simultaneously, unlike the case without forcing
illustrated in (a), and any element can get excited. This maximizes the probabil-
ity of a nucleation, and even of more than one nucleation almost at the same
time. Hence, the patterns become more homogeneous in space and ��i� de-
creases.

Notably, if � is less but close to tr , the moment when the whole medium re-
covers the steady state does not depend on the shape of the fronts of the spatio-
temporal pattern. Therefore, the larger the �, the stronger the positive feedback
force is that suppresses the nucleation, the more effectively the pulse nucleation
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is inhibited before the force disappears. Therefore, the maximal temporal and
spatial regularity are achieved at � close to tr , which is confirmed by the posi-
tions of the first minima of RT��� and of ��i� in Fig. 11.13 (b) and (c), respec-
tively.

As � gets closer to the mean period �T0
i � without control, the feedback is ap-

plied when, or after, the medium nucleates. So the force can suppress the
pulses even before they meet and annihilate, which breaks the pattern quite
badly. This corresponds to the worst temporal and spatial regularity (see
Fig. 11.13 (a)) [64]. As � starts to exceed �T0

i �, the situation described for � % tr is
repeated, the regularity slightly improves and �Ti� increases. Moreover, it can be
expected that for each successive linear segment in the dependence of �Ti� on �

the relationship

�Ti� � ��� tp��n �11�56�

holds, where n is integer and tp � 6�2 is the average duration of the pulse
v�x0� t� (excited state duration plus refractory period, see Fig. 11.14). As seen
from Fig. 11.13 (a), this expression can be used for quite an accurate estimate of
�Ti� (grey dashed lines).

Finally, the effect of feedback was studied as a function of its strength K , as �

was fixed at two characteristic values corresponding to the maximum and to the
minimum of regularity. In both cases, as K grows, the action of the feedback
becomes more prominent, which is probably expected. Namely, if at the given
value of � the feedback increases (decreases) some characteristic quantity, the in-
crease of K leads to the larger increase (decrease) of it.

11.4.5
What Can Be Controlled in an Excitable Medium?

Modeling of a real experiment with a photosensitive BZ medium has allowed
us to predict that a nonlinear time delayed feedback will be able to manipulate
the temporal and spatial regularity of noise-induced spatiotemporal patterns in
a full-scale experiment as well. In the model, by choosing the appropriate time
delay, one can deliberately increase or decrease both spatial and temporal regu-
larity and adjust the timescales of the medium dynamics. The same study was
done with the system using Neumann boundary conditions, under which the
pulses are absorbed by the boundary. The dependences for �Ti�, RT , and ��i�
match those in Fig. 11.13 with high accuracy. An experimental verification of
the predicted effect of delayed feedback control remains a challenge for future
work.
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11.5
Delayed Feedback Control of Noise-Induced Patterns
in a Globally Coupled Reaction–Diffusion Model

In this section, we consider a reaction–diffusion model which exhibits a differ-
ent kind of spatiotemporal patterns, namely localized breathing and spiking os-
cillations. It has been used to describe current density patterns in a semicon-
ductor nanostructure, a double-barrier resonant tunneling diode (DBRT). More
generally, it describes an extended medium of activator–inhibitor type with a
global coupling [66]. We will study the effects of noise in this system and inves-
tigate whether we can control noise-induced spatiotemporal oscillations by the
method of time delayed feedback [65, 67]. The model equations are given in di-
mensionless form by

�a
�t
� f �a� u� � �

�x
D�a� �a

�x

 �
�Da��x� t�� �11�57�

du
dt
� 1

�
U0 	 u	 rJ� � � Du��t� 	 K u�t� 	 u�t	 �� �� �11�58�

Here u�t� is the inhibitor, and a�x� t� is the activator variable. In the semicon-
ductor context, u�t� denotes the voltage drop across the nanostructure, which
consists of two barriers and a quantum well embedded in between, and a�x� t�
is the electron density in the quantum well. The x coordinate describes the lat-
eral re-distribution of electrons in the quantum well plane perpendicular to the
current flow, giving rise to filamentary current densities. The nonlinear, nonmo-
notonic function f �a� u� describes the balance of the incoming and outgoing
current densities of the quantum well [66, 68, 69]

f �a� u� � 1
2
� 1
�

arctan
2
	

x0 	 u
2
� d
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 � �! "
� ln 1� exp �e 	 x0 � u
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	 d

rB
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 � �
	 a

! "
	 a� �11�59�

and D�a� is an effective diffusion coefficient, which is dependent on electron
density [70]:

D�a� � a
d
rB
� 1

1	 exp�	a�
 �

� �11�60�

In Eqs. (11.59) and (11.60) the parameters were set as 	 � 6, x0 � 114,
d�rB � 2, �e � 28, and their physical meaning can be found, e.g., in [65]. The lo-
cal current density in the device is j�a� u� � 1

2 �f �a� u� � 2a�, and J � 1
L

# L
0 jdx is

associated with the global current. Equation (11.58) represents Kirchhoff’s law
of the circuit in which the device is operated, i.e., the total current J is the sum
of the capacitive and the conductive currents. The external bias voltage U0, the
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dimensionless load resistance r � RL, and the time-scale ratio � � RLC��a

(where C is the capacitance of the circuit and �a is the tunneling time) act as bi-
furcation parameters. We consider a system of width L � 30 with Neumann
boundary conditions �xa � 0 at x � 0 and x � L, corresponding to no charge
transfer through the lateral boundaries.

The noise sources ��x� t� and ��t� represent uncorrelated Gaussian white
noise of intensities Da and Du, respectively:

���x� t�� � ���t�� � 0 �x � 0� L���
���x� t���x�� t��� � ��x 	 x����t	 t��� �11�61�

���t���t��� � ��t	 t���

Here we concentrate on the effects of external noise modeled by the additional
noise voltage Du��t� in the current equation. This term is easily accessible in a
real circuit and the noise intensity Du can be adjusted in a large parameter
range using a noise generator in parallel with the supply bias, as realized ex-
perimentally, e.g., in [24]. Internal fluctuations of the local current density on
the other hand, e.g., shot noise [71], cannot be tuned from the outside. There-
fore in the following we keep this value fixed at a small noise intensity of
Da � 10	4, corresponding to a noise current density of the order of 50 mA�cm2,
which is within the range of Poissonian shot noise currents. Time-delayed feed-
back is applied to the voltage variable u in Eq. (11.58), since the voltage is easily
accessible in a real experiment. By varying the control amplitude K, we can ad-
just the strength of the control force; � is the time delay of the feedback loop.

11.5.1
Spatiotemporal Dynamics in the Uncontrolled Deterministic System

In the noise-free, uncontrolled case, Du � Da � K � 0, one can calculate the
nullclines of the system. These are plotted in Fig. 11.15 using the current–volt-
age projection of the originally infinite-dimensional phase space. There are
three curves, the nullcline �u � 0 (i.e., the load line) and two nullclines �a � 0,
one for a reduced system, including only spatially homogeneous states, and one
for the full system. We call the system spatially homogeneous if the space depen-
dent variable a�x� t� is uniformly distributed over the whole width of the device,
i.e., a�x� t� � a�t� for all x � 0� L�, otherwise it is called spatially inhomogeneous.

In Fig. 11.15 one can see the Z-shaped current–voltage characteristic of the
DBRT (solid curve), and the inset represents our special regime of interest for
the following investigations. We fix � � 6�2 slightly below the Andronov-Hopf
bifurcation, which occurs at �Hopf � 6�469. In this regime we have a stable, spa-
tially inhomogeneous fixed point marked “I” in Fig. 11.15, which is determined
by the intersection of the load line with the nullcline �a � 0 for inhomogeneous
a�x� t�. The neighboring intersection of the load line with the homogeneous
nullcline (marked “H”) defines another, spatially homogeneous fixed point
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which is a saddle-point. It is stable with respect to completely homogeneous
perturbations but generally unstable against spatially inhomogeneous fluctua-
tions.

Finally, the system (11.57) and (11.58) has a stable homogeneous fixed point
which is characterized by negative voltage u and almost zero current density J.
This point corresponds to the nonconducting regime of the DBRT, which is be-
yond the scope of the present study.

In Fig. 11.16 one can see a rather rapid transition of the deterministic system
from the slightly perturbed homogeneous fixed point (H) to the inhomogeneous
filamentary one (I). This illustrates that for the given parameters, the only stable
solution, apart from a trivial, nonconducting fixed point, is an inhomogeneous
steady state.

To quantify the degree of (in)homogeneity we use the measure of the absolute
spatial variation v�t� of a�x� t� defined by

v�t� �
3 L

0

�a�x� t�
�x

���� ����dx� �11�62�

For completely homogeneous states a�x� t� � a�t� the absolute spatial variation
equals zero and the larger v�t� grows, the more inhomogeneous the spatial
charge carrier density distribution a�x� t� appears. In Fig. 11.16 (b) the spatial
variation of v�t� tends toward a fixed value of approximately 2�6, indicating the
inhomogeneity of the corresponding fixed point.

Note that beyond the Andronov-Hopf bifurcation of the spatially inhomoge-
neous fixed point, complex chaotic scenarios including spatiotemporal breathing
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Fig. 11.15 Current–voltage characteristic of
the DBRT model (11.57) and (11.58). The
nullclines for the dynamical variables u
(which is the load line, dash-dotted) and a
in the case of a homogeneous a�x� (solid)
and in the case of inhomogeneous a�x�

(dotted) are shown. The inset shows an en-
largement, where I and H mark the inhomo-
geneous and the homogeneous fixed points
of the system, respectively. U0 � 	84�2895,
r � 	35. Other parameters are as in [67, 72].



and spiking oscillations occur [69]. These deterministic space–time patterns can
also be stabilized by time delayed feedback control, as discussed in Chapter 24
of this book. However, here we confine our attention to a different parameter
regime, where the inhomogeneous fixed point is stable.

11.5.2
Noise-Induced Patterns in the Uncontrolled System

In the following, we will investigate the behavior of the uncontrolled system un-
der variation of the noise intensity Du. Note that this noise term does not have
any space-dependent influence upon a. Now we initialize the system at the in-
homogeneous fixed point and simulate it with different noise intensities Du.
The results can be seen in Fig. 11.18. While for small noise the system exhibits
rather small oscillations around the inhomogeneous fixed point (topmost pan-
el), with increasing noise intensity a transition to completely homogeneous os-
cillations occurs (bottom panel). For intermediate values of Du one can see the
competition between the inhomogeneous and the spatially homogeneous modes
(middle panel). Let us now quantify the spatial and the temporal ordering of
the system. We call the system spatially coherent if the space-dependent variable
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Fig. 11.16 Transition from the homogeneous
initial state to the spatially inhomogeneous
fixed point due to a small spatially inhomo-
geneous perturbation in Eqs. (11.57) and
(11.58) in the noise-free case. (a) Charge
carrier density distribution a�x� t�. (b) Time
series v�t� (dashed) and u�t� (solid). At

t � 0 the system is prepared in the homo-
geneous fixed point u�0� � 266�47,
a�x� 0� � 10�02 with a very small initial
random perturbation. System parameters:
U0 � 	84�2895, r � 	35, � � 6�2,
Da � Du � 0 [67].



a�x� t� is uniformly distributed over the whole length of the device. In order to
reveal whether a particular state of the system is spatially homogeneous or not
we use the simple measure of the absolute spatial variation defined in
Eq. (11.62). The temporal ordering of the system, on the other hand, can be
measured by the correlation time [42]

tcor � 1
2

3 �

0
	�s�� �ds� �11�63�

where 	�s� � 9 u�t� 	 �u�� � u�t	 s� 	 �u�� �: is the autocorrelation function of
the variable u�t�, and 2

u � 	�0� is its variance. By calculating the temporal
mean values �v� of v�t� for different Du, we can characterize the degree of spa-
tial homogeneity of the dynamics in dependence on the noise intensity. In
Fig. 11.17 (a) these values are plotted versus the noise intensity, and one can see
that the mean value of v monotonically tends toward zero with increasing noise,
indicating an increase in spatial coherence. The error bars in this plot show the
standard deviation. In fact, they reflect an essential feature of this transition;
namely the competition between spatially inhomogeneous and homogeneous
modes for intermediate values of Du. The larger the standard deviation of v is,
the more “mixed” the dynamics appears. Figure 11.17 (b) offers the same infor-
mation showing the variance 2

v of v versus Du. For noise close to zero only,
slight oscillations around the inhomogeneous fixed point with almost fixed spa-
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Fig. 11.17 Spatial and temporal ordering of
the dynamics in Eqs. (11.57) and (11.58) in
dependence of noise intensity Du for
Da � 0�001. (a) Time-average �v� of the
order parameter v�t� defined by Eq. (11.62),

error bars correspond to the standard devia-
tion of v. (b) Variance 2

v of the parameter v
(corresponding to the square of the error
bars from (a)). (c) Correlation time of the
variable u�t� as in Eq. (11.63) [67].



tial profile of a�x� t� lead to a vanishingly small variance of v. With increasing
noise, more and more frequently the system tends to a homogeneous state. The
variance exhibits a maximum around Du � 1�3, indicating maximal fluctuations
of the system between homogeneous and inhomogeneous modes. Thus, this
value could be treated as a boundary between predominantly filamentary and
predominantly homogeneous behavior. For even larger noise intensity, the
homogeneous mode is getting more and more dominant, and therefore the vari-
ance of v again falls off toward zero.

On the other hand, the correlation time versus noise intensity in Fig. 11.17 (c)
shows that the temporal coherence of the system in contrast to the spatial order-
ing decreases rapidly with increasing noise.

In summary, noise induces oscillations in the system, which would otherwise
rest in its inhomogeneous fixed point. With growing noise intensity, the dy-
namics changes from small inhomogeneous oscillations, which are quite coher-
ent in time, to spatially homogenous oscillations, which on the other hand ap-
pear very irregular in time.

11.5.3
Time-Delayed Feedback Control of Noise-Induced Patterns

In order to control the noise-induced patterns, we will now use the method of
time delayed feedback which was previously applied successfully in determinis-
tic chaos control of this particular system [72].
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Fig. 11.18 Spatiotemporal patterns a�x� t� in
Eqs. (11.57) and (11.58), induced by noise
with different intensities Du � 0�1� 1�0� 2�0.
At t � 0, the system is prepared in the spa-
tially inhomogeneous steady state ‘I’ and
with the parameters of Fig. 11.15. The sys-

tem is then simulated with Da � 10	4 and
Du as indicated. U0 � 	84�2895, r � 	35,
� � 6�2. Time t and space x are measured in
units of the tunneling time �a and the diffu-
sion length la, respectively. Typical values at
4 K are �a � 3�3 ps and la � 100 nm [65].



In order to get a first impression whether or not this control force is able to
change the temporal regularity of the noise-induced oscillations, we fix
Du � 0�1, Da � 10	4, as in the upper panel of Fig. 11.18, and calculate the cor-
relation time tcor in dependence of the feedback strength K for two different de-
lay times �. From Fig. 11.20 one can see that the qualitative result depends
strongly upon the choice of the delay time. While for � � 7 the control loop
strongly increases the correlation time with increasing K, it is on the other
hand able to decrease it significantly for � � 5. The same can be seen from
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Fig. 11.19 Correlation time vs noise intensity Du of
oscillations in Eqs. (11.57) and (11.58), without control
(K � 0) and with control and two different values of � as
indicated. Averages from 100 time series of length T � 10000,
parameters as in Fig. 11.18. The inset shows a blow-up [65].

Fig. 11.20 Correlation time of oscillations in Eqs. (11.57) and
(11.58) vs feedback strength K for � � 5 and � � 7. Du � 0�1,
Da � 10	4. Averages from 100 time series of length
T � 10 000, parameters as in Fig. 11.18 [65].



Fig. 11.19. Here, the control with K � 0�1 and � � 7 enhances tcor, as compared
with the uncontrolled case, over a relatively wide range of the noise intensity up
to Du � 0�5, whereas � � 5 decreases it within the same range. This behavior is
very similar to that found for the van der Pol system in Section 11.2. The differ-
ence in regularity for different values of � and K also shows up in the corre-
sponding spatiotemporal patterns and voltage time series (Fig. 11.21), where (b)
is clearly more regular than (a).

The role of the appropriate choice of the control delay � becomes even clearer
if we keep K fixed and calculate the correlation time in dependence of �. The re-
sult is plotted in Fig. 11.22 (a), where one can clearly see the oscillatory charac-
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Fig. 11.21 Spatiotemporal patterns a�x� t� and voltage time
series u�t� in Eqs. (11.57) and (11.58), for different values of
the control strength K and delay time �: (a) � � 4�0, K � 0�4,
(b) � � 13�4, K � 0�1. Du � 0�1, Da � 10	4 and other
parameters as in Fig. 11.18 [65].



ter of the correlation time under variation of �, which is characterized by the
presence of “optimal” values of �, corresponding to the maximal regularity, and
“worst” values of � which are related to the minimal regularity of the noise-in-
duced dynamics. At the same time, it is shown that the control with K � 0�1
produces no effect at all upon the correlation time if the noise is too large (low-
er curve for Du � 1�0).
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Fig. 11.22 Characteristics of noise-induced
oscillations in Eqs. (11.57) and (11.58) under
delayed feedback. (a) Correlation time
(Eq. (11.63)) for two different noise intensi-
ties in dependence of the feedback delay �.
(b) Real parts of the eigenvalues �i of the
linearized deterministic system
(Da � Du � 0) calculated at the spatially in-
homogeneous fixed point for K � 0�1. The
black dots are calculated from the spatially
discretized system (set of ODEs) whereas

the squares are calculated from Eq. (11.75)
(see text). The vertical dotted lines mark
values of � at which the leading eigenvalue
(i.e. the one with the largest real part)
changes. (c) Eigenperiods 2��Im��i� of the
deterministic system and basic periods
T0 
� 1�fmax of the noise-induced oscilla-
tions, where fmax denotes the frequency of
the highest peak in the Fourier power spec-
tral density of the noisy system with
Du � 0�1, K � 0�1 [65].



11.5.4
Linear Modes of the Inhomogeneous Fixed Point

The fact that noise-induced oscillations take place in the vicinity of the spatially
inhomogeneous fixed point gives us a hint that some properties of these oscilla-
tions could relate to the stability of the above mentioned fixed point. In order to
gain some insight into how the control actually affects the system dynamics
around the spatially inhomogeneous fixed point, we linearize the system (11.57)
and (11.58) for Du � Da � 0 and calculate the complex eigenvalues �i at the
fixed point. First, we calculate these eigenvalues from the spatially discretized
system which we use for the numerical simulation. This discretized version is
just a set of ordinary differential equations (ODEs), and the linearization and
the eigenvalues can be computed easily.

In Fig. 11.22 (b) one can see that the control with K � 0�1 does not change
the stability of the inhomogenous fixed point, since the real parts of all eigen-
values do not become positive within the given range of �. Nevertheless, with
increasing � the real parts of the eigenvalues intersect at particular values of �

(vertical dotted lines) and therefore the leading eigenvalue, i.e., the least stable
one, or the one with the largest real part, changes at these values of �. As one
can see, these crossover points correspond to the minima of the correlation
time in Fig. 11.22 (a), whereas the local maxima of the real parts correspond to
the maxima of the correlation time. This gives rise to a rather intuitive explana-
tion for the behavior of the correlation time: The closer to zero the real part of
an eigenvalue is, the weaker is the attracting stability of the fixed point and the
easier it is for the noise to excite exactly the oscillating mode corresponding to
this particular eigenvalue. On the other hand, at the intersection points of the
real parts of the leading eigenvalue, these values have the largest distance from
zero, meaning that the attracting stability of the fixed point is stronger and in
addition there are two different corresponding oscillating modes which are ex-
cited by the noise. Thus the control cannot reach its optimal effect.

As a direct consequence, the main frequency which is activated by the noise,
switches exactly at these values of � to the eigenfrequency of the corresponding
leading eigenvalue. In Fig. 11.22 (c) the eigenperiods are plotted as black dots in
dependence of �. The circles mark the positions of the highest peak in the Four-
ier power spectrum for the corresponding noisy system with Du � 0�1. One can
clearly see that these main periods switch from one branch to another exactly at
the positions where the real parts of two different eigenvalues cross over. As we
have already noted, the eigenvalues for the linearized deterministic system at
the inhomogeneous fixed point, plotted as black dots in Fig. 11.22 (b) and (c),
are computed numerically for the system (11.57) in the deterministic case by
using the spatially discretized set of ordinary differential equations.

In order to achieve a deeper understanding of the stability properties of the
inhomogeneous fixed point under the influence of the control force, and to ob-
tain the general form of the characteristic equation which determines the eigen-
values of this linearized system, we perform the linearization of the original
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continuous system (11.57) and (11.58) at the spatially inhomogeneous fixed
point �a0�x�� u0�. Introducing

ax � �a
�x

� axx � �2a
�x2 � b a� ax� axx� � � �

�x
D�a�ax� �� �11�64�

and a linear operator

/ � �f
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����
a0�u0

� �b
�a

����
a0

� �b
�ax

����
a0

�

�x
� �b
�axx

����
a0

�2

�x2 � �11�65�

and using the ansatz �a�x� t� � e�t�a�x�, �u�t� � e�t�u for the deviations from the
fixed point, we can write down the coupled eigenvalue problem:

��a�x� � /�a�x� � fu�x��u� �11�66�

��u � 	 r
�L

3 L

0
ja�x��a�x�dx � 	 1� rJu

�
� K e	�� 	 1
� �! "

�u� �11�67�

with fu � �f
�u
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� ja � �j
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� Ju � 1
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0

�j
�u
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dx�

For the case K � 0 this eigenvalue problem of the inhomogeneous filamentary
fixed point has been analyzed generally [73]. In the voltage-clamped case
(�u � 0), the Sturmian eigenvalue equation ��a � /�a with Neumann boundary
conditions (which can be shown to be self-adjoint) has solutions
�0 � �1 � �2 � � � � where the corresponding eigenmode �n�x� has n nodes, and
�0 � 0, while for n � 1 all other eigenvalues are negative, �n � 0. The eigen-
modes �a�x� of the full Eqs. (11.66) and (11.67) can be expanded in terms of the
voltage-clamped eigenmodes �n�x�

�a�x� �
�

n

�a��n� ��n�x�� �11�68�

where ��a��n� � 1
L

# L
0 �a�x��n�x�dx denotes the usual scalar product in Hilbert

space. Inserting this into Eq. (11.66) yields

�
�

n

��a��n��n�x� �
�

n

�n��a��n��n�x� � fu�x��u� �11�69�

Forming the scalar product with �m and using orthonormality gives the expan-
sion coefficients

��a��m� �
�fu��m�
�	 �m

�u� �11�70�
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The expansion (11.68) can be inserted into Eq. (11.67):

��u � 	 r
�

�
n

�fu��n��ja��n�
�	 �m

	 1� rJu

�
� K e	�� 	 1
� �� �

�u� �11�71�

We will now neglect the higher modes �n because they oscillate fast whereas
a0�x� varies slowly in space, and approximate the sum in Eq. (11.68) by the
dominant first term �0 with �0 � 0. We obtain the characteristic equation for
the eigenvalue �:

�2 � 1� rJu

�
	 �0

 �
�� ��0 	��K e	�� 	 1

� �	 �0

�
�1� rd� � 0� �11�72�

where the static differential conductance d at the inhomogeneous fixed point

d � dJ
du

����
a0�u0

� Ju � ja�
da
du

 �
� Ju 	 �ja��0�

�fu��0�
�0

�11�73�

has been introduced using Eqs. (11.68)–(11.70) in the static case � � 0 [66].
Without control, K � 0, Eq. (11.72) reduces to a characteristic polynomial of the
second order, which gives the well-known conditions for the stability of a fila-
ment [73]:

A � 1� rJu

�
	 �0 � 0�

C � 	 �0

�
�1� rd� � 0� �11�74�

Without control, an Andronov-Hopf bifurcation on the two-dimensional center
manifold occurs if A � 0. With control, Eq. (11.72) can be expressed as

�2 � A�� �B	��K e	�� 	 1
� �� C � 0 �11�75�

with B � �0 � 0. The parameters A, B, C can be calculated directly from
Eq. (11.74). For the inhomogeneous fixed point, �0 � 1�0281 has been calculated
in [74]; Ju � 	0�1615 can be obtained by using the condition for an Andronov-
Hopf bifurcation (A � 0) in Eq. (11.74); d � 0�226 can be estimated from the
current-voltage characteristic shown in Fig. 11.15.

This yields A � 0�0447, B � 1�0281, and C � 1�1458. Note that in dimensional
units the unstable eigenvalue of the voltage-clamped system �0 � B is approxi-
mately equal to the inverse tunneling time 1��a. With these values, we can solve
Eq. (11.75). For K � 0�1 the real parts of this solution in dependence of � are
also shown in Fig. 11.22 (b) as squares. They coincide with very good accuracy.

In order to estimate the maxima of p � Re��� in dependence of the control
delay � (to find the “optimal” delay), we assume p � 0 (but p �� 0!), K 
 1 and
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separate Eq. (11.75) into real and imaginary parts. A straightforward calculation

yields that p has a maximum if q�	 arctan
B
q

 �
� 2�n, n is integer. Since

q � Im��� � 1 in the vicinity of the maxima of p (cf. Fig. 11.22 (c)) and also
B � 1, we get

� � 2�n� �

4
� �11�76�

According to this simple formula, the first four maxima of p � Re��� appear at
� � 0�8� 7�1� 13�4, and 19�6, which is in very good agreement with Fig. 11.22 (b).
Next, we consider the eigenvalues at larger values of �, i.e., �0 1, p � 0, q �� 0,
in Eq. (11.75):

cos q�	 arctan
B
q

 � � �������������������
B
q

 �2

�1

5
� A� K

K
� �11�77�

This, with A � 0 and again B�q � 1, yields

cos q�	 �

4

� �
� 1���

2
" �11�78�

1q�	 �

4
� �

4
� 2�n� n � �� �11�79�

Hence, we arrive at an estimate for the period T � 2��q,

T � 4�
1� 4n

�11�80�

which describes the piecewise linear behavior of the eigenperiods for larger �

with again very good agreement.
Finally, we investigate the condition for an Andronov-Hopf bifurcation (i.e.,

p � 0, q �� 0) in dependence of K. Equation (11.77) together with B�q � 1 yields

cos q�	 �

4

� �
� A� K

K
���
2

" � �11�81�

If the right-hand side is larger than unity, no solution exists and thus no an An-
dronov-Hopf bifurcation and no instability of the fixed point can occur:

A� K

K
���
2

" � 1 1 K �
A���

2
" 	 1

� 0�1� �11�82�

This determines a lower bound for the maximal control strength which we are
not allowed to exceed, as long as we do not want to lose the original stability of
the fixed point. This maximum is perfectly confirmed by Fig. 11.23 where the
region is outlined, in which the inhomogeneous fixed point remains stable un-
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der the influence of the control term. Here, one can see the very good match
between the stability region estimated from the space-discretized system of
ODEs on the one hand (shaded area), and from the general characteristic equa-
tion (11.75) on the other hand (black curve).

11.5.5
Delay-Induced Oscillatory Patterns

So far, we have kept the control amplitude fixed and varied the control delay �.
But as we have already seen in Fig. 11.23, the control force can in principle
change the deterministic behavior of the system. For a given � and sufficiently
large K, the control loop changes the deterministic dynamics of our system:
The previously stable fixed point exhibits an Andronov-Hopf bifurcation, be-
comes unstable, and a stable periodic spatiotemporal pattern is induced in the
system by the control loop. With increasing K, the shape of this induced peri-
odic breathing pattern changes from small spatially inhomogeneous oscillations
around the previously stable fixed point into a spatiotemporal spiking pattern
and further into a completely spatially homogeneous oscillation. In order to see
whether or not the deterministic spiking behavior still persists under the influ-
ence of noise, we have added different noise intensities to the system at K � 1.
The result is shown in Fig. 11.24, and one can see that again increasing noise
renders the dynamics more and more spatially homogeneous, even though
there exists a deterministic stable limit cycle corresponding to a spiking pattern.
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Fig. 11.23 Region of stability in the �–K-
plane of the deterministic system (11.57)
and (11.58), Du � Da � 0. The area below
the curve marks the region within which the
inhomogeneous fixed point is still stable un-
der the influence of the control loop. Within

the upper region, the fixed point is unstable.
The shaded area is calculated from the space
discretized system of ODEs, whereas the
black curve is calculated from Eq. (11.75).
The dotted line corresponds to the upper
bound of K given in Eq. 11.82) [65].



11.5.6
What Can Be Controlled in a Globally Coupled Reaction–Diffusion System?

We have investigated the complex spatiotemporal behavior of a reaction–diffu-
sion system of activator–inhibitor type with a global coupling due to the at-
tached electrical circuit. Unlike the locally coupled reaction–diffusion system
(Oregonator model) studied in the previous section, this model does not exhibit
pulse or wave propagation for the parameters chosen. Rather, it exhibits noise-
induced localized space–time patterns of breathing or spiking type if it is oper-
ated below the Andronov-Hopf bifurcation of the spatially inhomogeneous fixed
point. In this respect, it generalizes the van der Pol system to a class of spatially
extended systems, which show similar features of the correlation time and the
spectrum of space-time patterns under the influence of time delayed feedback
control. An important new aspect is, however, the spatial degree of freedom.
The noise which is applied globally to a space-independent variable determines
the type of the spatiotemporal pattern of these oscillations. While for small
noise intensity the system demonstrates oscillations which are quite correlated
in time, but spatially inhomogeneous, with increasing noise intensity the shape
of the spatiotemporal pattern changes qualitatively until the system reaches a
highly homogeneous state. Thus, the increase of spatial coherence is accompa-
nied by the decrease of temporal correlation of the observed oscillations. In be-
tween these two situations, for intermediate noise strength one can observe
complex spatiotemporal behavior resulting from the competition between homo-
geneous and inhomogeneous oscillations. Delayed feedback is an efficient meth-
od for the manipulation of essential characteristics of noise-induced spatiotem-
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Fig. 11.24 Spatiotemporal patterns a�x� t� of system (11.57) and
(11.58) with noise and control, K � 1�0, � � 7�0, Da � 10	4, Du

as indicated, other parameters as in Fig. 11.18 [65].



poral dynamics, i.e., timescales, temporal regularity, and spatial homogeneity.
The model can be used to describe the spatiotemporal current density patterns
in a semiconductor nanostructure, namely, the double barrier resonant tunnel-
ing diode (DBRT). Noise-induced space-time patterns and their control by time
delayed feedback have also been investigated for a different semiconductor na-
nostructure consisting of a periodic sequence of barriers and quantum wells,
i.e., a superlattice [48, 75]. It exhibits complex nonlinear dynamics of interacting
charge fronts, and demonstrates coherence resonance of noise-induced moving
front patterns. It is an excitable medium, and the coherence and timescales of
noise-induced oscillations in this nanostructure can also be manipulated by
time delayed feedback.

11.6
Summary and Conclusions

The present work is devoted to the review of the existing methods of control of
noise-induced dynamics. Several paradigmatic models demonstrating different
types of this dynamics are considered: a system below an Andronov-Hopf bifur-
cation, a single excitable system, an excitable spatially extended medium, and a
globally coupled reaction–diffusion system. Although these systems are very dif-
ferent in their structure, application of the delayed feedback to them has re-
markably revealed some universal features, like the ability to adjust timescales
and regularity of the motion that was induced merely by external random fluc-
tuations, by choosing the appropriate values of the feedback parameters K and
�. Moreover, increase of � causes an approximately piecewise linear increase of
the basic timescales of this motion, although the proportionality coefficient is
different for different ranges of �. This phenomenon can be associated with the
phenomenon of autosynchronization that was earlier discovered in purely deter-
ministic systems.
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Denis Goldobin, Michael Rosenblum, and Arkady Pikovsky

We describe a method to control the coherence of oscillations by a delayed feed-
back. It can be applied to noisy periodic as well as to chaotic autonomous oscil-
lations and allows one to modify the diffusion constant of the phase. Particular-
ly, coherence can be improved what makes oscillations easier to synchronize. A
multiple delay control shows better performance than the single-delay one. We
present the theory of the delayed feedback control based on the Gaussian ap-
proximation of the noisy phase dynamics.

Coherence is one of the main characteristics of self-oscillating systems. For
periodic oscillators it determines their quality as clocks, and usually the im-
provement of the coherence is one of the major goals in the construction of
such oscillators. In terms of the phase dynamics, the coherence is quantitatively
measured by the phase diffusion constant. It is proportional to the width of the
spectral peak of oscillations. Many chaotic oscillators can also be described in
the framework of the phase dynamics, thus allowing one to characterize their
coherence by virtue of the phase diffusion constant as well [1].

In this chapter we describe how the coherence of oscillations is influenced by
external delayed feedback. Application of a delayed feedback is widely used to
control different properties of the dynamical systems: to make chaotic oscillators
operate periodically (Pyragas’ control method [2]), to control space–time chaos
[3, 4], to suppress collective synchrony in oscillator populations [5–8] (see also
the contribution of Tass et al. in this book). In this chapter we are not consider-
ing such delay-induced qualitative changes in the dynamics, but focus on the
quantitative effect of a delayed feedback on the phase diffusion properties. This
chapter is based on recent publications [9–11].
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12
Controlling Coherence of Noisy and Chaotic Oscillators
by Delayed Feedback



12.1
Control of Coherence: Numerical Results

12.1.1
Noisy Oscillator

In this section we present a numerical evidence for a possibility to control the
phase coherence by a delayed feedback. We begin by presenting the results of
numerical simulation for noisy van der Pol oscillator:

�x 	 ��1	 x2� �x ��2
0x � k� �x�t	 �� 	 �x�t�� � ��t�

��t���t��� � � 2d2��t	 t�� � �12�1�

The left-hand side represents the van der Pol equation; in the absence of noise
and delay (k � d � 0) and for small nonlinearity � this model has a limit cycle
solution x0 � 2 cos�, �x0 � 	2�0 sin� with a uniformly growing phase
��t� � �0t� �0 [12]. Under the influence of noise and in the absence of feed-
back (k � 0, d � 0), ��t� diffuses according to ���t� 	 ��t�� ��2

; <
$ D0t; the dif-

fusion constant D0 is proportional to the intensity of noise d2.
We expect that in the presence of feedback the diffusion constant D generally

differs from D0; this is confirmed by the numerical results, shown in Fig. 12.1
for �0 � 1, d � 0�1, and � � 0�7. One can see that diffusion can be suppressed
or enhanced, depending on the feedback strength k and the delay time �.
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Fig. 12.1 Diffusion constant D for the phase of the noise-
driven van der Pol oscillator with delayed feedback (12.1) as
a function of ��T0 and k; T0 � 2���0 � 6�61 is the oscillation
period without delay.



12.1.2
Chaotic Oscillator

Another numerical example demonstrates the effect of delayed feedback on
phase diffusion in the chaotic Lorenz model

�x � �y	 x� �
�y � rx 	 y	 xz � �12�2�
�z � 	bz� xy� k�z�t	 �� 	 z�t�� �

where  � 10, r � 32, and b � 8�3. The phase of the Lorenz system is well-de-
fined if one uses a projection of the phase space on the plane �u � ���������������

x2 � y2
�

� z�
(see [1] and Fig. 12.3). Note that there is no noise term in Eqs. (12.2): because
of chaos the phase of the autonomous system grows nonuniformly, with a non-
zero diffusion constant.

The dependence of the diffusion constant D of the phase on the feedback pa-
rameters k and � is shown in Fig. 12.2. Qualitatively this dependence is similar
to that for the van der Pol model. However, there is an important distinction:
the diffusion has a very deep minimum for positive feedback constant k and
the delay time close to the mean oscillation period; here the rotation of the
phase point along the trajectory of the Lorenz system becomes highly coherent.
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Fig. 12.2 Diffusion constant D for the Lorenz system (12.2)
as the function of ��T0 and k. T0 � 0�69 is the average oscilla-
tion period without delay. Note the logarithmic scale of the
D-axis.



Another representation of the effect of the delayed feedback on the coherence
of the process is given by the power spectrum. Indeed, the power spectrum of
an oscillatory observable has a peak at frequency �0, and the width of the peak
is proportional to the diffusion constant D. In Fig. 12.3 we show how the feed-
back changes the spectrum of the Lorenz system for the cases of maximal en-
hancement and maximal suppression of the diffusion constant. In this figure
we also demonstrate that the effect is not related to suppression of chaos: large
variations of the diffusion constant (up to factor 10) are not reflected in the to-
pology of the strange attractor; also the calculated Lyapunov exponents are very
close to those without feedback. This suggests that the effect of feedback on the
coherence can be described in the framework of phase approximation to the dy-
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Fig. 12.3 Spectra of the z component of the
Lorenz system and projections of the phase
portrait for the system in the absence of
delayed feedback (left column) and in the
presence of feedback with delay � � 0�3
(middle column) and � � 0�65 (right column);

feedback strength k � 0�2. Note that feed-
back makes the spectral peak essentially
more broad (enhanced diffusion, middle col-
umn) or more narrow (suppressed diffusion,
right column), whereas practically no
changes can be seen in the phase portraits.



namics (this approximation has been used in [13] to describe phase synchroni-
zation of chaotic oscillators).

12.1.3
Enhancing Phase Synchronization

One of the implications of the coherence control is a possibility to govern syn-
chronization properties of an oscillator. Indeed, the ability of an oscillator to be
entrained directly depends on the phase diffusion constant, thus improving co-
herence means improving of the ability to synchronize [1]. We illustrate this by
consideration of the phase synchronization of the Lorenz system by a periodic
force E sin �t added to the equation for the variable z (Fig. 12.4). In the absence
of the feedback the force is too weak to entrain the system, while the coherent
oscillator demonstrates synchronization.

12.2
Theory of Coherence Control

12.2.1
Basic Phase Model

The basic model we study in this chapter is the equation describing the dy-
namics of the phase under influence of noise and delay:

�� � �0 � ��t� � a sin���t	 �� 	 ��t�� � �12�3�

where the noisy term ��t� is assumed to be Gaussian. Equation (12.3) has been
used in [16] to describe evolution of the phase of an optical field in a laser with
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Fig. 12.4 Entrainment of the Lorenz system
by a harmonic force with E � 2. Right graph:
without feedback the mean oscillator
frequency � is not locked to the driving
frequency �. Left graph: the feedback with
k � 0�2, � � 0�65 makes the oscillator coher-

ent, what results in the appearance of the
synchronization region � � � (cf. [14, 15]).
Note also that the mean frequency is shifted
by the feedback; this effect is theoretically
explained below.



weak optical feedback. Of our main interest are the diffusion properties of the
phase ��t�. Under influence of the noise, in the absence of feedback, it diffuses
����t� 	 ���t���2� $ D0t with the diffusion constant D0 �

#�
	����t����t� � t��dt.

This constant determines the coherence of oscillations, as the power spectrum
of an observable x � cos��� has a peak at frequency �0, whose width is D. The
feedback changes the diffusion constant, and the main goal of our investigation
is to find dependence of D on the parameters a, �.

12.2.2
Noise-Free Case

We start our theoretical consideration with the noise-free case, when Eq. (12.3)
reduces to �� � �0 � a sin���t	 �� 	 ��t��. If we seek for a solution with a uni-
formly rotating phase ��t� � �t, we obtain

�� a sin�� � �0 � �12�4�

This equation has a unique solution for any �0 if �a�� � 1, otherwise multiple
solutions are possible. The latter case is especially difficult and will be consid-
ered elsewhere (see numerical simulations of effect of noise on the multistable
states in (12.3) in [16]). Below we will consider a situation with small delayed
feedback only, where no multistability occurs. We will also show that noise can
destroy multistability, so that in its presence the condition �a�� � 1 can be weak-
ened.

12.2.3
Gaussian Approximation

Our main statistical approach in studying Eq. (12.3) is based on the Gaussian
approximation for ��t�. First, we separate the average rotation and the fluctua-
tions according to � � �t� �. For the fluctuating instantaneous frequency
(which is also Gaussian) v�t� � �� we get from (12.3)

v�t� � �0 	�� ��t� 	 a sin�� cos �� a cos�� sin � � �12�5�

The equation for the mean frequency � results from the averaging of (12.5):
0 � �0 	�	 a sin���cos ��. The phase difference � � ��t	 �� 	 ��t� �
	 # t

t	� v�s�ds is Gaussian with zero average, thus

�cos �� � exp 	��
2�

2

! "
� ��2� � 2

3 �

0
��	 s�V�s�ds � 2R � �12�6�

Here, we have introduced the autocorrelation function of the instantaneous fre-
quency V�s� � �v�t�v�t� s��. In the introduced notations, the equation for the
average frequency can be rewritten as
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� � �0 	 ae	R sin�� � �12�7�

One can note that it is analogous to Eq. (12.4), but has an additional factor e	R,
which describes a reduction of the influence of the delayed feedback due to
phase diffusion.

To obtain equations for the autocorrelation function V�s� we also introduce
the autocorrelation function of noise C and the cross-correlation function S, de-
fined according to C�s� � ���t���t� s��� S�s� � ���t�v�t� s��. Equations for V
and S are obtained via multiplication of Eq. (12.5) by v�t� u� and ��t� u� and
averaging:

�v�t�v�t� u�� � ���t�v�t� u�� 	 a sin�� v�t� u� cos
3 t

t	�
v�s�ds

 �= >
	 a cos�� v�t� u� sin

3 t

t	�
v�s�ds

 �= >
�

and similar for �v�t���t� u��. To accomplish the averaging we use the Furutsu–
Novikov formula, valid for Gaussian variables x� y having zero averages:
�xF�y�� � �xy��F��y��. With application to our averaging procedure this means
that all averaged terms of the form �x cos y� vanish and other give

v�t� u� sin
3 t

t	�
v�s�ds

 �= >
� e	R

3 0

	�
V�s	 u�ds �

��t� u� sin
3 t

t	�
v�s�ds

 �= >
� e	R

3 0

	�
S�s	 u�ds �

As a result we obtain

V�u� � S�u� 	 ae	R cos��

3 �

0
V�s� u�ds � �12�8�

S�u� � C�u� 	 ae	R cos��

3 �

0
S�u	 s�ds � �12�9�

Together with Eq. (12.7) and the definition of quantity R given by (12.6) they
constitute a closed system.

To proceed further it is convenient to consider the spectra, according to

2��� � 1
2�

3 �

	�
duV�u�e	i�u

and similar expressions for 3, 4 which are Fourier transforms of S and C, re-
spectively. Then Eqs. (12.8) and (12.9) yield
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2��� � 3��� 	 ae	R cos��
ei�� 	 1

i�
�

3��� � 4��� 	 ae	R cos��3��� 1	 e	i��

i�
�

what allows us to exclude 3��� and to obtain

2��� � 4��� 1� 2a�e	R cos��
sin��

��
� a2�2e	2R cos2 ��

2	 2 cos��
�2

! "	1

�

Equation (12.7) in the spectral form reads (here we use that 2��� is an even
function)

R �
3 �

	�
�1	 cos����	22���d� �

This system is still hard to solve in a general form, due to integration in the ex-
pression for R.

12.2.4
Self-Consistent Equation for Diffusion Constant

The quantity of main interest for us is the diffusion constant of the phase �, it
is related to the spectral density of the frequency fluctuations at zero frequency:
D � 2�2�0�. For this quantity we obtain: D � D0�1� a�e	R cos���	2, where
D0 � 2�4�0� is the diffusion constant in the absence of the feedback. To obtain
a closed system for determining D we assume further that the spectrum of the
frequency fluctuations 2��� is very broad. One can expect this for broad spec-
trum of noise 4���, i.e., if the noise is nearly delta correlated. More precisely,
we need to assume that the correlation time of frequency is much smaller
than the delay time �, so that the integral can be approximated as
R � #�	��1	 cos����	22�0�d� � �D�2. As a result, we obtain a closed system
of equations – the main result of our analysis –

D � D0

�1� a�e
	�D

2 cos���2 � � � �0 	 ae
	�D

2 sin�� � �12�10�

relating the diffusion constant D in the presence of the feedback to the “bare”
diffusion constant D0 and to the parameters of the feedback � and a, as well to
the “bare” frequency �0. This is a nonlinear system of two equations for two
variables D and �, which can be solved numerically for a given set of parame-
ters.
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12.2.5
Comparison of Theory and Numerics

In Fig. 12.5 we compare the results of direct numerical simulation of the phase
model (12.3) with theoretical predictions (12.10). In this case of relatively strong
noise the correspondence is rather good.

Figure 12.6 demonstrates the results for the van der Pol model (12.1). The
only parameter we have fitted here is the “no control” frequency �0 � 0�95.
Here the correspondence with theory is good for small �, but fails for large �.
The reason is that in this case the effective noise is small and therefore the
feedback control is effective even for large delays. However, for large a�
Eq. (12.10) exhibits multistability, which results in an enhancement of the diffu-
sion; here the Gaussian approximation used in derivation of (12.10) is not valid.

12.3
Control of Coherence by Multiple Delayed Feedback

Here we describe how the oscillation coherence can be controlled by a multiple
delayed feedback. For the van der Pol model (Eq. (12.1)) such a feedback is writ-
ten as
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Fig. 12.5 Diffusion constant and mean frequency as functions
of delay � for 2 � 1 and �0 � 2�, and different values of
feedback. Symbols: direct numerical simulation of model
(12.3); solid lines: theory (12.10).



�x 	 ��1	 x2� �x � �2
0x � k

��
��0

R� �x�t	 ��� 1��� 	 �x�t	 ��� � � ��t� �

���t���t��� � 2d2��t	 t�� � �12�11�

A similar feedback has been suggested by Socolar et al. [17] in the context of
chaos control. Despite the infinite sum of delays, it can be quite easily realized
in experiments [18] (roughly speaking, one has to send the signal �x�t� to a
Fabry-Perot resonator with reflection coefficient at the ‘mirrors’ R). For conver-
gence reasons we confine R to the range �	1� 1�. Noteworthy, that setting R � 0
we recover model (12.1) with just one feedback term.

Similar to the basic phase model (12.3) above, the equation for the phase can
be written as

�� � �0 � k
2

��
��0

R��sin��t	���1���	��	sin��t	���	��� � ��t� � �12�12�

with the effective noise ��t�. Again, our main goal is to investigate the diffusion
properties of the phase. To this end we separate the phase into an average growth
and fluctuations, ��t� � �t� ��t�. We then obtain for the fluctuating instanta-
neous frequency �� by substituting into Eq. (12.12) the following equation

�� � �0 	�� �

� k
2

��
��0

R��cos���� 1��� sin��t	 ��� 1��� 	 ��

	 cos���� sin��t	 ��� 	 �� 	 sin���� 1��� cos��t	 ��� 1��� 	 ��
� sin���� cos��t	 ��� 	 ���� �12�13�
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Fig. 12.6 Diffusion constant D of the van der Pol model with
delayed feedback (parameters are the same as in Fig. 12.1).
Symbols present the results of the direct numerical simula-
tion; solid lines show the corresponding theoretical results
according to Eqs. (12.10). The delay time is normalized by
the average period T0 � 2��0�95.



Without noise, � � � � �� � 0, Eq. (12.13) simplifies to

0 � �0 	�	 k
2

��
��0

R��sin���� 1��� 	 sin����� � �12�14�

The main effect is that the delayed feedback changes the frequency of the oscil-
lator. Furthermore, the implicit equation (12.14) provides either a unique or
multiple solutions for �. Here we choose the model parameters in the domain
where no multistability occurs.

Our main assumption allowing to perform statistical analysis of the basic
model analytically is that the phase fluctuations � are Gaussian. However, we
do not a priori confine the Gaussian noise � to be white. After averaging
Eq. (12.13) over the fluctuations of �� (which are Gaussian distributed, too), we
obtain for the mean frequency �:

� � �0 � k
2

��
��0

R� sin�����	��
2
� �
2 	 sin���� 1����	

��2
��1

�
2

� (
� �12�15�

Here we have used the fact that the phase difference �� � ��t	 ��� 	 ��t� has
Gaussian distribution with zero mean and therefore �cos ��� � exp	��2

���2� and
�sin ��� � 0. With �� � 	

# t
t	�� ���s�ds we obtain for the variance of ��

��2
�� � 2

3 ��

0
���	 u�C ���u�du � 2T� � �12�16�

where C ���u� � � ���t� ���t� u�� is the autocorrelation of the fluctuating part of
the frequency. In order to obtain equations for C ���u�, we introduce the autocor-
relation of the noise C��u� � ���t���t� u�� and the cross-correlation
C� ���u� � ���t� ���t� u��. After multiplying Eq. (12.13) with ���t� u� or ��t� u�
and averaging, we obtain

C ���u� � C� ���u� � k
2

��
��0

R� cos�����	T�

3 ��

0
C ���s� u�ds

�
	 cos���� 1����	T��1

3 ���1��

0
C ���s� u�ds

(
� �12�17�

C� ���u� � C��u� � k
2

��
��0

R�

�
cos�����	T�

3 ��

0
C� ���u	 s�ds

	 cos���� 1����	T��1

3 ���1��

0
C� ���u	 s�ds

(
� �12�18�

Together with the definition of T� (12.16), Eqs. (12.15), (12.17), and (12.18) con-
stitute a closed system. To exclude the crosscorrelations, we look at the power
spectra S ����� � 1

2�

#�
	� C ���u��	i�udu and similar expressions for S� and S� ��.

This leads to
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S ����� � S� ����� � k
2

��
��0

R�

�
cos�����	T�S ������

i��� 	 1
i�

	 cos���� 1����	T��1 S ����� �
i����1�� 	 1

i�

(
�

S� ����� � S���� � k
2

��
��0

R�

�
cos�����	T�S� ����� 1	 �	i���

i�

	 cos���� 1����	T��1 S� ����� 1	 �	i����1��

i�

(
�

This system of equations can be solved for S ��:

S ����� � S���� 1	 k
2i�

��
��0

R�S�

� �	1

1� k
2i�

��
��0

R�S��

� �	1

� �12�19�

Here, the star denotes complex conjugation and

S� � cos�����	T��1	 �	i���� 	 cos���� 1����	T��1�1	 �	i����1��� �

The spectral form of Eq. (12.16) reads

T� �
3 �

	�
S ����� 1	 cos����

�2 d�� �12�20�

Now we make one further approximation: we assume that the spectrum of fluc-
tuations of frequency �� is very broad, almost white, and replace in (12.20) the
spectrum S ����� by its value at zero frequency:

T� �
3 �

	�
S ���0� 1	 cos����

�2 d� � ��D
2

� �12�21�

In writing the last term we use the Green-Kubo formula D � 2�S ���0�, which
relates the diffusion constant D of the phase with the power spectrum of the
frequency fluctuations at zero frequency. Thus, finally from Eq. (12.19) we ob-
tain the equation for the diffusion constant

D � D0
4�1� R2E2 	 2RE cos����4

A2��� �� k�R�E� � �12�22�

Here D0 � 2�S��0�, E � �	�D�2, and

A��� �� k�R�E� � E�1�R2E2��8R�k�R	1���cos���
	2�1�4R2E2�R4E4�k�R	1�RE2��2R2E2cos2���� �
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We also substitute (12.21) in Eq. (12.15) which after summation yields

� � �0 � k
2

�	
�D
2 sin���R	 1�

1	 2R�	�D
2 cos��� R2�	�D

6 7
� �12�23�

Equations (12.22) and (12.23) constitute a closed system for the simultaneous
determination of the mean frequency and diffusion. Below we compare numeri-
cal solutions of these implicit equations with direct numerical simulations.

The validity of the analysis above, including that of Gaussian approximation,
is now checked by direct simulations of the phase equation (12.12) assuming
the noise ��t� to be Gaussian. Clearly, one has to approximate the infinite sum
of delay terms. Instead of just truncating this sum at some fixed � ��, we
rather mimic the behavior of real physical systems, starting at t � t0 with given
initial condition ��t� � �0�t� for t � t0 	 �� t0� by observing the equality:

��
��0

R��sin����1�� 	 �� 	 sin��� 	 ��� � �1	 R��X cos�	 Y sin�� �

where

X�t� �
��
��1

R�	1 sin��t	 ��� � sin��t	 �� � R X�t	 �� �

Y�t� �
��
��1

R�	1 cos��t	 ��� � cos��t	 �� � R Y�t	 �� �

Note that in order to compute the infinite sum in Eq. (12.12) now it is only nec-
essary to store the phase and related quantities X , Y over a duration of just one
delay period. This successive construction of the infinite sum is completely ana-
logous to the behavior of a signal in a Fabry-Perot interferometer.

In Figs. 12.7 and 12.8 we compare the results of the numerical simulations
with the analytical predictions according to Eqs. (12.22) and (12.23). Obviously,
both in the case of strong and small noise the correspondence between the nu-
merics and analytical results is good. Clearly, in comparison to the single de-
layed feedback scheme of [9], the introduction of the multiple delayed feedback
parameter R can lead to a larger variety of phase dynamics and hence of the
system behavior. For example, for the same value of the feedback strength k,
with increasing R the suppression of diffusion is stronger.
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12.4
Conclusion

In this chapter we have summarized theoretical and numerical results on the
delay feedback control of coherence of oscillations (for a possible experimental
realization see [19]). Our consideration has been restricted to the cases of weak
feedback only. For large feedback several novel features appear due to possible
multistability of the phase dynamics. A detailed study of these effects in pres-
ence of noise remains a challenging problem.
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Fig. 12.7 Diffusion constant D and mean frequency � for
small noise d2 � 2� 10	3 and �0 � 2� and k � 	0�2.

Fig. 12.8 Diffusion constant D and mean frequency � for
large noise d2 � 2�0 and �0 � 2� and k � 	0�2.
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Cristina Masoller

The dynamics of nonlinear oscillators which are weakly perturbed by loops is
studied as a function of the time of the feedback. By using as numerical exam-
ples with recurrent synaptic connections and with feedback, it is shown that the
delay induces resonant features in the natural frequency and in the amplitude
of the oscillations. These features can be understood in terms of a simple linear
equation, in spite of the particular nonlinearities of each system. Consequences
for the dynamics of delayed, such as networks of oscillatory neurons, are also
discussed. Feedback loops are relevant for the control of human balance [1, 2],
for generating persistent memory in neuronal systems [3, 4], for cellular differ-
entiation in genetic circuits [5], etc. Time delays, arising from the fact that sig-
nal propagation realistically occurs at a finite velocity, are often a source of in-
stabilities, multistability, chaotic behavior and oscillation death. On the other
hand, since the pioneer work of Pyragas [6] it is well known that time delayed
feedback can stabilize periodic orbits embedded in chaotic attractors. Recently,
novel applications of delayed feedback have been proposed, including the con-
trol of the noise induced motion [7, 8], the control of the coherence of noisy
and/or chaotic autonomous oscillators [9–11], the control of synchrony in
coupled neurons [12], the stabilization of unstable fixed points by random cou-
pling delays [13] or by using multiple feedback loops [14, 15], the control of
space–time patterns occurring in extended systems [16–19], the control of collec-
tive synchrony in coupled oscillators [20–22], etc.

In this contribution we study the interplay between the intrinsic dynamics of
a nonlinear oscillator and a weak time delayed feedback loop. Specifically, we
study the dependence of the natural frequency and amplitude of the oscillations
on the delay time, �, of the feedback loop. We consider autonomous systems
that have a well-defined natural oscillation period, T0 (the oscillations can be re-
laxation oscillations, self-sustained, chaotic or stochastic). Using a laser model
and a neuron model as numerical examples we show that a weak time delayed
feedback loop induces two main features: a piecewise linear variation of the os-
cillation frequency with � and an enhancement (or suppression) of the oscilla-
tions for values of � related to T0. We also show that a good understanding of
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these feedback-induced features can be developed in terms of a simple linear
equation. Consequences for the dynamics of delayed-coupled oscillators, such as
laser arrays and networks of oscillatory neurons, are also discussed. We show
that delay-induced resonances manifest themselves in the collective mean-field,
and are often more pronounced when an oscillator is coupled to other similar
units.

We start by considering the simplest possible model describing an oscillator
with a delayed feedback loop:

�z � 	�z�t� � �z�t	 ��� �13�1�

where z � x � iy and � � �� i�0 are complex and � is real. This linear equa-
tion has a fixed point at z � 0 whose stability can be analyzed with the ansatz
z � z0 exp�	st� where s � 
 � i�. This gives the characteristic equation
s � �	 � exp�s�� that has to be solved numerically. There are an infinite num-
ber of eigenvalues and the stability of the fixed point will be enhanced (dimin-
ished) by the feedback if 
 � � (
 � �) for all s.

The real part of the eigenvalues as a function of � is displayed in Fig. 13.1 (a)
for � � 0, and in Fig. 13.1 (b) for � � 0. Enhanced stability occurs at
� � �n� 1�2�T0 for � � 0 (at � � nT0 for � � 0), where T0 � 2����0�. The imag-
inary part of the eigenvalue with largest real part, displayed in Fig. 13.1 (c), is a
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Fig. 13.1 Real part of the eigenvalues of
Eq. (13.1) for � � 0�1, T0 � 1, (a) � � 0�5,
(b) � � 	0�5. The circles indicate the largest
eigenvalue and the dashed line gives the
value of �. (c) Imaginary part of the eigen-
values. The largest eigenvalue is indicated

with circles for � � 0�5 (with squares for
� � 	0�5). (d) Enhanced stability regions in
the (��T0, �) parameter space with T0 � 1
fixed. (e) Enhanced stability regions in the
(��T0, �) parameter space with � � 1 fixed.



piecewise linear function of �, and changes suddenly at � � �n� 1�2�T0 for
� � 0 (at � � nT0 for � � 0). The regions of enhanced stability, obtained varying
� and � (for fixed �0), are displayed in black in Fig. 13.3 (d). Let me remark that
these resonances have different features from the well-known resonances that
depend only on the phase difference between the oscillator and the re-injected
signal (see Fig. 13.3 (e), where the enhanced stability regions were calculated
varying the natural frequency �0 and � while keeping � fixed). Recently, similar
results have been found in time delayed feedback control of steady states: in a
generic linear normal form model, equivalent to Eq. (13.1) [23, 24], and experi-
mentally, in a multisection semiconductor laser, with time delayed feedback
from an external Fabry-Perot cavity [25].

Next, let us show that in spite of its simplicity, Eq. (13.1) provides a good
qualitative description of delay-induced features in oscillatory feedback systems.
First, we consider the equations for a single-mode semiconductor laser with op-
tical feedback [26]:

�E � k�1� i���N 	 1�E � �E�t	 ��e	i�0� �
����
D

"
�� �13�2�

�N �N � j	N 	 NI� �13�3�

where E is the slowly varying complex amplitude, I � �E�2 is the laser intensity,
N is the carrier density, k is the cavity losses, � is the linewidth enhancement
factor, �0� is the feedback phase, D is the spontaneous emission strength, � is
a Gaussian white noise with zero mean, j is the injection current, and �N is the
carrier lifetime.

In the absence of feedback, Eqs. (13.2) and (13.3) have a single fixed point
(Is � j	 1, Ns � 1) which is a stable focus if j � 1 and is approached with tran-
sient relaxation oscillations of period T0 � 2�

��������������������������
�n�2k�j	 1�� �. In the presence of

feedback, if ��
�������������
1� �2

"
� 1 there is of fixed points (the so-called external-cavity

modes) that become unstable as the feedback strength � or delay time � in-
crease, leading to periodic, quasiperiodic and chaotic oscillations [27, 28]. The
amplitude, A � max�I� 	min�I���2, and the frequency of the main peak in the
intensity power spectrum vs. � (for fixed �) are displayed in Fig. 13.2(a) and (b)
respectively. For small � the fixed points are stable and the laser intensity is con-
stant (A � 0). For longer � the amplitude of the intensity oscillations increases
nonmonotonically with �: is maximum for � � �n� 1�2�T0 (where n is an inte-
ger) and is minimum for � � nT0. The width of the stability regions decreases
with �, �, and for large �, � no resonances are observed. The frequency of the
intensity oscillations varies in a piecewise linear relation with � and changes
abruptly at � � nT0. Weak optoelectronic feedback, where the injection current
depends on the delayed laser output, j � j01� 	�I�t	 �� 	 Is�� [29, 30], has sim-
ilar effects. In Fig. 13.2 (c) there are stability regions where the intensity is con-
stant and regions where it exhibits large oscillations; in addition, the frequency
of the intensity oscillations (Fig. 13.2 (d)) changes suddenly at certain values of �
and is a piecewise linear function of � for � larger than a few intrinsic oscilla-
tion periods.
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As a second example we consider a type model of an oscillatory neuron [31–
33], extended to account for a recurrent synaptic connection [34]:

CM �V � Il 	 Id 	 Ir 	 Isd 	 Isr � �V�t	 ��� �13�4�

where V is the voltage, Id and Ir are de- and re-polarization currents and Isd

and Isr are slow currents (for details of the model equations see [31]). We
choose parameters such that the neuron in the absence of feedback displays of
period T0. Due to the excitable nature of the dynamics it can be expected that
even weak feedback strengths can be a strong perturbation to the intrinsic sub-
threshold oscillations. The feedback may amplify the oscillation amplitude, in-
ducing threshold-crossings and giving rise to firing activity that can be self-regu-
larized by the delay time. This is indeed observed in Fig. 13.3: for weak negative
feedback the oscillation amplitude is enhanced and the neuron fires spikes;
however, the feedback is not strong enough to induce firings for all delay val-
ues: there are feedback-induced spikes only in windows of the delay centered at
� � �n� 1�2�T0 with n integer. Moreover, in these windows the firing dynamics
are regularized by the delay: for short delays the neuron fires tonic spikes
(Fig. 13.3 (d)), while for longer delays it fires spikes-with-skippings (Fig. 13.3 (e)).
For weak positive feedback the oscillation amplitude is diminished and there is
also a nonmonotonic relationship with �: the amplitude is maximum (mini-
mum) for � � nT0 (� � �n� 1�2�T0). For both, positive and negative feedback,
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Fig. 13.2 Amplitude (a) and frequency (b) of
the oscillations of the output intensity of a
laser with optical feedback vs. the delay
time. � � 0�8 ns	1 (.) and 1�2 ns	1 (*, red
online). Amplitude (c) and frequency (d) of

the intensity oscillations for optoelectronic
feedback: 	 � 0�05 (.), 	 � 	0�05 (*, red
online, displaced vertically by 	2�5). Parame-
ters are: k � 300 ns	1, � � 3, �0� � 0 rad,
D � 10	5 ns	1, j � 2 and �N � 1 ns.



the frequency of the neuronal oscillations is a piecewise linear function of � for
� larger than a few T0.

Let me remark that Eq. (13.1) provides a simple explanation for the feedback-
induced features seen in the laser and in the neuron model and gives a deeper
understanding of their universality. Similar effects have been reported in other
autonomous systems presenting an intrinsic oscillation period. For example, for
Rössler and Lorenz oscillators, in [35] stability islands were found analytically
and confirmed numerically, when the delay time is about �n� 1�2�T , where n
is an integer and T is the average intrinsic period of the chaotic oscillator.
While these effects were explained in terms of a stability analysis of the solu-
tions of the specific models, we have shown that Eq. (13.1) offers a simple para-
digm for a qualitative understanding.

Moreover, the enhanced stability regions in Fig. 13.1 (d) are remarkably simi-
lar to the stability regions of the incoherent state of an ensemble of delayed-
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Fig. 13.3 Amplitude of the neuron oscilla-
tions vs. � for (a) � � 	0�001, (b) � � 0�001.
The dashed line indicates the amplitude of
the subthreshold oscillations for � � 0.
(c) Frequency of the oscillations vs. � (dots:

� � 0�001, circles: � � 	0�001). Firing dy-
namics for � � 	0�001 and � � 0�5 T0 (d),
� � 8�5 T0 (e). Parameters are as in [25] with
T � 35oC.



coupled studied by Yeung and Strogatz [36]. To investigate the relationship be-
tween the dynamics of a single oscillator with a weak feedback loop and that of
an ensemble of weakly coupled oscillators, we consider N identical oscillators
with delayed mean field coupling:

��i�t� � ���i� � �

N

�N

j�1

�j�t	 ��� �13�5�

The dynamics of the synchronized state, �i�t� � �j�t� � ��t� � i, j, is governed
by �� � ���� � ���t	 ��. Therefore, for parameters (�, �) such that the synchro-
nized state is stable, the array oscillations can be either enhanced or suppressed
by tuning the delay time. Let us first show how this applies to an array of semi-
conductor lasers coupled through an external mirror [37–40]:

�Ei � k�1� i���Ni 	 1�Ei

� �

N

�
j

Ej�t	 �� exp �	i�0�� �
����
D

"
��t�� �13�6�

�N �Ni � j	Ni 	 NiIi� �13�7�

where Ei and Ni are the complex field and carrier density of the ith laser, re-
spectively, and the parameters have the same meaning as in Eqs. (13.2) and
(13.3). Figure 13.4 (a) displays the amplitude of the oscillations of the incoherent
intensity, I � 1�N

$
j �Ej�2, vs. the delay time. An array of N � 5 lasers is con-

sidered but similar results are found for other values of N. For comparison, the
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Fig. 13.4 Laser array: amplitude (a) and fre-
quency (b) of the oscillations of the output
of one laser (.) and of the output of the
array (o, red online) vs. �. (c) Out-of-phase

oscillations for � � 4T0. Thin lines: individual
intensities, thick line: incoherent intensity.
(d) In-phase oscillations for � � 7�5T0.
Parameters as in Fig. 13.2.



amplitude of the oscillations of a single laser is also displayed. The resonances
observed previously in one laser are clearly present in the output of the array.
Enhanced (suppressed) oscillations occur for � � �n� 1�2�T0 (� � nT0). For
most values of the delay the lasers synchronize in-phase (Ij � I � j). In the en-
hanced stability islands (� � nT0) the individual intensities can be either in-
phase or out-of-phase (in agreement with the results of [38]). As in the case of a
single laser, for large (�, �) the resonances are washed out. The frequency of the
collective oscillations also exhibits a piecewise linear relation with �

(Fig. 13.4 (b)); however, in the regions of enhanced stability there is a locking be-
havior such that the frequency of the collective oscillations is an integer multi-
ple of 1�T0 (not shown), while the frequency of the oscillations of a single laser
is nearly independent of � (black dots in Fig. 13.4 (b)).

Similar results are found in networks of oscillatory neurons coupled through
the delayed mean-field:

CM �Vi � Il�i 	 Id�i 	 Ir�i 	 Isd�i 	 Isr�i � �V�t	 ��� �13�8�

Here Vi is the membrane potential of the ith neuron, V � 1
N

$N
j�1 Vj is the

collective mean field and the other variables have the same meaning as in
Eq. (13.4). Figure 13.5 displays the amplitude of the oscillations of the mean
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Fig. 13.5 Neuron ensemble: amplitude (a),
(c) and frequency (b), (d) of the mean field
oscillations (circles, red online) vs. � for
� � 0�001 (a), (b); � � 	0�001 (c),(d). The
dots display the amplitude and frequency of

the oscillations of a single neuron. (e) Sub-
threshold oscillations in antiphase (the thick
line indicates the mean field). Parameters as
in Fig. 13.2.



field vs. � for fixed �. For comparison, the amplitude of the oscillations of a sin-
gle neuron is also displayed (an array of N � 5 neurons is considered but simi-
lar results are found for other values of N). For both, positive and negative feed-
back, the mean field exhibits periodic features at delay times separated by T0.
For � � 0 (Fig. 13.5 (a)) the individual neurons display only, which can be either
in-phase, out-of-phase, or in perfect antiphase depending on �. In the latter case
the mean field is constant and A � 0. For � � 0 (Fig. 13.5 (c)) the array displays
even more complex behavior: depending on � either all the neurons fire spikes,
or they all display subthreshold oscillations, or some neurons display subthres-
hold oscillations while the others display spiking behavior (i.e., the ensemble di-
vides into clusters). The neuronal oscillations can be either in-phase or out-of-
phase depending on the delay. It can be observed that there are periodic win-
dows of � where the neurons display antiphased subthreshold oscillations which
result in a nearly constant mean field (A � 0). There is also of solutions with
the coexistence for certain parameters of in-phase and out-of-phase behavior.
For positive and negative feedback the frequency of both, the mean field and a
single neuron has a piecewise linear dependence with � (Fig. 13.5 (b) and (d)).
Also resembling the behavior of the laser array, in the regions of out-of-phase
behavior the frequency of the mean field is nT	1

0 (not shown) while the fre-
quency of the individual neurons is nearly constant, independent of �.

Mutual coupling can lead to an enhancement of the resonances with respect
of the case of a single oscillator with feedback. By comparing the amplitude of
the oscillations of a single neuron (Fig. 13.3 (a) and (b)) with the amplitude of
the mean-field of N coupled neurons (Fig. 13.5 (a) and (c)) it can be observed
that in spite of the fact that the strength of the signal re-injected into a neuron
is the same, the coupling with other units enhances the delay-induced reso-
nances with respect to the case of a self-feedback loop.

Concluding, we have shown that a weak delayed feedback loop induces uni-
versal resonant features as a function of the delay time that are common to
autonomous nonlinear oscillators and that can be understood in terms of the
simple linear equation (13.1). We have also shown that these resonant features
manifest themselves in the collective behavior of delayed-coupled oscillators.
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Part IV
Communicating with Chaos, Chaos Synchronization





Wolfgang Kinzel and Ido Kanter

14.1
Introduction

Chaos synchronization is a counterintuitive phenomenon. A chaotic system
moves irregularly and unpredictably, and two chaotic systems, starting from al-
most identical initial states, end in completely uncorrelated trajectories [1].
Hence it came as a surprise when Pecora and Carroll showed in 1990 that two
chaotic systems which are coupled by some of their internal variables can syn-
chronize to a common identical chaotic motion [2]. The dynamics is still irregu-
lar and unpredictable, but both sides have identical trajectories.

The combination of synchronization and unpredictability leads to an interest-
ing application for secure communication: A secret message which is to be sent
from Alice to Bob is encoded in the chaotic signal which is exchanged between
these two partners. Since the signal is chaotic it is difficult – if not impossible –
to extract the message from the irregular signal. This signal, however, synchro-
nizes the dynamical system of Alice with the one of Bob who can immediately
decode the message. It is not obvious how to implement this idea, but in fact
communication by synchronized chaotic electronic circuits was demonstrated in
1992 by Cuomo and Oppenheim [3] and by Parlitz et al. [4].

These pioneering papers stimulated intensive research on communication
with synchronized chaos which is still ongoing. One fascinating realization of
this concept are systems of chaotic lasers. Lasers are a paradigm for coherent
oscillations of the electromagnetic field of light waves. However, if a small frac-
tion of the beam is re-injected into the cavity the laser can change to a state of
chaotic motion, where the intensity of its beam is modulated on a sub-nanose-
cond time scale.

Communication with synchronized chaotic lasers has been demonstrated by
Van Wiggeren and Roy in 1998 [5]. In principle, it is possible to transmit secret
messages by chaotic laser beams with a rate of larger than 109 bits per second
on a broadband carrier. Recently, synchronization of chaotic semiconductor la-
sers and transmission of secret messages encoded in the laser beams has been
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demonstrated over a large distance in the public fiber network of Greece [6].
This research opens promising directions for future technological applications.

On the other side, synchronization of chaotic lasers has fascinating fundamen-
tal aspects. The lasers are driven by time delayed couplings and feedback, and the
system is well described by a set of ordinary difference-differential equations [7].
The delay terms generate high-dimensional chaos which is still a challenge to
mathematical research [8]. In addition, various kinds of synchronization have been
observed and analyzed for such chaotic systems, like complete, generalized, antici-
pated, lag and phase synchronization [9]. Spontaneous symmetry breaking and
sub-lattice synchronization have recently been reported [10, 11].

Secret communication relies on the fact that an attacker (Eve) is not able to
decode the message from the exchanged signal. If Eve does not know anything
about the chaotic systems of Alice and Bob she still can try to analyze the ex-
changed signal using the tools of nonlinear dynamics [12]. If Eve, however,
knows the chaotic equations used by Alice and Bob but not their secret parame-
ters, Eve may try to estimate the parameters from the recorded signal.

If, in addition, Eve knows the parameters as well, then Eve knows everything
which Alice and Bob know from each other. In this case one might guess that
it is impossible to send secret messages. However, this is not true. Modern crypto-
graphic methods generate a secret key over a public channel. These methods,
which were pioneered by Diffie and Hellmann in 1976, are based on the number
theory [13]. Recently, it has been suggested that public channel cryptography may
be possible using synchronization of chaotic systems [14–16]. This novel promis-
ing aspect of nonlinear dynamics will be emphasized in this overview.

14.2
Synchronization of Chaotic Systems

Let us consider two dynamical systems x and y which are driven by a time-de-
pendent signal s, as sketched in Fig. 14.1. These systems may be ordinary differ-
ential equation for high-dimensional variables x�t� and y�t�,

�x � f �x� s�� �y � f �y� s� �14�1�
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Fig. 14.1 A chaotic signal s�t� drives two identical nonlinear
systems x and y. The synchronous solution x�t� � y�t� is
stable if all conditional Lyapunov exponents are negative.



with some vector function f and some signal s�t�. For instructive simplicity we
will demonstrate the principles of synchronization and communication with the
simplest chaotic system, the iterated Bernoulli map [1, 9],

xt � f �xt	1�� f �x� � �ax� mod 1� �14�2�

For a > 1 the trajectories xt are chaotic with a flat density on the unit interval
0� 1�. In the following we consider a � 1, only. Using the Bernoulli map, the
scenario of Fig. 14.1 may be realized as

xt � �1	 ��f �xt	1� � �f �st	1�
yt � �1	 ��f �yt	1� � �f �st	1�� �14�3�

The parameter � � 0� 1� controls the strength of the drive s. The sequence st

may be generated from any mechanism like noise or an independent chaotic
equation. Obviously, the synchronous trajectory x0

t � y0
t is a solution of

Eq. (14.3). However, this solution may be unstable to tiny perturbations. Hence
we consider small deviations from the synchronous state,

�xt � xt 	 x0
t � �yt � yt 	 y0

t � �14�4�

Expanding Eq. (14.3) yields

�xt � �1	 ��a �xt	1� �yt � �1	 ��a �yt	1� �14�5�

These equations show that the synchronous solution is stable if the Lyapunov
exponent � of the subsystem is negative,

�1	 ��a � 1 or � � ln ��1	 ��a� � 0� �14�6�

Switching off the drive, the subsystems must not be chaotic, otherwise the syn-
chronous trajectory is unstable [9].

Note that in this simple model the driving signal st does not appear in the
stability analysis, since the derivative f ��x0

t	1� � a does not depend on the trajec-
tory x0

t .
Pecora and Carroll [2] realized that the drive s may be a part of the chaotic

system x, as indicated in Fig. 14.2. The left side represents the transmitter of
Alice who sends the signal s to the receiver Bob. Bob is using s as a part of his
dynamic equations, which are identical to those of Alice. Again we demonstrate
this principle with the Bernoulli iteration:

st � �1	 ��f �st	1� � �f �xt	1��
xt � �1	 ��f �xt	1� � �f �st	1�� �14�7�
yt � �1	 ��f �yt	1� � �f �st	1��
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The dynamics of Alice is chaotic since the stability matrix of the �s� x� system,

�1	 ��a �a
�a �1	 ��a

 �
�14�8�

always gives one positive Lyapunov exponent � � ln a � 0, independent of the
strength � of the drive. However, the stability of the synchronous solution
xt � yt is determined, as before, by Eq. (14.6). The total dynamic system of Alice
is chaotic but the subsystems x and y are synchronous provided the conditional
Lyapunov exponents are negative.

This is a general result which holds for iterated maps as well as for any
chaotic system. Alice has to decouple her dynamic system into active and pas-
sive variables s and x. The active variables are inserted into the system of Bob.
Bob’s system can synchronize to Alice’s provided the conditional Lyapunov expo-
nents of the passive variables are negative.

To apply this scenario to communication one would like to send a scalar sig-
nal s which is part of a high-dimensional phase space �s� x�. Can a scalar signal
synchronize high-dimensional chaos? The answer is positive. On the synchroni-
zation manifold xt � yt there may exist a spectrum of positive Lyapunov expo-
nents whereas perpendicular to this manifold any perturbation will relax back
to the manifold, i.e., all conditional Lyapunov exponents are negative. This has
been shown for Lorenz and Rössler equations and coupled map lattices [17]. In
addition, this holds for dynamical systems with delay [8].

As mentioned before, the synchronization mechanism of Fig. 14.2 can be im-
plemented by ordinary differential equations for x�t�� y�t� and s�t�. Such equa-
tions have been realized with electronic circuits of nonlinear elements [3, 18,
19]. Another fascinating possibility to realize communication by synchronization
of chaotic systems are lasers. Applying a feedback to the laser cavity by injecting
another beam – either from the laser itself or from another laser – the laser can
be driven to a state of chaotic modulation of its intensity and phase [5, 8, 20,
21]. The time the light wave needs to go from Alice to Bob usually exceeds the
time scales which determine the dynamics of a laser. Therefore, the two chaotic
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Fig. 14.2 The chaotic system of Alice is decomposed into a
signal variable s�t� and several passive variables x�t�. The
signal s�t� synchronizes the passive variables y�t� of the
identical nonlinear system of Bob.



systems of Alice and Bob are coupled by a time delayed signal with a delay time
�. This delay time just shifts the chaotic trajectories y�t� � x�t	 ��. However, if
additional delay times enter by self-feedback and if there is a bidirectional cou-
pling between the lasers of Alice and Bob, the synchronization may become
more complex, for example, anticipated chaos is possible [22].

Let us consider the configuration sketched in Fig. 14.3. Here three chaotic
units are involved in the synchronization process: Alice and Bob are interacting
by mutual coupling and Eve is driven by the signal of Alice. All three units have
a self-feedback, and all exchanged signals – mutual, directed and self-feedback –
are transmitted with an identical delay time �. For simplicity, we again illustrate
this mechanism with the Bernoulli map [1],

xt � �1	 ��f �xt	1� � ��f �xt	�� � ��1	 ��f �yt	���
yt � �1	 ��f �yt	1� � ��f �yt	�� � ��1	 ��f �xt	��� �14�9�
zt � �1	 ��f �zt	1� � ��f �zt	�� � ��1	 ��f �xt	���

Since feedback and exchange delay times are identical, the synchronous trajec-
tory xt � yt � zt � x0

t is a solution of these equations, with

x0
t � �1	 ��f �x0

t	1� � �f �x0
t	��� �14�10�

The spectrum of Lyapunov exponents can be calculated exactly, using the meth-
od developed in [23]. In particular, in the limit of infinitely large delay times,
���, the equations have been solved analytically [11]. Here we consider this
limit, only. For � � 0 the system is in a state of high dimensional chaos, the Ka-
plan-Yorke dimension increases proportional to the delay time �. For � � 0�5
the two systems x and y receive an identical feedback, which in the limit of
large delay time may be considered as noise. Hence, according to Eq. (14.6),
x and y are synchronal for � � �a	 1��a.

If the two delay terms have different strength, � �� 0�5, the synchronal trajec-
tory is stable for
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Fig. 14.3 Two dynamical systems x and y with delayed feed-
back are interacting by mutual delayed signals. An eaves-
dropper with an identical dynamical system z is driven by the
signal from x, but cannot interact with the two partners.



a	 1
2a�

� � �
2a�	 a� 1

2a�
� � � �a	 1��a� �14�11�

Eve is not interacting with Alice and Bob. We assume that she is recording only
the signal of Alice. Therefore, the area of stable synchronization is different
from the one of Alice and Bob. If xt � yt one finds for Eve

� �
a��	 1� � 1

a�
� � � �a	 1��a� �14�12�

The phase diagram is shown in Fig. 14.4. There is no overlap between the range
of parameters where Alice and Bob synchronize and where Eve is able to follow
the trajectories of Alice and Bob. In particular, if in addition the exchanged sig-
nals are nonlinear functions of xt and yt, respectively, then Eve cannot adjust
her parameters to synchronize with Alice and Bob.

This phenomenon is not specific to these simple maps, but it has also been
found in corresponding experiments on chaotic semiconductor lasers [16]. Feed-
back with delay generates high-dimensional chaos which can be synchronized
by exchanged laser beams. The experimental and corresponding numerical
phase diagrams show different areas of synchronization between mutually
coupled and directionally coupled lasers. If the self-feedback is absent, � � 0 in
Fig. 14.4, the iterated maps are not synchronized. For the semiconductor lasers,
however, a symmetry breaking has been reported for this case: One laser takes
the role of a leader which drives the opposite laser which follows with the delay
time � [10]. Since the time-shifted trajectories are not a solution of the corre-
sponding Eqs. (14.9), the laser intensities do not completely coincide, they have
a large overlap only.

14 Secure Communication with Chaos Synchronization308

Fig. 14.4 Phase diagram of configuration of
Fig. 14.3 where the three systems are Ber-
noulli maps with parameter a � 3 and infi-
nite delay times. � is the strength of the total
time-delayed couplings, and �� is the

strength of the self-feedback. In the upper
region the two partners x and y synchronize,
whereas only in the lower region the eaves-
dropper z can synchronize with y.



Note, however, in the case where Eve is recording both of the signals from
Alice as well as Bob, she is able to synchronize her system. In this case one
needs an asymmetry between self- and mutual feedback to prevent Eve from ad-
justing her parameters.

Two-way is different from one-way, interaction is more than drive, this princi-
ple promises novel methods of public channel cryptography which are explained
in Sections 14.6–14.8. In the following section we will discuss how to encode a
message m�t� into the exchanged signal s�t�.

14.3
Coding and Decoding Secret Messages in Chaotic Signals

In the previous section we have seen that two systems which are in a state of
high-dimensional chaos can be synchronized by a scalar signal s�t� being ex-
changed between the two systems. For communication, a master/slave config-
uration is usually considered: Alice is transmitting a signal s�t� to Bob which
synchronizes his chaotic equations. Now Alice wants to use this mechanism to
send a secret message to Bob. How can she encode the message m�t� into the
transmitted signal s�t� such that an eavesdropper Eve recording the signal is not
able to extract the message from the signal?

There are two ways to encode and decode a message into the chaotic system
of Alice and Bob: 1. to modulate the transmitted signal s�t� by the message
m�t�, and 2. to modulate the dynamics of Alice’s system x�t� by the message.
The first method is often called chaos masking while the second method has the
names chaos modulation or chaos shift keying.

Let us demonstrate these two principles with the Bernoulli maps. In the sim-
plest case of Fig. 14.1 the two systems xt and yt are driven by an external ran-
dom signal st. Now Alice is sending an additional signal �st � xt �mt to Bob.
Since Bob is synchronal to Alice, he just can subtract his own variable from this
signal to recover the message,

mt � �st 	 yt� �14�13�

If the dynamics is complex enough, and if the message has a small amplitude
compared to the carrier xt, then it is not easy to extract the message from the
transmitted signal st without knowing the dynamical equations of Alice and
Bob.

In this simple example of chaos masking, however, one has to transmit two
signals st and �st. But it is possible to transmit a secret message by a single sca-
lar signal st, only. In the simplest case, the message is just added to one of the
internal variables, st � xt �mt. Now there are two possibilities, illustrated in
Fig. 14.5: The signal influences the dynamics of the transmitter (chaos modula-
tion, left side) or the signal is immediately transmitted to the receiver (chaos
masking, right). In the first case, it is possible, in principle, to decode the mes-
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sage without any error. In the second case, decoding relies on a phenomenon
which has been named chaos-pass filter [20]. Let us illustrate these two cases
with the iterated maps with delay. The equations for chaos modulation are

st � xt �mt�

xt � �1	 ��f �xt	1� � �f �st	��� �14�14�
yt � �1	 ��f �yt	1� � �f �st	���

The dynamics of the receiver yt is identical to the one of the transmitter xt, thus
the system synchronizes, xt � yt, if the subsystem has negative Lyapunov expo-
nents, i.e., for � � �a	 1��a [11]. The receiver is recording the transmitted sig-
nal st, hence he can immediately decode the message, mt � st 	 yt.

For the other case, the equations for chaos masking are

st � xt �mt�

xt � �1	 ��f �xt	1� � �f �xt	��� �14�15�
yt � �1	 ��f �yt	1� � �f �st	���

The receiver has a different dynamics than the transmitter, thus they do not
synchronize perfectly. However, they still have a large overlap with each other
and the message can also be decoded with the difference mt � st 	 yt. But there
is an error, the recovered message has only some overlap to the original one.

It is not obvious why chaos masking is working. The dynamical system yt is
driven by the sum xt �mt. Nevertheless, it follows a trajectory which is close to
the dynamics of the transmitter, xt . yt. The chaotic system filters the message
out of the drive. It functions as a chaos-pass filter. This phenomenon is not well
understood, yet, although it seems reasonable that perturbations perpendicular
to a stable synchronization manifold are damped [24].
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Fig. 14.5 Encoding a secret message m. Left: Chaos modula-
tion. The message modulates the dynamics of Alice’s equa-
tions, and Bob can extract the message without errors. Right:
Chaos masking. The message is added to the exchanged sig-
nal and extracted by the mechanism of chaos pass filter.



Both of the encoding/decoding methods, chaos modulation as well as chaos-
pass filter, have been implemented in electronic circuits as well as in chaotic
lasers [3, 5, 19, 25, 26]. In most cases a directed coupling – a master/slave
configuration – has been used. Only recently, a chaos-pass filter has applied to
mutual couplings in the context of public key cryptography [16]. This method
will be introduced in Section 14.8.

There are other possibilities to encode a message into a chaotic system. For
instance, the parameters of the transmitter can be modulated with the message.
In particular, if the message is binary, mt � �0� 1�, the receiver may be syn-
chronal for mt � 0 and detuned for mt � 1. If one of the transmitter variables is
transmitted, then the receiver knows whether the corresponding variable of his
dynamical system can follow (mt � 0) or not (mt � 1). For chaotic lasers, these
parameters which are modulated by the message may be the pump current or
the phase shift. Modulating the phase shift corresponds to modulating the delay
time � [25].

14.4
Analysis of the Exchanged Signal

The secret message which Alice sends to Bob is encoded in a chaotic signal on
the transmission line. An eavesdropper Eve is recording this signal. If Eve does
not know the dynamics which generates the signal, is she still able to recover
the message from the transmitted signal?

In fact, nonlinear dynamics offers many powerful tools to analyze data pro-
duced by deterministic chaos [12]. Chaotic trajectories of dissipative system
usually move on low-dimensional manifolds which may be reconstructed from
partial information on the trajectories. Accordingly, from the transmitted signal
s�t� a low-dimensional manifold can be constructed, and an additional encoded
message may be extracted from deviations from this manifold.

Consequently, for the early implementations of chaos-based communication
by Lorenz equations, the encoded message was extracted by the technique of re-
turn maps [27]. The maxima and minima of the transmitted signal were re-
corded and consecutive differences and sums of these data were plotted. This
return map clearly showed almost one-dimensional segments. A message en-
coded either by chaos modulation or by chaos masking generated points away
from these segments. Hence this message could easily be extracted, at least for
low frequencies. For high frequencies, however, the message could be directly
reconstructed from the power spectrum of the transmitted signal.

Chaotic lasers offer additional structures which can be used to extract mes-
sages by the technique of return maps. The output intensity of chaotic lasers
consists of a series of irregularly spaced pulses. The sequence of intensity maxi-
ma and time intervals of these spikes was plotted as return maps. The relation
between intensity maxima and interspike intervals allowed to extract a message
encoded in the transmitted laser beam [28].
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For low-dimensional chaotic manifolds, simple return maps yield an effective
tool to extract the message from the chaotic signal. However, is this approach
still feasible for high-dimensional chaos, for hyper-chaotic communication
schemes?

Even in such a case it is possible to reconstruct the high-dimensional attrac-
tor. After the transmitted signal s�t� has been recorded, a sequence of vectors is
constructed with a time delay �, xt � �st� st	�� st	2�� � � � � st	�n	1���. If n is large en-
ough, a sequence of these n-dimensional vectors moves on a manifold which is
smaller than n. Locally, this manifold can be fitted by smooth functions with a
few parameters. Then the message is visible, as before, from deviations from
this manifold. Using this method, it was possible to extract a message from a
signal of a six-dimensional hyper-chaotic system, a combination of Lorenz and
Rössler equations [29].

Chaotic systems with time delay, like lasers with external feedback, offer an-
other possibility to use high-dimensional chaos for communication. However,
also for this case tools to reconstruct the chaotic attractor have been developed
[30]. For simple systems like the Mackey-Glass equation, the encoded message
was successfully extracted by these embedding methods [31].

To demonstrate the principle of reconstructing hyper-chaotic attractors, let us
consider again the Bernoulli iteration with time delay, Eq. (14.9). For this simple
case it is immediately obvious that the three-dimensional vectors �xt� xt	1� xt	��
are iterated on a two-dimensional manifold. But the dimension of the chaotic at-
tractor is very large, of the order of �. Hence a low-dimensional embedding
technique is able to extract a message from high-dimensional hyper-chaos.

Chaotic lasers with feedback allow another method to decode a message from
the chaotic beam. For chaos modulation a small message is like a perturbation
of the dynamics of the transmitter which is described by a response function.
The structure of this response function is determined by the feedback loop, it
can be modeled by a few parameters. These parameters can be estimated from
the exchanged signal, at least for a fiber-ring laser [32].

Up to this point, we have assumed that an eavesdropper Eve has no informa-
tion on the dynamical equations of Alice and Bob. If, however, Eve knows the
equations but does not know their parameters, she has more information for a
successful attack. In this case, there exist methods to estimate the parameters
of chaotic equations from the transmitted signals [33].

In summary, there exists a toolbox of nonlinear dynamics to analyze the
transmitted signal and to estimate the encoded message. For simple systems,
these tools could be successfully applied, even in the case of hyper-chaos. For
more complex systems, these methods did not work, yet. Consequently, the sec-
urity of chaos-based cryptography depends on the fact that it is computationally
infeasible to extract the message from the transmitted signal. The system has to
be complex enough to increase the amount of computational effort to an extent
which is not available to an eavesdropper. Note that modern cryptographic
methods, based on number theory, also depend on the computational infeasibil-
ity to break the code [13].
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14.5
Neural Cryptography

In the previous sections, we have seen how secret messages can be encoded in
a chaotic system. Alice and Bob have to use an identical dynamical system with
identical parameters. If an attacker Eve knows these equations as well as their
parameters she should be able to extract the message, too.

However, this is only true for directed couplings. In this case Alice and Bob
have to use a secure private channel to agree on a common encryption key,
namely the secret parameters of their equations. In the following sections we
show how Alice and Bob can send secret messages over a public channel with-
out previous agreements over secure private channels. Eve knows all the details
about the system, equations, parameters as well as any exchanged information;
nevertheless she is not able to decode the secret message which Alice is trans-
mitting to Bob.

The first dynamical system which was developed for public key exchange is
based on the synchronization of artificial neural networks which are trained on
their mutual outputs [14]. This method has been named neural cryptography. It
consists of a simple algorithm for discrete variables which can easily be imple-
mented on small integrated circuits. And it allows new kinds of cryptographic
protocols, since the algorithm is continuously generating new encryption keys.
From the point of nonlinear dynamics, neural cryptography may be considered
as an ensemble of random walks with reflecting boundaries which is syn-
chronized by public chaotic (random) signals. This random walk is controlled
by binary signals transmitted between the two partners over the public channel
[34].

For neural cryptography, each partner has a multilayer neural network, a tree
parity machine, as shown in Fig. 14.6. Each network consists of KN input units
xk�i, K hidden units k and one output unit �. There is a layer of synaptic
weights wk�i between the input and hidden units. These weights are discrete
variables with a depth L,

14.5 Neural Cryptography 313

Fig. 14.6 Multilayer neural network (tree
parity machine) used for neural cryptogra-
phy. xk : Public random input vectors. wk :
Synaptic weights with discrete components.
: Hidden units. �: Output bit, the product

of the hidden units. Alice and Bob are trans-
mitting their output bits and train their
synaptic weights according to the configura-
tion of their hidden units.



wk�i � �	L�	L� 1� ���� L	 1� L�� k � 1� 2� ���K� i � 1� ����N� �14�16�

Typical values of these parameters are K � 3� L � 3�N � 1000. Given K � 3 input
vectors xk, the hidden units and the output of the network are calculated from

k � sign�wk � xk�� � � 123� �14�17�

Hence the value of a hidden unit is just the sign of the vector product of the
corresponding N-dimensional input and weight vectors. The output bit of the
network is given by the product of the hidden units.

The dynamics of the two networks of Alice and Bob is defined by the follow-
ing algorithm: At each time step K new common random input vectors xk are
generated. Alice and Bob calculate their hidden units and output units. If the
two output bits are different, they start with a new common input vector. If the
two output bits are identical, �A � �B, they change their synaptic weights in the
direction of the input vectors, but only for these hidden units, which agree with
the two output bits.

Each component of the weight vectors wk is driven by the corresponding com-
ponent of the input vector xk. Since Alice and Bob are driven by the same input
vectors, their components are performing almost identical random walks and
synchronize due to the reflecting boundaries. The updates of the components
are controlled by the internal state of the system; the output and hidden units
are functioning like on/off signals. This leads to attractive as well as repulsive
steps for the weight vectors of Alice and Bob, and the synchronization process
is a competition between these two kinds of steps. Finally Alice and Bob syn-
chronize completely, and the common synchronized weight vectors perform an
identical random walk in the KN-dimensional hypercube.

The generation of the secret key is defined as follows: Alice and Bob are start-
ing from private random weight vectors wA

k and wB
k , respectively. At each time

step they receive K public input vectors xk, exchange their output bits �A and �B

and update their synaptic weights. As soon as they are synchronized, they use
their identical synaptic weights as a common secret key. This secret key may
either be used for standard encryption networks, or Alice and Bob continue the
dynamics without exchanging bits but using them as one-time pad for encryp-
tion.

An eavesdropper Eve knows all the details of the algorithm and records all
the transmitted bits. She knows the sequence of input vectors, as well. Hence
she uses an identical neural network and trains it using the same rules. How-
ever, there is an important difference: Alice and Bob are reacting to their mu-
tual output bits, they are interacting. Eve, on the other hand, can only listen to
the communication, but she cannot interact. It turns out that Alice and Bob
have a higher probability for attractive steps than Eve [35]. That leads to a short
synchronization time for Alice and Bob while Eve needs a very long time to syn-
chronize [40]. Since the dynamics is stopped when Alice and Bob have identical
weight vectors, the probability of a successful attack of Eve is very low.
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In the limit of large keys, N ��, scaling laws could be derived, which quan-
titatively define the level of security of neural cryptography [14, 34]. It turns out
that the synaptic depth L, i.e., the number of possible states of each component
wk�i of the weight vectors, is the essential parameter which controls the security.
The probability of a successful attack of Eve decays exponentially with L

PE $ e	yL� �14�18�

Increasing the value of L increases the synchronization time tsyn of Alice and
Bob. But this time increases only polynomially with L,

tsyn $ L2� �14�19�

Consequently, the security of neural cryptography can be increased to any de-
sired level without increasing the effort for synchronization too much.

Of course, there may exist many extensions of this method to improve either
the security or the success of attacks. The security could be improved by com-
bining neural networks with chaotic maps or by selecting appropriate input vec-
tors (queries). The eavesdropper could make use of an ensemble of networks in
genetic or majority attacks. But after all these investigations, the scaling laws,
Eqs. (14.18) and (14.19), could be recovered. Neural cryptography appears to be
secure.

Recently, this method has been implemented in integrated circuits [36]. It
promises novel cryptographic protocols and applications.

14.6
Public Key Exchange by Mutual Synchronization

Neural cryptography, discussed in Section 14.5, has shown that it is possible to
generate a secret key over a public channel key by a stochastic process. An
eavesdropper Eve may know all the details of the communication process, never-
theless Eve is not able to synchronize with Alice and Bob and extract the secret
message from the transmitted signals. In neural cryptography, the random or
chaotic drive is generated by an external mechanism. In this section, we report
on investigations to extend the idea of public key exchange to mutual synchroni-
zation to chaotic differential equations without an external drive [37].

Each of the two partners Alice and Bob is using a set of Lorenz equations
with identical public parameters in the chaotic regime. The two Lorenz systems
are coupled by a function s�t� of their variables. The equation of Alice is, for ex-
ample,
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dxA

dt
� 10�yA 	 xA� � KsB�t� 	 sA�t���

dyA

dt
� 28xA 	 yA 	 xAzA� �14�20�

dzA

dt
� xAyA 	 8

3
zA�

Bob has the identical equations for his variables, and since Eve knows these
equations she will use corresponding equations for her variables, too. The sig-
nals sA�t� and sB�t� are transmitted between Alice and Bob, and Eve is recording
them.

The main problem is to find signals sA�t�� sB�t�, which first synchronize Alice
with Bob, second, do not synchronize Eve with Alice, and third, do not allow to
extract the variables of Alice using the tools of nonlinear dynamics discussed in
Section 14.4. Given such signals, Alice and Bob can use some digits of their
synchronized variables xA�t� and xB�t� for a secret key.

To meet the conditions 1 and 2, [37] suggests to take a nonlinear function s�t�
of the variable x�t� with two time delays,

sA�t� � xA�t	 �1� � sign�xA�t	 �1��A �xA�t	 �1� 	 xA�t	 �2��2� �14�21�

It turns out that the coupling values K , where Alice and Bob synchronize but
Eve does not, are limited to an interval, only. Figure 14.7 shows the largest con-
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Fig. 14.7 Largest conditional Lyapunov exponents of three
Lorenz systems coupled by nonlinear time-delayed signals
with strength K . The lower curve is the result for the two part-
ners interacting by mutual signals while the upper curve is
the result for an eavesdropper using the signal of one partner.



ditional Lyapunov exponent of the A/B and A/E systems. Only for Alice and
Bob there is a range of negative exponents. For large values of K the systems di-
verge. Hence, even if Eve tries to adjust her parameter K she will not be able to
synchronize with Alice and Bob.

Subsequent calculations, however, have shown that the function of Eq. (14.21)
can be analyzed with the tools of Section 14.4. The variable x�t� can be esti-
mated by embedding s�t� in a three-dimensional phase space. But the function
s�t� of Eq. (14.21) can be extended such that the tools of nonlinear dynamics do
not work, at least with a feasible computational effort. In [37] the amplitude A
of Eq. (14.21) was replaced by a nonlinear function of sA�t� and sB�t� and a com-
mon public noise was added. Embedding techniques were not successful for
those signals.

Although the system of Eve does not synchronize with the ones of Alice and
Bob, its trajectory may stay in the vicinity of the synchronization manifold.
Hence one has to consider – as in neural cryptography – the probability that
Eve recovers the first � digits of the variable xA�t�. Figure 14.8 shows that this
success probability decreases exponentially with the number �, whereas the syn-
chronization time increase linear with �. The security of the method is even
stronger if Alice, Bob, and Eve are using a ring of N Lorenz equations instead
of a single Lorenz triplet. The ring has internal couplings as well as mutual
ones as in Eq. (14.21). Numerical simulations showed that the success probabil-
ity decreases exponentially with the number N of Lorenz triplets, whereas the
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Fig. 14.8 Probability that an eavesdropper can extract the first
� digits of the key variable xA, after the two partners have syn-
chronized their key variables to 14 or 30 digits, respectively.
Inset: Synchronization time of the partners as a function of
precision �.



synchronization time increases linearly with N, only. Similar to neural crypto-
graphy, public key exchange by chaos synchronization can be adjusted to any
level of security.

14.7
Public Keys by Asymmetric Attractors

In the two previous sections, the methods of nonlinear dynamics have been
used to construct a public key exchange protocol. A secret key could be gener-
ated between two partners although the exchange of the information as well as
any details of the algorithm are known to any attacker who is recording the
communication between the two partners.

The two previous methods were based on complete synchronization of two
chaotic systems. Consequently, both partners used identical dynamical systems;
these key exchange protocols were symmetric. Asymmetric protocols, on the
other hand, may offer some advantages with respect to security and authoriza-
tion. Thus it is interesting to look for asymmetric encryption protocols based on
nonlinear dynamics.

Such an asymmetric method has been suggested by Tenny et al. [15]. The
transmitter T and the receiver R are using different dynamical systems. The one
of the transmitter is public whereas the receiver uses a private system which is
unknown to the transmitter and any eavesdropper. Both sides are sending sig-
nals sT�t� and sR�t� which drive the whole dynamical system.

The message m�t� is included into the signal sT �t� sent by the transmitter T.
Let us consider the case where the message consists of bits, m � 0� 1. The sys-
tem of the transmitter depends on the value of m�t�. The complete system,
transmitter as well as receiver, has two attractors, one for m � 0 and one for
m � 1. Since the receiver knows the complete dynamical system he can simu-
late it for m � 0 as well as for m � 1, and he finally can decide to which of the
two attractors the exchanged signal sT�t� comes closest. Hence the receiver re-
covers the transmitted bit m with some error rate which depends on the mutual
overlap between the two attractors.

An eavesdropper may record the two signals sT�t� and sR�t�. But she does not
know the dynamical system of R. Thus she cannot simulate the complete sys-
tem and cannot determine the two attractors for m � 0 and m � 1. Of course, if
the process is repeated many times, the eavesdropper can distinguish between
two attractors, using the embedding methods for sT�t� of the tool box of non-
linear dynamics [12]. Consequently, the receiver has to use a new dynamical sys-
tem for each single received bit.

Similar to the methods of the two previous sections, this algorithm is based
on mutual interaction: The transmitter is sending the message encoded into its
dynamical variables while the receiver drives the systems of the transmitter by
some of his own variables. In principle, this method opens the possibility to
construct asymmetric public encryption protocols based on nonlinear dynamics.
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In practice, its first version is still inconvenient since the dynamics has to be
changed after each bit, and its security against advanced attacks has still to be
investigated.

14.8
Mutual Chaos Pass Filter

In Section 14.2 we have seen that a bidirectional coupling may lead to synchro-
nization whereas, using identical parameters, a system driven by only one of
the partners does not synchronize. If, however, the driven system receives the
signals from both of the two partners it is not so easy to prevent synchroniza-
tion of the eavesdropper. But also in this case bidirectional coupling is different
from unidirectional one, and one may try to use this difference for secure com-
munication.

In fact, recently a mechanism has been suggested which has the potential of
secure public channel communication. This mechanism was named mutual
chaos-pass filter [16]. It allows the two partners to transmit bits on top of a chaot-
ic signal with a very low bit error rate. The transmission is bidirectional, both
partners are sending secret messages to each other. An eavesdropper recording
the bidirectional chaotic signal can recover the messages only with a high bit er-
ror rate. The difference of bit error rates between the partners and the attacker
can be amplified using repetition codes, and finally a secure communication
can be realized by transmission of compressed blocks of bits of suitable lengths.
Consequently, a quantitative difference of bit error rates between partners and
for the attacker is sufficient to realize a secure public channel communication.

Let us demonstrate the principle of mutual chaos-pass filter with chaotic
maps as in Section 14.2. The only difference to Fig. 14.3 and Eq. (14.9) is that
now Alice is adding a message mt and Bob is adding noise nt to their trans-
mitted signals. Hence Eq. (14.9) has to be extended to

sx
t � xt �mt� sy

t � yt � nt� �14�22�
A 
 xt � �1	 ��f �xt	1� � ��f �xt	�� � ��1	 ��f �sy

t	��� �14�23�
B 
 yt � �1	 ��f �yt	1� � ��f �yt	�� � ��1	 ��f �sx

t	��� �14�24�
E 
 zt � �1	 ��f �zt	1� � ��f �sy

t	�� � ��1	 ��f �sx
t	��� �14�25�

In the following we show results for the logistic map f �x� � �4x�1	 x��, for a
binary message mt � !m and for a uniform distribution of noise nt � 	r� r�.
The system of Bob is driven by the signal xt �mt, he is responding with yt and
sending yt � nt. It turns out that Bob’s response is almost identical to the state
of xt of Alice, thus Bob can recover the message from

mB
t � sign�sx

t 	 yt�� �14�26�
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The eavesdropper Eve tries to recover the message from

mE
t � sign�sx

t 	 zt�� �14�27�

The fraction of wrong bits is the bit error rate. Figure 14.9 shows the bit error
rates of Bob and Eve as a function of the strength of the noise which Bob is
sending to Alice. Without noise, Eve has identical equations as Bob, hence she
has identical bit error rates. However, if Bob is sending noise, one can find pa-
rameters such that Bob has a lower bit error rate than Eve. Figure 14.10 shows
that for strong self-feedback there is a range of � values for which an eavesdrop-
per has a disadvantage.

As mentioned before, in principle a quantitative difference of bit error rates
can be used for secure communication. Of course, in the case of simple maps
this difference appears to be rather small. But in the case of semiconductor la-
sers, the corresponding equations show a much larger difference of bit error
rates. For realistic values of the laser parameters, [16] reports bit error rates of
10	4 for the partners and 10	2 for an eavesdropper (see Fig. 14.11).

Such a large difference in bit error rates promises to realize an effective sec-
ure communication by chaotic laser beams. Even if an eavesdropper knows all
the parameter values of the laser system she is not able to extract the message
from the transmitted signals. It is interesting that security relies on the mecha-
nism that Bob has is sending noise or an additional message to Alice. Security
is induced by noise.
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Fig. 14.9 Bit error rates as a function of noise level r�m.
The partners (circles) as well as the eavesdropper (stars) are
using logistic maps with delay with parameters � � 0�8 and
� � 0�76.



14.9
Discussion

The synchronization of chaotic systems offers an interesting possibility to send
secure information via chaotic signals, generated either by electronic circuits or
by laser systems with feedback. Since the pioneering work of Pecora and Carroll
in 1990, intensive research on coupled chaotic systems has explored possibili-
ties, limitations and hardware realizations of secure communication with chaos
synchronization.
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Fig. 14.10 As in Fig. 14.9, for parameters � � 0�8 and noise level r�m � 2�5.

Fig. 14.11 Transmitted and recovered messages for the laser equations, from [16].



Most investigations assumed private keys, i.e., before communication, the
partners have agreed on common secret parameters of their chaotic systems. In
this overview we emphasize a new aspect of chaos synchronization, namely
public key exchange. A secret key is generated via a public channel; an eaves-
dropper recording the exchanged information may know all the parameters of
the system. Recent investigations suggest that such a protocol may be realized
by two chaotic systems with a bidirectional coupling instead of a unidirectional
one. In particular, first experiments on chaotic semiconductor lasers support
this possibility. However, more work is needed, experimentally as well as theo-
retically, to understand the phenomena and their mechanisms and limitations
before successful applications can be realized.

All types of synchronization found for chaotic lasers during the last decade
can also be found for unidirectionally and mutually coupled chaotic maps,
among them: identical/anticipated synchronizations and the chaos-pass filter
mechanism for unidirectional coupling, and achronal/isochronal synchroniza-
tions and the mutual chaos-pass filter mechanism for mutual coupling.

A major conclusion of this paper is that there is a window in the parameter
space for which the mutual coupled chaotic maps synchronize very well, yet a
unidirectionally coupled map does not: both ways is more advantageous than
one way. This feature is also common for coupled chaotic lasers. However, an
analytical examination of quantities such as Lyapunov and conditional Lyapunov
exponents is much simpler for chaotic maps than for chaotic lasers. These re-
sults suggest, similar to neural cryptography, an alternative method for public
channel cryptography that does not rely on traditional number theoretical meth-
ods.

This prognosis provokes the following two principle questions: The first is
whether mutually chaotic lasers are more secure than mutually coupled chaotic
maps. On one hand it is clear that the implementation of chaotic maps or even
Lorenz systems, for instance, in integrated electronic circuits is much simpler
than the implementation of chaotic lasers. On the other hand, the implementa-
tion of advanced attacks based on an ensemble of interacting attackers or reli-
ance upon record and play scenarios are possible for maps but are in question
for chaotic lasers.

The second question is whether one can formulate dynamical protocols such
as synchronization of neural networks, chaotic maps, and chaotic lasers in the
traditional language of information and complexity theory.

Synchronization of time delayed chaotic systems is characterized by the lan-
guage of Lyapunov exponents, but is that the appropriate language to analyze
notions such as security and capacity of the communication channel? Can we
find suitable quantitative analytical methods to estimate, for instance, version
space or information gain during the unidirectional/mutual learning or syn-
chronization processes? With respect to the complexity theory, an established
bridge between chaotic and stochastic processes and NPC problems is absent,
and only recently was a small preliminary step in this direction accomplished
[38, 39].
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Progress in these two directions and the emergence of new concepts, new
theoretical techniques and methods are required in order to bridge between
chaos synchronization and information and complexity theory. Chaos synchroni-
zation stands alone as an independent field of research, but as soon as we enter
the field of advanced communication protocols an adaptation of new concepts
will inevitably emerge.
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Thomas L. Carroll

15.1
Introduction

When the first papers on chaotic synchronization were published [1], many be-
lieved that self-synchronizing chaotic systems would find use in communication
[2–9]. Later, as engineers with more background in communication entered the
field, it was realized that because self-synchronizing chaotic systems are stored
reference systems, they could not compete in terms of efficiency with more con-
ventional communication techniques such as code division multiple access
(CDMA) systems, which had the benefit of a stored reference signal. There may
still be some potential for self-synchronized chaotic systems in niche applica-
tions, such as military uses, where power efficiency is not the only factor limit-
ing application. In some cases, for example, speed of synchronization or sim-
plicity may be more important than overall power efficiency. CDMA systems re-
quire power management techniques which may not be compatible with use in
combat. There may also be interest in combining communication signals with
radar signals, but the desirable properties for a radar signal may not be the
same as desirable properties for a communication signal. Radar signals must
also be robust to Doppler shifts, caused by relative motion of the transmitter
and the target, but Doppler shifts complicate synchronization of conventional
communication systems.

Many of the early examples of self-synchronizing chaotic systems were se-
verely affected by noise in the communication channel [10, 11]. As little as 10%
noise added to the driving signal could destroy all evidence of synchronization.
The two main reasons of this sensitivity were that the synchronized response
systems were nonlinear, causing mixing of the noise and the signal, and the re-
sponse systems did not include any form of time integration to reduce the ef-
fects of noise. Some form of time integration is essential in all forms of noise
reduction, whether the noise reduction technique is simple signal averaging, a
phase sensitive detector such as a phase locked loop, a correlation detector such
as a matched filter used in radar, or a CDMA system which completes a digital
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XOR operation between a stored code sequence and an incoming signal. One
method to accomplish time integration in a self-synchronized chaotic system is
to use a chaotic system with multiple time scales; multiple time scale chaotic
systems will be described in this chapter.

15.2
Chaotic Synchronization

There have been many different demonstrations of synchronized chaotic sys-
tems: in essence, all of the demonstrations begin with a chaotic drive system:

d
x
dt
� f 
x� � � �15�1�

and a response system that is coupled in some way to the drive system:

d
y
dt
� g 
y� � � h 
x� � � �15�2�

The coupling function h is chosen so that all of the Lyapunov exponents of the
response system are negative. If the g and h functions are chosen so that y�
converges to x� , then the synchronization is identical; otherwise, the synchroni-
zation is said to be generalized if there is a continuous function between y�
and x�. There are situations where the response system of Eq. (15.2) has all
negative Lyapunov exponents and there is no function between y� and x�, but
this situation will not be addressed here.

15.3
2-Frequency Self-Synchronizing Chaotic Systems

15.3.1
Simple Maps

In order to illustrate the principles of multiple time scale chaotic systems, an
example using a simple map is developed [12]. This map is not suitable for
practical applications because noise robustness is lost when the noise amplitude
exceeds a certain threshold, but it does serve to illustrate the basic principles.
The example uses a coupled pair of 1d maps, where one of the maps consists
of a multiplication by a constant and a modulus, while the other map acts as a
low-pass filter. The coupled maps are given by

x1 n� 1� � � 1�5x1 n� � 	 0�1�x2 n� � mod 1 �

x2 n� 1� � � 4
�

 �
x1�n� � 1	 1

�

 �
x2 n� � � �15�3�
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Looking at the x2 map alone, it can be seen that the term multiplying x2 will
approach 1 as � increases, while the x1 term driving the map will decrease, so
as � increases the x2 part of the map will change more and more slowly in re-
sponse to the x1 driving term, acting as a low-pass filter. As long as � � 1 and
��, the x2 map acts as a low-pass filter. From digital filter theory [13], the ab-

solute magnitude of the gain of the x2 map is A f� � � 1�
������������������������������������������
1� 
2 	 2
 cos 2�f� �

�
where f is the frequency (ranging from 0 to 0.5) and 
 � �1	 1���. For � � 1
�
 � 0� the magnitude of the gain is 1.0 for all frequencies, while A�f � de-
creases with f for � � 1. As � becomes very large, 
 approaches a limiting value
of 1.0, causing the cutoff frequency fc (defined as the frequency where the am-
plitude response is down by a factor of 2 from its maximum) to approach a lim-
iting value, meaning that little additional filtering effect is gained for values of
� �� 10. The factors of � in the x1 equation and 4�� in the x2 equation are
present simply to scale the map values into a convenient range. It should be
noted that the x2 map does not contain a modulus operator. For � � 10, the ei-
genvalues of the map are 1�2! 0�56i. The factor of � in the x1 map is used to
influence the stability properties of the response system.

Figure 15.1 shows the power spectra of the signals from the map for
� � 10�0. Figure 15.1 (a) is a power spectrum of x1�n�, while 15.1(b) is a power
spectrum of x2�n�.

The response system is

xt n� � � x1 n� � � ��

y1 n� 1� � � 1�5y1 n� � 	 0�1�y2 n� � � 1�5 xt n� � 	 y1 n� �� � mod 1 � �15�4�

y2 n� 1� � � 4
�

 �
y1 n� � � 1	 1

�

 �
y2 n� � �

The term � represents a Gaussian white noise signal. Variations in the stability
of the response system may change its synchronization behavior in the presence
of noise, so this coupling configuration was chosen so that the eigenvalue of
the response map with the largest absolute magnitude was independent of �,
with a value of 0.63.

15.3 2-Frequency Self-Synchronizing Chaotic Systems 327

Fig. 15.1 (a) Power spectrum of the transmitted signal xt

from the map of Eqs. (15.3). (b) Power spectrum of the signal
x2 from the map of Eqs. (15.3).



When even a small amount of noise is added to the transmitted signal xt,
large errors in synchronization may result because of the sensitive nature of the
modulus function. With even a very small amount of noise, the value of y1�n�
might be altered by the modulus function while x1�n� has not been changed.
Sterling [14] has developed a technique to correct for this problem: the feedback
signal at the next iteration is computed and compared to the same signal when
y1 differs by the amount of the modulus:

yf � min
�j�	1�0�1�

xt n� 1� � 	 y1 n� 1� � � j�� � �

y1 n� 1� � � y1 n� 1� � � jmin � �15�5�

The next value of y1�n� is corrected by adding the value of j that minimizes yf .
Figure 15.2 shows the rms synchronization error � when the noise signal �

had a rms amplitude of 0.05 and � was varied (the standard deviation of x1�n�
was 0.28). The synchronization error � was the rms value of x2�n� 	 y2�n� di-
vided by the rms value of x2�n�. The dark circles in Fig. 15.2 show that the syn-
chronization error decreases as � increases. The synchronization error ap-
proaches a lower bound as � increases because the filter cutoff frequency does
not change much for �0 10, as explained above. The noise level of 0.18 (noise
rms/signal rms) is shown as a horizontal line in Fig. 15.2.

Since the y2 map is the low-pass filter in the response system, it is legitimate
to ask if the y1 part of the response system is necessary at all. As an alternative,
the driving signal was input directly into the y2 map:

y2 n� 1� � � 4
�

 �
xt � 1	 1

�

 �
y2 n� � �15�6�
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Fig. 15.2 Dark circles show synchronization error as a function
of time constant � for the response system of Eqs. (15.4) when
the added noise is about 18% of the transmitted signal.
The open squares show the synchronization error when only a
simple filter (as in Eq. (15.6)) is used for the response system.



This response system was stable. The synchronization error for this configuration
is shown in Fig. 15.2 as open squares. The synchronization error in this case does
not decrease as � increases, but rather stays close to the noise level of xt.

15.4
2-Frequency Synchronization in Flows

Noise robust chaotic systems based on chaotic flows are more practical, but the
first flow example is used because it is easy to analyze [15]. The power spectrum
of the output signal of the additive 2-frequency Rössler system is too broad to
be transmitted, but the additive system is easy to analyze. It can be seen from
this example that when the additive 2-frequency Rössler system is in its noise
robust state, the low frequency part of this coupled nonlinear system looks
mathematically very similar to a linear resonant system with a very narrow
bandwidth, which accounts for the relative insensitivity to noise.

15.4.1
2-Frequency Additive Rössler

The 2-frequency Rössler chaotic system is described by [16, 17]

dx1

dt
� 	�0 	11x1 � 	12x2 � x3 � 
x4� � �

dx2

dt
� 	�0 x1 	 	22x2� � �

dx3

dt
� 	�0 g x1� � � x3� � �

dx4

dt
� 	� 	44x4 � 	45x5 � x6 � 	41 x1� �� ��

dx5

dt
� 	� 	x4 � 	55x5 � x3� � �

dx6

dt
� 	� 	g x4� � � x6� � �

g�x� � 0 x � b1

m1�x 	 b1� x � b1

6 7
� �15�7�

where �0 � 1, m1 � 15, b1 � 3, 	11 � 	44 � 0.02, 	12 � 	45 � 0.5, 	22 � 0.11,
	45 � 0�5 and 	55 = 0.02. Equation (15.7) contains a fast system and a slow system.
The x1–x3 equations describe a chaotic Rössler-like [18] system. The x4–x6 equa-
tions are a damped nonlinear system coupled to the Rössler system. The fre-
quency band of the damped nonlinear system is determined by the time constant
�, which is between 0 and 1. If �0 � 1 and � � 0.1, for example, the frequency band
of the x4–x6 system is 1/10th of the frequency band of the Rössler system of the
x1–x3 equations. The parameter 
 could also vary between 0 and 1.
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The 6d noise robust system was numerically integrated with a 4th order
Runge–Kutta integration routine with a time step of 0.04 s. Figure 15.3 shows
x2 versus x1 for �0 � 1, � � 0.01, and 
 � 1.0, while 15.3(b) shows x5 versus x4

for these same parameters. Figure 15.4 (a) is a power spectrum of x1, while
15.4 (b) is a power spectrum of x4, showing the difference in frequencies.

A synchronous response system matching the drive system of Eqs. (15.7) was
also built. The signal x2 from Eqs. (15.7) was used as a drive signal. The re-
sponse system was described by

xd � x2 � � �

dy1

dt
� 	�0 	11y1 � 	12y2 � y3 � 
y4� � �

dy2

dt
� 	�0 y1 	 	22xd� � �

dy3

dt
� 	�0 g y1� � � y3� � �

dy4

dt
� 	� 	44y4 � 	45y5 � y6 � 	41 y1� �� � �

dy5

dt
� 	� 	y4 � 	55y5 � y3� � �

dy6

dt
� 	� 	g y4� � � y6� �� �15�8�
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Fig. 15.3 Attractors for Eqs. (15.7).

Fig. 15.4 (a) Power spectrum of x1 from Eqs. (15.7) (peak
frequency= 0.113). (b) Power spectrum of x4 from Eq. (15.7)
(peak frequency= 0.00113).



The parameters in Eqs. (15.8) were chosen to match the parameters in Eqs.
(15.7). The term � in Eqs. (15.8) was an additive white noise term.

When � �0 (no noise), the 6d response system of Eqs. (15.8) synchronized to
the 6d drive system of Eqs. (15.7) (after an initial transient). Additive noise
caused a synchronization error. The error in synchronization � was measured
by calculating the rms value of x4–y4 when Gaussian white noise was added to
the driving signal xd.

Figure 15.5 shows the synchronization error � as a function of the noise rms
amplitude � for �0 � 1 and two different values of �, � � 0.1, and � � 0.01 (with

 � 1). The noise rms amplitude was normalized by the transmitted signal rms
amplitude. While the increase in synchronization error with noise was not lin-
ear, it was monotonic. There was no threshold effect as seen in [19, 20]. For the
smaller value of �, corresponding to a greater difference in time scales between
fast and slow systems, noise caused a smaller synchronization error.

Figure 15.6 shows the synchronization error � as a function of the slow time
constant � for two different values of 
, 
 � 1.0 and 
 � 0. The rms amplitude
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Fig. 15.5 Synchronization error � as a function of normalized
noise rms amplitude � for �0 � 1 and slow time constant
� � 0�1 (open circles) or 0.01 (filled in squares).

Fig. 15.6 Syn error � as a function of slow time constant �.
The squares are for 
= 1.0, while the triangles are for 
 � 0�0�



of the added noise was four times the rms amplitude of the driving signal x2.
When 
 � 1.0, the synchronization error decreases as the slow time constant � de-
creases, so in an applied setting, synchronization quality in the presence of noise
could be adjusted to an arbitrary precision by adjusting the value of �. The prac-
tical result is that adequate synchronization may be maintained for any noise level
by properly adjusting the relative time scales of the fast and slow systems.

Also shown in Fig. 15.6 is the synchronization error as a function of � when

 � 0. Not only the synchronization error decrease with �, but also the error ac-
tually appears to increase for the lowest values of �. Changing the value of 


has destroyed the noise robust property of this chaotic system.

15.4.2
Parameter Variation and Periodic Orbits

In order to understand the origin of the noise robustness, it is useful to find
out what changes in the chaotic system as the parameter 
 is varied. From Fig.
15.3 (b), the slow part of this chaotic system looks nearly periodic, so it should
be useful to study the long period unstable periodic orbits (UPOs) for this sys-
tem. The Newton-Raphson method is commonly applied to find UPOs [21].

There is a major numerical problem with finding UPOs with periods on the
slow time scale of this system. The largest Lyapunov exponent for this system
was 0.14 bits/s, while the long UPOs had periods on the order of 1720 s. By the
time one slow orbit has been completed, most of the information about the ini-
tial conditions of the system will have been erased by the exponential growth of
errors caused by the finite precision of the computer. As a result, when the
Newton-Raphson method is applied, the range of initial conditions over which
it converges is very small.

Because the separation between slow and fast time scales is large for this sys-
tem, it is possible to approximately separate the 2-frequency Rössler system into
a fast system and a slow system using the quasi steady state approximation
from singular perturbation theory [22]. We may then apply the Newton-Raphson
technique to the slow system only, leading to much better convergence.

Equation (15.8) for the synchronized response system (with �0 � 1) may be
rewritten as

�
dy1

d�
� 	 	11y1 � 	12y2 � y3 � 
y4� � �

�
dy2

d�
� 	 y1 	 	22xd� � �

�
dy3

d�
� 	 g y1� � � y3� � �

dy4

d�
� 	 	44y4 � 	45y5 � y6 � 	41 y1� �� � �

dy5

d�
� 	 	y4 � 	55y5 � y3� � �

dy6

d�
� 	 	g y4� � � y6� � � �15�9�
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where � � �t represents a slow time scale. In the approximation �� 0, the y1–y3

part of Eqs. (15.8) becomes a set of algebraic equations, which may be solved for
the variables �y1 , �y2, and �y3, the quasi steady state approximations. Substituting
these values into the slow equations yields

dy4

d�
� 	 	41	22 xd� � � 	44y4 � 	45y5 � y6� � �

dy5

d�
� 	 	b1 �y1� �m1 �y1� � 	 	22m1 �y1� �xd 	 y4 � 	55y5� � �

dy6

d�
� 	 	g y4� � � y6� � � �15�10�

The constants m1 and b1 from the function g�y� have been written as functions
of �y1 because their presence depends on the value of �y1. Because the function
g�y� is piecewise linear, it is not possible to find actual algebraic solutions for
�y1, �y2 and �y3, but for the purpose of this paper it does not matter. The approxi-
mate relations of Eqs. (15.10) will be used only to find a Jacobian for use with
the Newton-Raphson method for finding UPOs of the low frequency system, so
terms not explicitly dependent on the slow variables will drop out. In the quasi
steady state approximation, the Jacobian for the slow system is

J �
		44 	45 	1�

1 	55 0�
�g y4� �
�y4

0 	1

�� � � �15�11�

In this approximation, the values of the fast variables do not appear in the slow
Jacobian. The value of y4 was determined by numerically integrating the full set
of equations (without the quasi steady state approximation) in the synchronized
state.

15.4.3
Unstable Periodic Orbits

There may have been more than one period 1 UPO for the slow system for a
given set of parameters, so the following numerical calculations do show some
fluctuations. It would have been desirable to follow one distinct UPO as the pa-
rameters changed and calculate its properties, but the poor convergence of the
Newton-Raphson algorithm for these long periods made tracking of an individu-
al orbit impossible. Normally, one could track a UPO with parameter changes
by finding the initial conditions for a UPO, making a small change in a param-
eter, and using the previous initial conditions as the starting point for a new
UPO search, but for these long orbits, the search failed to converge for parame-
ter changes as small as 0�1�.

Because tracking UPOs was not possible, for each new set of parameters, the
equations of motion (Eqs. (15.7)) were started with random initial conditions.
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After initial transients died off, the values of the variables in Eqs. (15.7) were
used as initial conditions in the UPO search. The approximate UPO period was
also estimated from Eqs. (15.7) and used as an initial condition. The resulting
UPO search converged for about 25� of the initial conditions.

15.4.4
Floquet Multipliers

It was believed that the noise robust properties of the system of Eqs. (17.7) were
related to the stability of the slow system, so the slow Jacobian of Eqs. (15.1)
was used to calculate the Floquet multipliers for the slow orbit. Figure 15.7
shows the Floquet multipliers for the slow orbit as the variable 
 is changed.
For 
 � 0�68, the Floquet spectrum consists of two purely real values (with mag-
nitude < 1) and one 0 value. This is the same type of Floquet spectrum one
would see for a linear oscillator driven at its resonant frequency [23]. Although
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Fig. 15.7 (a) and (b) Nonzero Floquet multipliers for the slow
UPO as 
 is changed. The circles are the real parts of the
Floquet multipliers, while the triangles are the imaginary
parts. There is a bifurcation at 
 � 0�68.

Fig. 15.8 Synchronization error � as a function of 
. The rms
amplitude of the added Gaussian white noise is twice the rms
amplitude of the driving signal. The noise robustness property
appears to be lost for 
< 0.68, corresponding to the bifurca-
tion in the Floquet spectrum.



this orbit for the entire 6d system is unstable, the slow part of the system by it-
self does not contain any instabilities, so there are no Floquet multipliers > 1
for the slow part of the orbit.

The bifurcation seen in the Floquet spectrum for the slow orbit corresponds
to a loss of the noise robustness spectrum for this system. Figure 15.8 shows
the synchronization error � for the response system of Eqs. (15.8) as 
 is varied.
The rms value of the added noise in this example was twice the rms value of
the driving signal. For 
> 0.68, the synchronization error is small, and is unaf-
fected by changes in 
. For 
< 0.68, the synchronization error is larger, and in-
creases as 
 decreases.

15.4.5
Linewidths

Another way to confirm that the slow part of this Rössler system acts like a res-
onant system is to measure the width of the largest peak in the power spectrum
of the x4 signal. One way to measure the linewidth is by measuring the Q fac-
tor, the ratio of the center frequency of the main peak in the power spectrum to
the width of this peak. The width of the peak is the width for which the power
is half of the power at the maximum. A larger Q factor corresponds to a nar-
rower linewidth, meaning that the low frequency part of the Rössler system acts
like a narrowly tuned filter. Figure 15.9 shows the Q factor as a function of 
.
Note that the vertical axis in Fig. 15.9 is logarithmic.

The Q factor undergoes a large increase between 
 � 0.4 and 0.6. Above

 � 0.6, the low frequency part of the Rössler system acts like a narrow band-fil-
ter below this point, the low frequency part has a much broader bandwidth. Be-
cause the bandwidth of the low frequency part is so small 
> 0.6, it will not be
as strongly affected by additive noise as it will be for 
< 0.6.

The dependence of synchronization error on �, as shown in Figs. 15.5 and
15.6, fits with this narrow band filter picture. The Q factor for a filter is the ra-
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Fig. 15.9 Q factor for the low frequency part of the Rössler
system as a function of 
. Note that the vertical axis is
logarithmic.



tio of center frequency to bandwidth, so if a constant Q is maintained, filter
bandwidth will decrease as the center frequency of the filter decreases. The cen-
ter frequency of the low frequency part of the chaotic system is dependent on
the time constant �. As the filter bandwidth decreases, less of the noise will fall
within the filter pass band, so the effect of noise on the slow part of the system
should decrease.

15.5
Circuit Experiments

The synchronization properties of the 2-frequency additive Rössler system were
also tested in a circuit experiment. The drive circuit was described by Eqs.
(15.7), with the parameters m1 � 15, b1 � 3, 	11 � 1, 	44 � 0.05, 	12 � 	45 � 0.5,
	22 � 0.11, 	55 � 0.05, and 
 � 1. The time constants �0 and � were set by
changing the capacitors in the circuit. The circuit schematic is shown in
Fig. 15.11.

When the circuit parameters were chosen so that �0 � 104, � � 103, 	44 � 0.05,
and 	45 � 0.02, the time scales were separated by a factor of 10, so the higher
frequency peak in the power spectrum was at 1110 Hz and lower frequency
peak in the power spectrum was at 111 Hz. Choosing different parameters
altered the relative frequencies of the main peaks in the power spectrum of the
circuit. If �0 � 104, � � 102, 	44 � 0�02, and 	45 � 0.02, then the peak frequency
in x1 is still at 1110 Hz, but the peak frequency in x4 is now at 11.1 Hz.

The response circuit was coupled to the drive in a different fashion than the
response system of Fig. 15.8. Adding extra parameters to the coupling terms al-
lowed for the Lyapunov exponents of the response system to be minimized, in-
creasing the speed with which the response synchronized to the drive. The re-
sponse circuit was described by

xt �
�6

i�1

kixi yr �
�6

i�1

kiyi �

dy1

dt
� 	�0 	11y1 � 	12y2 � y3 � 
y4 � b1 xt 	 yr� �� � �

dy2

dt
� 	�0 	y1 � 	22y2 � b2 xt 	 yr� �� � �

dy3

dt
� 	�0 	g y1� � � y3 � b3 xt 	 yr� �� � �

dy4

dt
� 	� 	44y4 � 	45y5 � y6 � 	41 y1� �� � �

dy5

dt
� 	� 	y4 � 	55y5 � y3� � �

dy6

dt
� 	� 	g y4� � � y6� � �15�12�
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with parameters 	11 � 1, 	44 � 0.05, 	12 � 	45 �0.5, 	22 �0.11, 	55 � 0.05, and

 �1. Note that the error signal xt 	 yr is fed back only into the high frequency
part of the circuit, y1 to y3.

The parameters ki and bi are set to minimize the largest Lyapunov exponent
for the response circuit corresponding to Eqs. (15.12) [24, 25]. The ki’s and bi’s
are varied by a linear optimization routine in order to minimize the largest Lya-
punov exponent for the response circuit. For the parameters listed in Fig. 15.10,
the largest Lyapunov exponent for the response circuit was 	1160 s	1 (�0 � 104,
� � 103). There are many other possible combinations of the k’s and b’s that
give similar Lyapunov exponents.
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i ki bi

1 5.34 –0.53
2 –2.58 0.34
3 –3.10 –0.23
4 1.60 0
5 –0.89 0
6 –1.61 0

Fig. 15.10 Values of ki and bi parameters in Eqs. (15.12).

Fig. 15.11 Schematic for 2-frequency additive Rössler circuit.



15.5.1
Noise Effects

By varying the ratio between the frequencies of the two parts of the circuit, the
amount of synchronization error caused by noise could be varied. To test this
feature, white noise was added to the transmitted signal xt (defined in Eqs.
(15.1)). The signal-to-noise ratio (S/N) was calculated by dividing the RMS am-
plitude of xt by the RMS amplitude of the white noise. The synchronization er-
ror for the low frequency part of the circuit, ��x4�, was calculated by dividing
the RMS amplitude of x4–y4 by the RMS amplitude of x4.

Figure 15.12 shows the synchronization error as a function of S/N for two dif-
ferent ratios of �0 and �. The filled-in circles show the synchronization error for
a frequency ratio of 10. The synchronization error at a S/N of 1 (0 dB) is about
0.07, climbing to about 0.14 at a S/N of 0.33 (	4�8 dB). The minimum synchro-
nization error at high S/N is about 0.02 because of mismatch between the cir-
cuits.

The open squares in Fig. 15.12 show the synchronization error for a fre-
quency ratio of 100. For this larger frequency ratio, the synchronization error at
a S/N of 1 is about 0.035, while at a S/N of 0.33 the error is about 0.07.

15.6
Communication Simulations

Probably a better practical measure of noise robustness than simple synchroni-
zation error is the bit error rate (BER) (BER for information transmitted by
means of a chaotic carrier. The information transmission simulation described
here is far from optimal (a method based on symbolic dynamics would probably
be superior), but the simple communication simulation described here does il-
lustrate a necessary principle for a noise robust communication system: as the
noise level increases, it should be possible to increase bit length to maintain a
constant BER, even when the signal-to-noise ratio is below 0 dB.
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Fig. 15.12 RMS synchronization error ��x4� from the circuit as
a function of RMS signal-to-noise ratio S/N. (a) Frequency
ratio of 10. (b) Frequency ratio of 100.



For this particular communication scheme, the transmitter is modified by
weakly coupling a periodic signal to the low frequency part of the transmitter in
order to synchronize its phase to a reference signal.

d�
dt
� � �

dx4

dt
� 	� 	44x4 � 	45x5 � x6 � 	41 x1� � 	 k s1 sin �� � 	 
 x1� �� � � �15�13�

The signal � is the phase control signal, used to modulate the phase of the low
frequency part of the oscillator in order to communicate. The frequency � is set
equal to the peak frequency of the low frequency part of the oscillator, and the
signal � is coupled into the low frequency part in order to phase synchronize
the oscillator [26]. The information signal, s1, is set equal to !1, while the cou-
pling constant k �0.2, and 
 �0.37. The response system was described by Eq.
(15.12).

The information signal s1 in Eqs. (15.13) was set to !1 to simulate a binary
signal. The value of s1 determined the phase of the low frequency part of Eqs.
15.13.

The response system of Eqs. (15.12) synchronizes to the transmitter, so the
phase of the low frequency part of the response system reveals the phase of the
corresponding part of the drive system, so that we can find the value of the in-
formation signal s1 in Eqs. (15.13). A phase detector was used to accomplish
this phase measurement:

d�
dt
� � �

du
dt
� dy4

dt
	 �

100�0
u �

v � sgnsin����u
dw
dt
� �

10�0
v	 0�1w� � � �15�14�

The frequency �, the frequency of the local reference oscillator in the response
system, was the same frequency as in Eq. (15.13). As long as the phase of the
local reference oscillator does not drift by much over one cycle, exact phase syn-
chronization between the local oscillator and the chaotic response system is not
necessary. The signal u was a high-pass filtered version of y4, high-pass filtered
because the absolute value function in Eqs. (15.12) produced a DC offset in y4

when the noise signal was large. The “sgn“ function is the signum function
(+ 1 for the argument > 0, 	1 for the argument < 0). The variable w in Eqs.
(15.14) is set to zero at the start of each bit interval, and w is measured at the
end of each bit interval to determine the value of the received bit. The measured
value of w will be > 0 or < 0, depending on the bit value. For the simulations de-
scribed here, it will be assumed that the local periodic oscillators have been syn-
chronized.
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The necessary bandwidth for the chaotic signal is found by measuring the
BER. A low-pass filtered noise signal is added to a low-pass filtered version of
the signal xt and the resulting BER is measured at the receiver as the filter
breakpoint is lowered. At some given breakpoint, the BER is seen to increase,
so the filter breakpoint is set larger than this value. For the system in this pa-
per, the minimum filter breakpoint was 7.5.

Figure 15.13 shows the probability of bit error Pb for the system of Eqs.
(15.12)–(15.14). The dark circles show Pb for a bit length of L �653.9, in which
case �0 was set to 10 and � was set to 0.2. The open circles show Pb for a bit
length of L � 1307.84 (twice as long), with �0 �10 and � �0.1. The open
squares show Pb for L �20,924.8, with �0 �10.0 and � �6.25�10	3. The actual
bit rates depend on the overall scale of the � values. The energy per bit/(noise
power spectral density) (Eb�N0) is calculated for a 2-sided noise power spec-
trum. The three sets of data lie along the same curve, demonstrating that the
curve of Pb versus Eb�N0 does not depend on bit length, a property not yet seen
in other transmitted reference chaotic communication systems. The solid line
in Fig. 15.14 shows the probability of bit error for binary phase shift keying
(BPSK) [13] for comparison.

The noise robustness of this system may be further explored by changing the
bit length L and finding the probability of bit error at a constant value of Eb�N0.
In Fig. 15.14, Eb�N0 is held constant at 14.3 dB while the bit length L is varied
by a factor of 32, from 653.9 to 20,924.8. The slow time constant � is varied at
the same time the bit length is varied, so � varies from 0.2 to 0.2/32�0.00625,
while �0 is held constant at 10.0. The upper scale in Fig. 15.14 shows the sig-
nal-to-noise ratio in decibels. The probability of bit error is seen to be roughly
constant when the bit length L varies by a factor of 32, demonstrating that this
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Fig. 15.13 Probability of bit error Pb as a
function of (energy per bit)/(2 sided noise
power spectral density) (Eb�N0) for the
communication system described by Eqs.
(15.12)–(15.14). The filled in circles are for a

bit length of L � 653�9 s, while the open
circles are for L twice as long, and the open
squares are for L 32 times as long. The solid
line is for binary phase shift keying (BPSK).



self-synchronizing chaotic system is noise robust for added Gaussian noise. In
addition, the performance of this communication system does not degrade
when the signal-to-noise ratio is below 0 dB.

15.7
Multiplicative Two-Frequency Rössler Circuit

The final example of this chapter is a version of the Rössler system that is more
practical for actual applications, and the final communication example is also
more practical. The multiplicative version of the 2-frequency Rössler system is
more useful because the required bandwidth is less, although it is harder to un-
derstand theoretically than the additive version.

The multiplicative 2-frequency Rössler circuit is described by [29]

dx1

dt
� 	�0f x4� � 0�02x1 � 0�5x2 � x3 � 0�1x4� � �

dx2

dt
� 	�0f x4� � 	x1 	 0�13x2� � �

dx3

dt
� 	�0f x4� � 	g x1� � � x3� � �

dx4

dt
� 	� 0�02x4 � 0�5x5 � 0�5 x1� �� � �

dx5

dt
� 	� 	x4 � 0�02x5� � �

g x� � �
0 x � 3

15 x 	 3� � x � 3

6 7
f x� � � 1� 0�2 x � 1�75� � � �15�15�
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Fig. 15.14 Probability of bit error Pb for different bit lengths L
at a constant Eb�N0 of 14.3 dB. L varies by a factor of 32.
The top axis is the corresponding signal-to-noise ratio.



where �0 �104 and � �100. For these parameters, the signal x1 has a frequency
of approximately 10.5 Hz, while x3 has a frequency of about 946 Hz. The func-
tion f �x� serves to broaden the spectrum of the fast signals (x1 through x3). Fig-
ure 15.15 is a schematic of the circuit described by Eqs. (15.15).

In many applications of radar or sonar, the power amplifier used to transmit the
signal is most efficient for a signal with a constant envelope. In order to have a
constant envelope transmitted signal, the signal that is actually transmitted is

dxt

dt
� 	�0 sq

x2

x2
1 � x2

2

 �
� xt

 �
� �15�16�
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Fig. 15.15 Schematic of the 2-frequency multiplicative Rössler
circuit described in Eqs. (15.15).



where the sq�x� function means that sq�x� �15 V if x > 0 and sq�x� � 	15 V if
x < 0. The sq�x� function was executed by an operational amp with a very large
gain. The integral was used as a low-pass filter so that xt was not a square wave.
Figure 15.16 shows the power spectrum of xt.

The response circuit may be described by the equations

dy1

dt
� 	�0 0�02y1 � 0�5y2 � 0�1y4� � �

dy2

dt
� 	�0 	y1 	 kxt� � �

dy3

dt
� 	� 0�1y3 � 0�5y4 � 0�5 y1� �� � �

dy4

dt
� 	� 	y3 � 0�1y4� � � �15�17�

The response circuit does not match the drive circuit, which means that exact
synchronization is not possible. In order to determine when generalized syn-
chronization took place, the auxiliary system approach was used [27]. A second
response circuit that was identical (within experimental error) was built. In or-
der to improve the matching between circuits, resistors with a 1� tolerance
were used, and a 20 turn potentiometer was used in the integrator for the y1

signal to correct the time constant � for error in the capacitor value. The y3 sig-
nals from the two response circuits were compared to determine if generalized
synchronization was occurring.

Probably the most efficient way to communicate with chaotic systems is to
use chaos control techniques to choose different symbolic dynamics [10, 28].
For the 2-frequency multiplicative Rössler circuit, chaos control may also be
used to differentiate between different transmitter–receiver pairs. One could try
to create different chaotic transmitter–receiver pairs by designing completely dif-
ferent chaotic circuits, but design of chaotic systems is difficult, so it is easier to
use one chaotic system and create different transmitter–receiver pairs by choos-
ing different dynamics.
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Fig. 15.16 Power spectrum of the signal xt described in
Eqs. (15.16).



The basic method for creating drive-response pairs is this:
1. Allow the chaotic drive system to follow a chaotic trajectory of finite length L,

and store control information about this trajectory.
2. Control the drive system to always follow this finite length chaotic trajectory.

Since the trajectory is finite length, it must be repeated, so the system is actu-
ally periodic with period L.

3. While the drive system follows a designated trajectory, use a signal from the
drive system to drive a response system. The response system need not be
identical to the drive system, as generalized synchronization can be useful for
some applications.

4. While this response system is being driven, store control information about it.
5. Use the stored control information to control the driven response system.

The response system trajectory will be the same as it was without control if
the same drive signal is being used.

6. If the drive signal is now switched to a different signal, then the response sys-
tem trajectory will be different.

The drive system can be controlled to follow different trajectories. Each different
drive system trajectory has a corresponding response system trajectory when
the response is uncontrolled. Using the matching response control sequence
will not alter the response trajectory, but using a nonmatching response control
sequence will alter the response from the uncontrolled trajectory.

For this experiment, rather than try to control the drive circuit, a 10,000 point
signal xt from the drive circuit was digitized at 20,000 points/s and played back
through an arbitrary waveform generator. The playback rate was chosen so that
the frequency of the signal from the arbitrary waveform generator matched the
frequency of the original drive signal. Chaotic signals were recorded at two dif-
ferent times, resulting in two different chaotic sequences, labeled as chaos1 and
chaos2. The chaotic signals were played back with a peak-to-peak amplitude of
1.98 V, and the drive constant k in Eqs. (15.17) was set to 1.0.

For the control of the response circuit, the y3 signal was first passed through
a 1 �F capacitor to remove the DC component. This signal was then integrated
by an operational amp integrator to smooth out any residual ripple in y3, pro-
ducing the signal �:

d�
dt
� 	� y3 � 0�1�� � � �15�18�

where R and C1 were previously defined. Several logic circuits were then used
to give a short + 5 V pulse when � crossed 0 in the negative direction.

In order to record the necessary control information, the response circuits
were driven by the recorded xt signal from the drive circuit, which had been
controlled by the sequences chaos1 or chaos2. When � crossed 0 in the negative
direction, the value of y1 was stored for the response control sequence. The
response control sequence when the drive circuit was controlled by chaos1 was
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response1, and when the drive was controlled by chaos2, the response control
sequence was response2.

During control, the response circuits were driven by the recorded xt signal
from the drive circuit, which had been controlled by the sequences chaos1 or
chaos2. When � crossed 0 in the negative direction, the difference between y3

and the corresponding signal from the matching auxiliary circuit, y3a, was com-
pared to a fixed threshold in the computer. If y3 	 y3a� � � 0�3, it was assumed
that the response circuits were not synchronized, and the phase of the response
control sequence was advanced by 1. If the difference was less than the thresh-
old, the control phase was not advanced. For either result, the computer then
set y3 for the circuit to the next value in the response control sequence, after
which the response control sequence phase was advanced. The sequences
chaos1 and chaos2 corresponded to five cycles of the slow part of the circuit, so
each control sequence had a length of five.

Figure 15.17 (a) is a plot of y3a versus y3 when the arbitrary waveform genera-
tor is playing back the drive signal xt from a drive circuit controlled by chaos1
and the response circuit is being controlled by the control sequence response1.
There are some occasional small departures from synchronization, but most of
the time the two auxiliary systems are synchronized. Figure 15.17(b) is the same
plot when the drive circuit was controlled by chaos2 but the response control se-
quence was still response1. There is a definite loss of synchronization, so the
pair of response circuits are able to recognize the difference between chaos1 and
chaos2.

The effect of interference from another chaotic signal on the response circuits
was also tested. A second arbitrary waveform generator was used to play back
the transmitted signal from a drive circuit controlled by chaos2. This second
transmitted signal, xt2, was added to the xt signal from a drive circuit controlled
by chaos1. When both xt and xt2 had the same amplitude, the cross correlation
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Fig. 15.17 (a) Plot showing synchronization
of the response circuit (y3) and the auxiliary
response circuit (y3a), confirming generalized
synchronization when the correct response
control sequence for a particular drive signal
is used. (b) Plot showing a lack of general-

ized synchronization between the response
circuit (y3) and the auxiliary response circuit
(y3a) when a response control sequence that
does not correspond to the drive signal is
used.



between y3 and y3a was 0.96. When the xt2 signal amplitude was 1.5 times the
amplitude of the xt signal, the cross correlation dropped to 0.91, lower than the
value when the wrong drive signal was used. The response circuits can reject
some interference, but they have trouble if the interference is too similar to the
driving signal.

15.8
Conclusions

Synchronous chaotic systems need not be sensitive to added noise. In this chap-
ter, we have presented one way to construct self-synchronizing chaotic systems
that are robust to added noise, that is by adding a second oscillator at a lower
frequency. We have shown above that for the correct parameters, this lower fre-
quency nonlinear oscillator has some of the same properties as a linear reso-
nant oscillator, which allows it to filter out noise and interference. Elsewhere,
we have speculated that this same mechanism may be at work in biological sys-
tems [15]. We have also demonstrated some simple communication schemes
that use the 2-frequency circuits. While these communication ideas are not as
efficient as standard digital communication methods, their simplicity and fast
synchronization may make them useful for niche applications.

Noise robust chaotic systems are not limited to having only 2 frequencies.
More low frequency oscillators may be added if necessary to produce other des-
irable properties, such as a better autocorrelation function for radar applications
[30]. The multifrequency method is a useful design tool for chaotic systems.
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Henry D. I. Abarbanel

16.1
Introduction

Many communication schemes using linear or nonlinear transmitters and re-
ceivers utilize synchronization between those elements to provide the frame-
work for the modulation of information onto the transmitter waveform and the
demodulation of that information at the receiver. Figure 16.1 presents a block
diagram overview of this, and is hardly original to this discussion [1]. If the
transmitter produces chaotic waveforms, then the channel must provide capaci-
ty beyond that to carry the information in a transmitted message as the entropy
of the transmitter is

	
�

symbols

P�symbols� log �P�symbols� � 0 �

and the “state” of the transmitter must be sent along with the message so that
the receiver can reconstruct that state. The receiver must recognize the trans-
mitter signal and must determine whether or not the transmitter waveform is
modulated. There are “chaotic communication” strategies which do not utilize
synchronization. They rely on “on/off” methods where some aspect of the at-
tractor, perhaps some phase space region, is assigned to a particular symbol,
and the receiver need not know anything about the transmitter but needs only a
lookup table to determine which symbol has been sent [1, 2]. No particular non-
linear aspects of the signal generation are used. Who really cares about using
chaotic signals as carriers of information? In a sense the key property of the
chaotic carrier is that it is naturally broadband and rather simple to generate.
Chaotic transmitter receiver pairs can be autosynchronizing as well. My person-
al best guess for how all this work on chaotic communication will be useful in
real-world communication is this: knowing it can be done, people will devise com-
munication strategies which use the method in order to save power, to reduce the cost
of design, to achieve robust transmitters or receivers, and to achieve better signal-to-
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noise characteristics – all these are interesting things the present discussion does not
address.

16.1.1
Secrecy, Encryption, and Security?

In evaluating encryption systems one must assume the adversary has total
knowledge of your communication system, transmitter, and receiver. If you do
not share it with them, they will steal it. Think about how the allies broke the
WWII German Enigma system; they had a copy.

Realistic security of communication then means it takes so long for the
adversary to determine which parameters you used in your transmission at a
given moment that the importance of the message is zero when it is finally de-
crypted long after the transmission occurs. This is accomplished by algorithms
that are very difficult to reverse-engineer and/or require very lengthy computa-
tions, such as PGP or other schemes.

Chaos-based communication methods add little or nothing to strong security,
and discussing them as if they were somehow more secure is misleading. Even
referring to chaotic communication schemes as “secure” is a misnomer as a
general rule.

The topics in this chapter will cover:
� the previous general discussion,
� synchronization: when is it possible? How to test for it?
� communication schemes without nonlinear channel distortion,
� communication by pulses in a nonlinear channel that disperses, attenuates,

and distorts, and
� undoing the nonlinear channel, undistortion or equalization.
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Fig. 16.1 Overview of a communication system based on
synchronizing the transmitter and receiver oscillators.



16.2
Synchronization

The general problem of synchronization is shown in Fig. 16.2 [3–6]. A transmitter
with multidimensional state x�t� sends a scalar signal s�t� � h�x�t�� to a receiver
which has a state y�t�. If there is a function determining the connection between
the transmitter state and the receiver state at time t, y�t� � q�x�t��, then we say the
transmitter and the receiver are in a state of generalized synchronization [7].
Identity synchronization, x�t� � y�t�, can occur when G�y � x� s � 0� � F�x�.
The important thing about generalized synchronization is that since the state of
the receiver is determined by the state of the transmitter, modulation of the trans-
mitter signal is detectable at the receiver.
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Fig. 16.2 Basic scheme for synchronization. When the trans-
mitter x�t� is synchronized with the receiver y�t�, y�t� � q�x�t��,
and the measurement of the receiver state tells us the transmitter
state. Identity synchronization is q�x�t�� � x�t�; y�t� � x�t�.

Fig. 16.3 Layout of the auxiliary system method for determining
generalized synchronization between a transmitter with dynamical
variables x�t� and a receiver with dynamical variables y�t�.



How can we tell whether a transmitter and a receiver can be in generalized
synchronization? One useful method is the “auxiliary system method” shown in
Fig. 16.3 [8].

Using two identical copies of the receiver, present the same output x�t� to the
receiver via s�t�. After some transient, if the output of the two receivers is the
same y1�t� � y2�t�, then there is generalized synchronization. This is actually
clear as both outputs are equal to q�x�t��. The main caveat on this statement is
that the systems could be multistable; namely, they might have several attractors
with complicated basins of attraction. The result here requires that the two re-
ceiver systems start within the same basin of attraction.

It is usually quite difficult, perhaps impossible, to build two identical receiv-
ers, however, a clever method developed by Tang et al. in 1997 [9] neatly skirts
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Fig. 16.4 (Upper left) Layout of the Tang
et al. [9] experiments. A signal generator
produces output from the three-dimensional
Lorenz system. This modulates the output
intensity of a CO2 laser which is injected
into an NH3 laser. The output of the CO2

laser is measured by a HgCdTe device to be
� 1 W

cm2, and the output of the NH3 laser is
measured by a Schottky diode. The NH3

output is recorded every �t � 150 �s and

plotted against itself. (Lower left) (a) The
output of the NH3 laser; (b) the output of
the CO2 laser. The two signals are not iden-
tical. (Right panels) (a) The CO2 laser inten-
sity plotted against itself with a 150 �s delay;
(b) the NH3 laser intensity plotted against
itself recorded 150 �s earlier. This demon-
strates generalized synchronization of the
lasers. For lower CO2 laser intensity, this
does not occur.



this issue. Tang et al. record the input signal s�t� from a transmitter and then
present the same signal to the same receiver at different times with intervals be-
tween the presentations large enough that the receiver oscillator is in a different
state each time the transmitter signal is presented. Tang et al. presented their
recorded transmitter signal to the receiver periodically with a separation �t be-
tween the presentations. This results in outputs on�t� � o�t� �n	 1��t�. One
then plots on�t� versus on	1�t� and looks for a straight line at 45� in the plot.

Tang et al. drove a CO2 laser with output from a Lorenz attractor and then
used the light from the CO2 laser to drive an NH3 laser. They examined the
generalized synchronization of the two lasers as a function of the intensity of
the CO2 laser beam. They used �t � 150 �s. The general outline of the experi-
ment is shown in Fig. 16.4. Not shown are results with lower CO2 laser inten-
sity where generalized synchronization does not occur.

The real message here, besides the nice formulation of the auxiliary system
method, is that one can test in practice for generalized synchronization between
a chosen transmitter and a selected receiver. When one finds it is present for
some range of couplings, then we have identified a useful pair of devices that
could possibly be used for communication. We highly recommend this as a first
step in determining whether a selected transmitter and receiver will be a good
match for nonlinear communication.

16.3
Communicating Using Chaotic Carriers

In Fig. 16.5 we show the general scheme for communicating between two oscil-
lators. This works for linear and for nonlinear systems. A fraction cVT�t� of the
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Fig. 16.5 General scheme for transmitting
signals between two nonlinear oscillators. A
fraction c is taken from the circulating signal
in the transmitter and sent to the receiver.

If VR�t� � VT�t� for some values of c, syn-
chronization occurs. There is no message
being sent at this stage.



circulating signal in the transmitter is sent to the receiver and a fraction of the
receiver signal �1	 c�VR�t� is added to this at the input to the receiver. For
some values of c we may have cVT�t� � �1	 c�VR�t� � VT�t� � VR�t�, so syn-
chronization is a possible solution to this system. The state of the transmitter is
determined by VT�t� and other internal, possibly unmeasured dynamical vari-
ables uT �t�. The same is true for the receiver which is described by VR�t� and
uR�t�. The dynamical equations associated with Fig. 16.5 are

dVT �t�
dt

� F�VT�t��uT�t�� �
duT�t�

dt
� G�VT �t��uT �t�� �

dVR�t�
dt

� F�cVT�t� � �1	 c�VR�t�� uR�t�� �
duR�t�

dt
� G�cVT �t� � �1	 c�VR�t��uR�t�� � �16�1�

A very useful special case of this is for c � 1, which makes the receiver open
loop while the transmitter is unaffected. The signal coming into the nonlinear
element of the transmitter is VT�t� whatever the value of c, but when c � 1 the
value of the signal into the receiver nonlinear element is also VT�t�. This means
the output from the receiver dynamics must also be VT�t�, and the receiver and
transmitter are synchronized. This idea requires the receiver nonlinear element
to be identical to the transmitter nonlinear element, but as we shall see in an
experimental result below, even though one can never attain this identity of
transmitter and receiver, the scheme works rather well. The c � 1 strategy ex-
pressed in equations is this:

dVT �t�
dt

� F�VT�t��uT�t�� �
duT�t�

dt
� G�VT �t��uT �t�� �

dVR�t�
dt

� F�VT�t�� uR�t�� �
duR�t�

dt
� G�VT�t��uR�t�� � �16�2�

Except for the equation for VR�t� this is essentially the synchronization idea of
Pecora and Carroll [4]. The first discussion of the c � 1 idea was by Volkovskii
and Rulkov in 1993 [10].

One introduces a message M�t� into this c � 1 idea as shown in Fig. 16.6.
The symbol © is meant to be any invertible operation. The modulated carrier
M�t�©VT�t� is received, and the receiver produces VR�t� � VT �t�. Now using
VT�t� and M�t�©VT�t�, one can invert the received signal to recover M�t�.
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16.4
Two Examples from Optical Communication

16.4.1
Rare-Earth-Doped Fiber Amplifier Laser

Rare earth elements, erbium is especially widely used, have a strong transition line
in the wavelength range where conventional, off-the-shelf optical fibers have either
a minimum of dispersion or absorption, namely between about 1300 nm and 1550
nm. If one dopes the glass of an optical fiber with erbium with a concentration of a
few hundred parts per million, the lasing amplification of light input to about 10
m of doped fiber can be as large as 30 dB. This makes such fiber amplifiers very
attractive commercially as inserts into long distance fiber lines.

If one takes a commercially available amplifier with a doped fiber such as this
as the active element, one can make an oscillating laser by reinserting the am-
plifier output back into the amplifier input. Figure 16.7 shows this in graphic
form and indicates how such a laser might be used for communicating using
the methods just discussed. In the laser system one dynamical variable is the
complex electric field amplitude in the transmitter ET�t� and the other is the
population inversion wT�t� in the erbium active element. One can measure the
electric field ET�t� but not the population inversion wT�t�.

The dynamical description of this system involves a time delay � associated
with the propagation of the electric field from the output of the amplifier back
into the input. The c � 1 equations for the system involve a time-� map of the
electric field through the fiber connecting the amplifier exit to its input and dif-
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Fig. 16.6 General scheme for transmitting signals between
two nonlinear oscillators with c � 1 compared to Fig. 16.5.
This is a closed loop transmitter and an open loop receiver.
Experimental examples of this setup are discussed in the text.



ferential equations describing the population inversion being pumped, by a
drive Q , attenuating with a time constant 1

T1
, and being driven by the electric

field with a gain G and a phenomenological induced emission strength A:

ET�t� �� � ME�wT �t��ET�t�� �
dwT�t�

dt
� Q 	 1

T1
wT �t� � 1� A

G
�ET�t��2�eGwT �t� 	 1�

� (
�

ER�t� �� � ME�wR�t��ET�t�� �
dwR�t�

dt
� Q 	 1

T1
wR�t� � 1� A

G
�ET�t��2�eGwR�t� 	 1�

� (
� �16�3�

and ME is the solution to the propagation equations for the electric field around
the optical fiber.

This system is attractive since one can actually prove that it synchronizes [13].
Note that

d�wT�t� 	 wR�t��
dt

� 	1
T1

wT�t� 	 wR�t� � A
G
�ET�t��2eGwR�t��eG�wT �t�	wR�t�� 	 1�

� (
�

�16�4�
and using the fact that ex 	 1 � x to show

d�wT�t� 	 wR�t��
dt

% 	�wT�t� 	 wR�t��
T1

1� A
G
�ET�t��2eGwR�t�

� (
� �16�5�

we see that wT�t� 	 wR�t� � 0 for large times.
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Fig. 16.7 Use of the two rare-earth-doped fiber amplifiers as
transmitter and receiver in communication. Chaotic oscilla-
tions of the electric field circulating in the fiber connecting
the output to the input of the doped-fiber amplifier are to
be used as the carrier of information.



This result agrees both with the experiments of Raj Roy and his students [11,
12] who used rare-earth-doped fiber amplifiers for communication and with nu-
merical simulations of the closed-loop system of the fiber amplifier coupled to
itself.

The rare earth doped fiber laser communication method has been shown to
work by Raj Roy and his students. It suffers a serious drawback as an interest-
ing practical system arising from the very long lifetime of the metastable atomic
state of erbium at the upper level of the lasing transition. This lifetime is nearly
10 ms which is orders of magnitude larger than typical atomic transition life-
times, and it effectively limits the communication bandwidth of such a scheme
to 100 Hz which is not very attractive.

However, the ideas can be explored in another optical system where the band-
width for communication is hundreds of megahertz or even a few gigahertz.
We turn to that now.

16.4.2
Time Delay Optoelectronic Feedback Semiconductor Laser

The semiconductor optoelectronic feedback laser consists of a standard laser
diode with another diode reading the intensity of the output light and feeding
the output current of that diode into the bias current of the original laser. Fig-
ure 16.8 shows the setup used by J.-M. Liu at UCLA and his students. The
equations for the complex amplitude of the electric field in the laser diode E�t�
and the population inversion N�t� read

dE�t�
dt

� 	 	E�t�
2
� i��0 	 �c� � �

2
�1	 ib�g�N�t��E�t�

dN�t�
dt

� J�t�
ed


1� �

�E�t	 ���2
�E0�2

�
	N�t�

�s
	 2�0n2

�h�0
g�N�t���E�t��2 � �16�6�

As a function of the delay � around the optoelectronic feedback loop the system
undergoes bifurcations from fixed points (constant intensity output) for � % 3 ns
to low-dimensional chaos near � � 4 ns and to higher dimensional chaotic be-
havior (dimension about 11.5) near � � 10 ns.

In Fig. 16.9 we have the results of a series of experiments carried out at
c � 0�8; near, but below, the condition c � 1 for an open loop receiver [14]. In
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Fig. 16.8 Experimental setup of the optoelectronic feedback semi-
conductor laser used by J.-M. Liu and his students at UCLA.



this circumstance we see that the time series of intensity for the transmitter
and receiver and the Fourier power spectrum (panels (a) and (b) in Fig. 16.9)
are rather similar to the eye, and in panel (c) where the transmitter and receiver
intensities are plotted against one another, we see that the synchronization is
rather good.

In Fig. 16.10 this similarity is explored quantitatively. We define the cross-cor-
relation coefficient

� � ��IT�t� 	 �IT�t����IR�t� 	 �IR�t��������������������������������������������������������������������������������
��IT�t� 	 �IT�t���2���IR�t� 	 �IR�t���2�

� � �16�7�

where IT �t� � �ET�t��2 is the transmitter intensity and IR�t� � �ER�t��2, the re-
ceiver intensity, and the time average �f �t�� is

�f �t�� � 1
T

3 T
2

	T
2

f �t� dt � �16�8�

In Fig. 16.10 we see a plot of � versus c for this transmitter/receiver laser setup
as well as � at c � 0�8 as a function of the fractional time delay mismatch ��

�
be-
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Fig. 16.9 Experimental results for chaotic
synchronization using the setup in Fig. 16.8
and c � 0�8. In (a) is shown the time series
of the transmitter and the receiver. In (b) are
the Fourier spectra of the transmitter and

the receiver. In (c) the outputs of diodes (in
mV) proportional to the transmitter and re-
ceiver intensities are plotted against one an-
other.



tween the transmitter and receiver. As expected the synchronization is better
(indicated by large �) as c increases toward c � 1 and when the fractional time
delay mismatch is zero. The sensitivity on c is quite strong while the sensitivity
of synchronization to time delay mismatch is rather small. Possibly this is due
to near generalized synchronization between the lasers, but this has not been
tested quantitatively.

With this synchronization demonstrated between chaotic semiconductor la-
sers, we can ask about their use and accuracy in transmitting information bear-
ing signals modulated onto the chaotic waveforms as carriers. J.-M. Liu and stu-
dents have demonstrated that communication bandwidths of several hundreds
of MHz can be achieved in the laboratory using these devices [14–16].

16.5
Chaotic Pulse Position Communication

The chaotic synchronization desired for communication is thwarted by several
common features of communication channels:
� Attenuation of the transmitted signal means that amplitudes at the trans-

mitter are not matched by amplitudes at the transmitter; this leads to
VT�t� �� VR�t�.

� Dispersion in the channel can lead to distortion of waveforms; this leads to
VT�t� �� VR�t�.

� Distortion of the transmitted signal by nonlinear properties of the channel it-
self changes the waveform departing the transmitter when it arrives at the re-
ceiver; this leads to VT �t� �� VR�t�.

A solution to this problem was implemented long ago by a channel which is
noisy, leaky, unreliable in its transmission characteristics, and generally a very
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Fig. 16.10 Experimental results from
J.-M. Liu, UCLA. (Left-hand panel (a)) The
cross-correlation coefficient between the
transmitter output and the receiver output
as a function of c. The quality of the syn-

chronization improves as c�1. (Right-hand-
panel (b)) The quality of synchronization at
c � 0�8 as a function of the mismatch ��

�

between the time delays in the transmitter
and receiver.



lousy communication medium. We refer to the axons that connect neurons in
biological circuits. Yet despite these inherent flaws, these channels are used by
us for important functions of life.

These transmitters and receivers and the connections among them “solved”
the communication problem by sending signals that do not rely on amplitude
or precise wave shape. These systems transmit pulses of voltage known as ac-
tion potentials. The waveforms sent in this manner are all nearly identical, and
thus all information is located in the time intervals between the pulses. Figure
16.11 shows an observed chaotic pulse train as measured from a stellate cell in
the entorhinal cortex of a rat.

Inspired by this apparently robust way of modulating information onto a car-
rier, we developed a transmitter receiver pair with c � 1 which sent sequences
of pulses through the atmosphere using pulses of electromagnetic radiation [17].
Information was modulated onto these pulse sequences by assigning a “zero” to
a pulse left unchanged and a “one” to a pulse that was delayed within a certain
fixed window in time. The receiver autosynchronized to the transmitter because
of the c � 1 open-loop configuration, so the receiver knew when a pulse should
arrive, and it was thus sensitive to the time delay of a pulse.

Figure 16.12 is a block diagram for choatic pulse position modulation. This
was built in an analogue electronic circuit and used to transmit music as we

16 Nonlinear Communication Strategies360

Fig. 16.11 Pulses used in a lossy, noisy, strongly dispersing,
generally quite lousy communication channel – the axon con-
necting neurons in a biological network. This is a recording of
action potentials, called spikes or pulses, from a chaotically
oscillating stellate cell in the entorhinal cortex of rat. Data
courtesy of J. Haas, UCSD.



now describe. Figure 16.13 displays the waveform (upper left) of a cut from a
song by the group “Chicago” which was recorded as an ASCII “wav” file and
used to drive a chaotic pulse generator producing the transmitted signal shown
in the upper right of the figure. The reconstructed or demodulated waveform is
shown in the lower left panel. The transmitted pulse sequence signal arriving at
the receiver is distorted in amplitude and shape by the atmospheric transmis-
sion channel, but the timing of the pulses is preserved well enough to allow ac-
curate, robust reconstruction of the original waveform by interpreting (demodu-
lating) the 0 s and 1s. Each pulse is spectrally wideband and the chaotic interval
between pulses and a further wideband characteristic to the transmitted signal,
so this may be the ultimate wideband communication device.

Finally, but not displayed here, CPPM has a bit error rate versus signal-to-
noise ratio characteristic rather close to that of the best linear communication
methods. As noted several times here, it can never achieve as good a BER ver-
sus S

N characteristic as linear methods since some of the channel bandwidth
must be used to reconstruct the transmitter state at the receiver.
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Fig. 16.12 Schematic of chaotic pulse
position modulation (CPPM) as a communi-
cation methodology. A binary code is estab-
lished by recording a “zero” at the receiver
when the transmitted pulse arrives “on
time” at the receiver. Since the receiver is

synchronized to the transmitter by choosing
c � 1 (an open-loop receiver configuration),
it “knows” when pulses are supposed to
arrive. If the pulse is delayed with a small
window at the transmitter, the receiver
registers a “one.”



16.6
Why Use Chaotic Signals at All?

With these optical physics and chaotic pulse position modulation examples we
have demonstrated that one can use chaotic carriers to transmit information.
Many other examples can be given and may be found in the growing literature
on this subject [18, 19]. One may then ask why would we wish to do this? Not
the least of the issues is that, as noted in Section 16.1, one must reserve some
of the channel capacity available for reconstructing the full state of the transmit-
ter at the receiver. So this communication method can never be as good in
terms of the usual bit-error rate versus signal-to-noise ratio criterion used in
evaluating communication systems.

Here are some ideas to think about in this regard:
� Chaotic systems, especially in the c � 1 open-loop receiver configuration,

autosynchronize. Along with the positive Lyapunov exponents of the transmit-
ter or receiver which lead to the chaos in the first place, there are negative
Lyapunov exponents which are used in the autosynchronization of the trans-
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Fig. 16.13 A song from the band “Chicago”
transmitted using chaotic pulse modulation
and demodulated at the receiver. Shown are
the original recorded file (upper left), the
transmitted file comprised of pulses with

chaotic interpulse intervals (upper right),
and the final demodulated signal at the
receiver (lower left). The chaotic pulse
modulation device had a communication
bandwidth of about 80 kHz.



mitter and receiver. This means no additional circuitry may be required for
synchronization of chaotic carriers.

� Connected with the autosynchronization is the fact that nonlinear oscillators,
because a stiff requirement of strict linearity is not imposed on their circuitry,
may be very simple and inexpensive to design and build. The chaotic pulse
position modulation described before used “Radio Shack” quality analog cir-
cuitry and costs only 10 s of dollars to construct.

� Although we noted that chaotic signals provide no special cryptographic sec-
urity in the formal sense, the fact that one may design and utilize a large rep-
ertory of chaotic waveforms that are unknown to eavesdroppers means simple
electronic designs may be good enough for law enforcement level security
even though the higher standards of, say, NSA requirements are not met. Of
course, using serious encryption technology before transmitting a signal ad-
dresses the security issue in a familiar manner.

� In particular, pulse communication have a low multipath interference and
low interference with existing communication strategies. Of course, they are
inherently broadband as noted earlier.

� In linear systems one often uses “white noise” as a way to probe the response
of a system to a broad range of frequencies. In probing a nonlinear system,
one may wish to use a low dimensional, say D � 3, signal as a way to exam-
ine a broad range of frequencies without introducing the very large (in princi-
ple, infinite) number of degrees of freedom associated with “white noise.”

16.7
Undistorting the Nonlinear Effects of the Communication Channel

In sending a signal from a transmitter, we sample the output signal every �s or
at sampling frequency 1

�s
. The transmitter is in state x�n� � x�n� � x�t0 � n�s�

with t0 an initial time, and we wish to send the scalar signal s�n� � h�x�n�� to
the receiver. However, if the channel is not linear, the signal r�n� arrives at the
transmitter instead of s�n�. By observing r�n� can we reconstruct s�n� at the re-
ceiver, and thus “undistort” or equalize the effects of the channel?

This answer is known in linear systems, and we give here a quite thoroughly
tested answer [20, 21] that works for nonlinear systems (see Fig. 16.14).

The way to consider the answer is to recognize that the full information about
the state of the transmitter x�n� is, via the state-space reconstruction theorem or
“embedding” theorem [5, 22], in the sequence s�n� or equivalently in the se-
quence r�n�. Each sequence allows us to build reconstructed phase space vectors
that capture the properties of the state of the transmitter. If we reconstruct the
state space of the transmitter using s�n�, then r�n� must be predicted by this as
there is nothing more about the transmitter state left to reconstruct. Similarly,
if we reconstruct the state space of the transmitter using r�n�, then s�n� must
be predicted by this as there is nothing more about the transmitter state left to
reconstruct.
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Start by selecting a training set of simultaneously measured transmitter out-
puts s�n� and channel outputs r�n�. From observations of the output of the
channel, namely, the r�n�� n � 0� 1� � � � �N form the D-dimensional received sig-
nal vectors [5, 22]

R�n� � r�n�� r�n	 T�� � � � � r�n	D	 1�T � � �16�9�

where T is an integer determining the number of time delays to use in con-
structing the components of R�n�, and D is an integer telling us the dimension
of the reconstructed receiver space. We choose T using average mutual informa-
tion between entries of R�n�, and we select D using false nearest neighbors [5].
You may use your own preferred methods for this, if you wish.

For every D-dimensional vector R�n�, we have a connection s�n� � G�R�n��,
where G�� is a scalar function in the D-dimensional space. If we can represent
G�� accurately, we can use channel output to recover the transmitted signal s�n�
– the channel input. To this end, represent the function G�X� acting on vectors
X in the reconstructed D-dimensional space as a series in some selected basis
functions �m�X� in that space; namely,

G�X� �
�M
m�1

cm�m�X� � �16�10�

In our training sequence we now have many receiver vectors R�n� associated with
many transmitter scalars s�n�. In the D-dimensional space, each R�n� has NB near-
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Fig. 16.14 A graphic depicting the basic
question associated with removing nonlinear
distortion of a signal due to channel charac-
teristics. A transmitter with state x�t� is
sampled at time intervals �s; therefore, we
know x�n� � x�t0 � n�s�, where t0 is some
initial time. We wish to send a scalar

function s�n� � h�x�n�� from the transmitter
to the receiver, perhaps modulated by an
information bearing message. Because of
distortion in the channel, a signal r�n�
arrives instead. Can we recover s�n� from
observations of r�n�?



est neighbors which we call R�l��n�� l � 0� 1� 2� ����NB� R�l�0��n� � R�n�. These
nearest neighbors are associated with scalar channel inputs s�l��n� via

s�l��n� � G�R�l��n�� �
�M
m�1

cm�n��m�R�l��n�� � �16�11�

and the coefficients in the sum cm�n� are now recognized as being connected
with a local region of the state space near R�n�.

To determine the coefficients cm�n� connecting the R�l��n� to the s�l��n� in the
neighborhood of R�n� we minimize the least squares cost function

�NB

l�0


s�l��n� 	

�M
m�1

cm�n��m�R�l��n��
�2

� �16�12�

When we know the cm�n� for each region of state space where an observed vec-
tor R�n� and its neighbors lie, we have characterized the transformation from
that region of state space to the scalar input s�n�.

G�X� is represented by a piecewise local set of sums over our selected basis
functions �m�X�. Since we will want to use the functions locally in the D-di-
mensional space, polynomials are a fine choice for �m�X�. Many other functions
will work as well.

Now we are ready for new channel output rnew�t0 � k�s� � rnew�k�. We mea-
sure a new value of the channel output, rnew�k�. What is the value of snew�k� as-
sociated with this? To answer this question we form the new data vector

Rnew�k� � rnew�k�� rnew�k	 T�� ���� rnew�k	D	 1�T � � �16�13�

and ask which among all the data vectors in the training set is closest in D-di-
mensional state space to Rnew�k�? “Close” can be in any metric, but we suggest
use of the usual Euclidian metric as that was employed in determining coeffi-
cients in the training set.

Suppose the training set data vector R�j� is closest to Rnew�k�. That suggests
that vectors in the neighborhood of R�j� will tell us with what input the new
data vector Rnew�k� should be associated. Using the coefficients cm�j� we have a
map adjusted to be accurate, in a least squares sense, to the relationship
s�j� � G�R�j�� in the neighborhood of R�j�, so we expect

Gj�X� �
�M
m�1

cm�j��m�X� � �16�14�

to provide the map from R space to s space we need. This suggests that we use
the rule

snew�k� �
�M
m�1

cm�j��m�Rnew�k�� � �16�15�
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to estimate the new input to the channel that results in the observed channel
output rnew�k� and the associated data vector Rnew�k�. The only way information
from the training set and from the region of D-dimensional receiver vector
space near Rnew�k� enters the determination of snew�j� is via the coefficients
cm�j� in the R space � s map.

For each new observation we do the same thing: form the new data vector
Rnew; locate the closest member of the D-dimensional training set; use the local
map for that region of state space to map the new vector Rnew to the estimated
input snew. This process is quite efficient as one needs to find a nearest neigh-
bor to a D-dimensional vector among N such vectors, and that can be done in
order N log�N� operations. Then one has the associated coefficients cm�j� and
needs only evaluate a finite weighted sum over known functions.

The UCSD group of nonlinear scientists has applied this to two communica-
tion channels. The first was magnetic recording on tape. Here the writing pro-
cess on the magnetic medium is nonlinear while the readout is linear. We were
able to record at six times the bit density on the tape achieved by previous
methods and read back the recorded message without distortion. The second
channel was the commercial DSL transmission channel available to many sub-
scribers worldwide over their existing telephone lines. Impressive results were
achieved in that case as well.

16.8
Conclusions

This has been an overview of methods in communicating with chaotic wave-
forms or chaotic pulse sequences that in laboratory or field demonstrations have
proven quite successful. In the case of chaotic pulse position modulation
(CPPM) the bit-error rate as a function of the signal-to-noise ratio is very close
to the best linear methods.

We went over quite a few general statements in our introduction, many with-
out any demonstration, and we encourage the reader, especially new students to
this subject, to peruse the literature to satisfy themselves that statements ap-
pearing to be our opinion alone might nonetheless be accurate.

Overall by reviewing methods that work within the context of the general
closed loop transmitter–open loop receiver paradigm, we hope we have provided
a rich testbed for new ideas on how to use the methods discussed in many in-
novative contexts. Indeed, although there are applications of the nonlinear chan-
nel equalization (or nonlinear undistortion) methods [20], there is ample room
for improvement on the basic algorithm we presented.

After quite a bit of research into the use of chaotic waveforms for communi-
cation, some summary might be possible.
� First, it is clear that many methods for communication long used but employ-

ing linear carriers have proven, perhaps not surprisingly, to work when
chaotic carriers are substituted. The paper by Lau and Kolumban [2] is a good
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exploration of those issues. Also Kolumban’s paper at the 2006 Bristol
Workshop [19] explores this issue in detail.

� Second, it has become clear that security, in the rigorous sense used by cryp-
tographers, is not a special or even plausible feature of communication using
chaotic waveforms. Perhaps some kind of barrier to the uninitiated comes
from using chaotic waveforms, but not “secure” communication as used
widely.

� Third, it seems there are many interesting opportunities to explore new strat-
egies for communication where inexpensive, simple circuitry is at the heart of
the implementation. This might include using chaotic waveforms in radar
applications – a form of communication [19] – or other applications where
the structure in state space associated with the broad spectral content of sim-
ple nonlinear chaotic oscillators might be a valuable combination. Using such
signals as probes of unknown “black box” dynamical systems whose structure
one wishes to uncover was mentioned above as a possible use of this.

� Finally, using nonlinear dynamical techniques, chaotic or not, to undo the un-
wanted distortion of a nonlinear channel may prove very helpful in extending
the range and usefulness of linear communication methods impaired by their
encounter with nonlinearity.
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K. Alan Shore, Paul S. Spencer, and Ilestyn Pierce

17.1
Introduction

This chapter provides an overview of experimental and theoretical work directed
at the exploitation of optical chaos in networked communication. Several
approaches have been adopted for the practical implementation of the concept
of performing digital communication using synchronized chaotic lasers [1]. Due
to their direct compatibility with existing optical fiber communication technol-
ogy, semiconductor lasers (laser diodes) have attracted the attention of many
workers seeking to exploit optical chaos in communication [2]. The specific fo-
cus of the present chapter is the use of external cavity semiconductor lasers for
this purpose. In this configuration the laser source is subject to optical feedback
from an external mirror. Despite the simplicity of the configuration the behavior
of the semiconductor laser in this case is extremely complex and has remained
a topic of detailed investigation for several decades. An indication of the rich dy-
namical behavior of external cavity semiconductor lasers is provided in a recent
research monograph [3].

The emphasis of this chapter is on experimental work performed in the
authors’ experimental laboratory providing realizations of key functionalities for
optical chaos communication. Appropriate theoretical analysis underpinning the
experimental work is also included. It is remarked in this respect that the ex-
perimental work has provided a number of interesting challenges for theoretical
exposition. Although several of those challenges have now been met, a number
of key issues continue to provide fertile areas for theoretical activity.

In the following sections attention is given to the key functionalities which
enable networked optical communication using external cavity laser diodes. The
most fundamental requirement for effecting communication using a chaotic
carrier is that of chaos synchronization. The counter-intuitive proposal of Ott,
Grebogi, and Yorke [4] that such synchronization could be effected stimulated
the pioneering experimental activity of Roy et al. [5] and led to subsequent ex-
perimental realizations in a number of laser systems and, in particular, the first
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demonstration of chaos synchronization in external cavity laser diodes by Siva-
prakasam et al. [6]. A striking feature of that experimental demonstration is the
remarkable robustness of the chaos synchronization – its persistence over a
long period of time in a laboratory lacking environmental controls offered
powerful support to prospects for subsequent practical deployment.

This chapter establishes the framework for networked communication using
chaotic external cavity laser diodes. A number of outstanding challenges remain
to be met in relation to practical implementations. Specific attention is drawn
here to the need to devise robust means for quantifying the security of chaos-
based communication. A particular requirement in this respect is to engender a
dialog with workers in relevant communities – and specifically classical cryptog-
raphy – who may be able to assist in further progressing the significant achieve-
ments already made in the use of chaotic external cavity laser diodes.

17.2
Synchronization and Message Transmission

The general concept of synchronization has a long historical tradition and its
modern manifestations have been summarized in a major work [7]. The general
context for chaos synchronization in external cavity semiconductor lasers has
been delineated by Sivaprakasam and Masoller [8] (chapter 6) to which attention
is directed for further references. The generic experimental configuration in-
cludes a transmitter or master laser and a receiver or slave laser. Unidirectional
optical coupling between the transmitter and slave laser enables synchronization
of the dynamics of the two lasers.

Mirasso et al. [9] showed theoretically that coupled chaotic semiconductor la-
sers with optical feedback can be synchronized and used in encoded communi-
cation systems which was subsequently demonstrated experimentally by Siva-
prakasam and Shore [6]. Synchronization is dependent upon a number of con-
trollable experimental parameters including the strength of the optical coupling
between the transmitter and receiver lasers [10]. Frequency detuning between
the lasers also affects the achieved quality of synchronization. Earlier theoretical
studies show that synchronization is best achieved when the detuning between
two diode lasers is zero [11]. For negative detuning a negative gradient domi-
nates and the branch with a positive gradient disappears. The appearance of a
negative gradient in the synchronization diagram is termed inverse synchroniza-
tion. Inverse synchronization occurs due to nonresonant coupling between the
master and slave lasers and synchronization is due to resonant coupling be-
tween the two lasers [12, 13]. A synchronization regime similar to this, which
was termed ‘antisynchronization’, was found by Wedekind and Parlitz [14].

In the synchronization of identical lasers, in closed-loop configuration two
qualitatively different synchronization regimes can occur [15, 16]. When both la-
sers are subjected to the same feedback strength and the slave laser is subjected
to an appropriate optical coupling the slave laser output at a given time syn-
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chronizes with the master laser output taking account of a lag time arising by
the time of flight between the lasers, i.e., Is�t� � Im�t	 �c�� where �c is the time
of flight between the lasers. This regime is called isochronous or generalized
synchronization and corresponds to the synchronization found numerically in
[9] and experimentally in [6].

A different regime was found numerically by Ahlers et al. [17], which occurs
when the master and slave lasers have the same amount of external injection,
i.e., when the master laser feedback strength is equal to the sum of the slave
laser feedback strength and the optical coupling strength. In this case the slave
laser output synchronizes with the master laser output according to
Is�t� � Im�t	 ���, where the lag time is given by �� � �c 	 �, where � is the ex-
ternal cavity round trip time. This is termed complete synchronization. A quali-
tative verification of the condition for this latter case was undertaken experi-
mentally in [18].

If the lasers are sufficiently close to each other, such that �c � � then �� � 0
and the slave laser output anticipates the master laser output. Masoller [19]
showed that this is a particular case of the anticipating synchronization regime
discovered by Voss [20]. The dependence of the lag time on the delay time was
verified experimentally by Liu et al. [21].

Synchronizing a series of chaotic lasers becomes essential when the chaotic
lasers are put to use in practical communication systems such as for use in
message relay as described in Section 17.3.2. An experimental demonstration
has been made of the synchronization of three chaotic diode lasers [22].

As may be expected in such an arrangement, time of flight lag times appear
in the synchronization. Building on a demonstration of anticipated synchroniza-
tion in mutually coupled lasers [23] it was shown that it is possible to nullify
the time of flight lag time [24]. This phenomenon has also been observed in the
case that all lasers are mutually coupled [25]. Furthermore, it has also been pos-
sible to obtain complete synchronization with zero-time lag [26]. Frequency de-
tuning can be utilized to effect synchronization switching [27].

The foregoing work has considered synchronization in edge-emitting semi-
conductor lasers. In respect of vertical cavity surface emitting lasers (VCSELs),
Spencer et al. [28] investigated theoretically the synchronization of chaotic
VCSELs. Later Ohtsubo et al. [29] reported an experimental observation of chaot-
ic synchronization in mutually coupled stand-alone VCSELs. Exploiting the
polarization properties of VCSELs experimental demonstrations of regular and
inverse synchronization in VCSELs have been performed [30]. In addition to
VCSELs, recently synchronization of chaotic self-pulsing lasers has been
achieved [31].

Having established the capability of effecting chaos synchronization using ex-
ternal cavity lasers attention is turned to the use of such a chaotic carrier for
the transmission of messages. Attention has been given to the relative merits of
using open- and closed-loop configurations [32]; the vital issue of message band-
width has been addressed [33] and message transmission using chaotic VCSELs
has been achieved [34].
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Although the foregoing demonstrate the efficacy with which message extrac-
tion can be achieved using chaotic semiconductor lasers it remains of practical
importance to illuminate the physical mechanism which allows message extrac-
tion. This has been achieved in recent detailed theoretical work [35, 36].

Figure 17.1 shows the time traces of the transmitter laser (Fig. 17.1 (a)),
receiver laser (Fig. 17.1 (b)), decoder laser (Fig. 17.1 (c)) and recovered message
(Fig. 17.1 (d)). It is observed that the three lasers are well synchronized and the
message (which is the difference between the time traces shown in Figs. 17.1 (c)
and 17.1 (b) is recovered.

17.3
Networked Chaotic Optical Communication

Here attention is given to experimental demonstrations of the functionalities re-
quired to achieve networked communication systems: chaos message multiplex-
ing, chaos message broadcasting and message relay (to allow extension of the
reach of the chaos communication link).
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Fig. 17.1 Chaos synchronization and message recovery:
(a) transmitter laser time trace, (b) receiver laser time trace,
(c) decoder laser time trace, (d) recovered message [37].



17.3.1
Chaos Multiplexing

It has been demonstrated experimentally [37] that two chaotic optical communi-
cation channels can be configured over a single transmission path using two ex-
ternal-cavity laser diodes as transmitter lasers, and a single stand-alone receiver
laser. The two chaotic communication channels were shown to operate indepen-
dently: two messages, at different modulation frequencies, generated via direct
current modulation of the transmitter lasers, can be masked by the chaos and
recovered at the receiver laser by the use of a decoder laser as illustrated in Fig.
17.1. The decoder laser is used to select the channel to be utilized. The chan-
nels operate at different laser wavelengths and thus constitute a wavelength di-
vision multiplexing (WDM) scheme [37]. Attention has also been given to two
mode synchronization [38] as a basis for chaos wavelength division multiplexed
operation.

17.3.2
Message Relay

In conventional communication systems, network operations are often per-
formed with the assistance of relay stations which provide the opportunity to
enhance the distance over which information can be transmitted. A similar
functionality would be extremely attractive in chaotic optical communication. In
order to implement such a system, the requirement is to couple three or more
chaotic transmitters and receivers in cascade configuration and then success-
fully extract a message at the terminal receiver. A basic requirement for success-
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Fig. 17.2 (a) Power spectrum of transmitter
laser output. Message is indicated at 1 GHz.
(b) Power spectrum of mediator laser output.
Relayed message is indicated at 1 GHz.
(c) Power spectrum of receiver laser output
[39].



ful message transmission in such a configuration is the achievement of robust
chaos synchronization between the cascaded transmitters and receivers. Based
on such cascade synchronization, we illustrate here the successful relay of a 1
GHz chaotic message using three cascade-coupled distributed feedback (DFB)
laser diodes, termed here the transmitter, mediator, and receiver lasers. In the
arrangement used here, the transmitter laser is rendered chaotic due to the ap-
plication of optical feedback in an external cavity. A 1 GHz message is encoded
using the chaotic carrier [39]. The mediator laser performs as a chaotic relay.
Figure 17.2 shows that message recovery in both the mediator and receiver la-
sers has been achieved. It is apparent from Fig. 17.3 that some distortion occurs
in the relay process and hence multiple-repetition will require optimization of
the synchronization [39].

17.3.3
Message Broadcasting

In order to implement a chaotic communication network it is highly attractive to
have the capability of broadcasting a message from one transmitter to several re-
ceivers. In this section a discussion is offered of an experimental demonstration of
GHz message broadcasting at telecommunication wavelengths using a chaotic ex-
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Fig. 17.3 (a) Power spectrum of message decoded in
mediator side. Presence of message is clearly revealed at
1 GHz. (b) Filtered decoded message. (c) Power spectrum of
message decoded from relayed chaotic message in receiver
side. Presence of message is clearly revealed at 1 GHz.
(d) Filtered decoded message [39].



ternal-cavity DFB laser transmitter and two DFB laser receivers. The experimental
setup is described fully in [40]. Because of their relevance to conventional optical
fiber communication systems, three single-mode DFB laser diodes emitting at
1550 nm are used, as the transmitter laser (TL), receiver laser 1 (RL1), and receiver
laser 2 (RL2), respectively.

Varying the optical feedback level of the TL, several dynamical regimes, in-
cluding chaotic regimes, are obtained in the transmitter. Among them, the low
frequency fluctuation (LFF) regime is used here for message encoding. The
bandwidth of the chaotic outputs is more than 4 GHz which is adequate to en-
code the 1 GHz message. The technique used for message encoding is that of
chaotic modulation where the TL is directly modulated. The 1 GHz message
masked by the chaotic signal is transmitted to both the receiver lasers. Figure
17.4 (a) shows the power spectrum as the result of message encoding and de-
coding. Since the dominant LFF peak appears at 1 GHz, the 1 GHz message
cannot be noticed in the figure demonstrating that the message encoding is ef-
fective. Figure 17.4 (b) displays the power spectrum of the message recovered
from RL1, where the message is clearly visible at 1 GHz. The extracted message
has a 14.7 dB signal-to-noise ratio which indicates efficient message recovery.
Figure 17.4 (c) shows the power spectrum of the signal broadcast to RL2. As in
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Fig. 17.4 Power spectra of the encoded and decoded mes-
sage. (a) the transmitted signal from PD1. (b) The recovered
message in the receiver laser 1. (c) The transmitted signal
from PD3. (d) The recovered message in the receiver laser 2
[40].



Fig. 17.4 (a), the figure displays an effective message encoding. Figure 17.4 (d)
shows the power spectrum of the recovered message from RL2. These results
provide an experimental demonstration of broadcasting of a high frequency
message to two receiver lasers using a chaotic optical carrier generated in a
DFB laser subject to optical feedback.

17.4
Summary

This chapter has summarized experimental and theoretical work concerned
with the use of external cavity semiconductor lasers in optical chaos communi-
cation. The versatility of this configuration has been illustrated by its use in de-
livering networking functionalities. The chapter has also sought to point out
some of the rather subtle dynamical behavior, which underpins the experimen-
tally observed behavior. Further opportunities for development of this activity
have been indicated in respect of recent experiments performed using chaotic
self-pulsing laser diodes.
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18.1
Introduction

Synchronization is an important phenomenon observed in nature and science
[1]. Synchronization in a dynamical system is the phenomenon of the onset of
balance between the phases of the subsystems’ state variables’ oscillations, which
is caused by an onset of the energy balance. This phenomenon is called phase
synchronization (PS). Especially, PS is typical for many systems in biology and
neuroscience [2–6] and physics [7–11]. The balance of the phases of oscillations
can be accompanied with a balance of the corresponding amplitudes. In this
case generalized synchronization (GS) can be observed in dynamical systems
and in the case of the full coincidence of synchronized variables the complete
(full) synchronization sets in [12–15]. Depending on the type of coupling two
main classical cases of synchronization can be distinguished: external and mu-
tual. In the former case a freely evolving master system, acting as an external
force, drives the slave system. Often, the increase of the external force leads to
locking in, and synchronization occurs. Note that such a drive-response (or mas-
ter slave) configuration is frequently commonly used in chaotic communication
[16, 17, 18]. Mutual synchronization can be observed in the case of bidirectional
coupling and is commonly accompanied by the hysteresis phenomenon [19].

We propose an automatic control method of phase locking of regular and
chaotic nonidentical oscillations, when all subsystems interact via a feedback
[20]. This method is based on the well-known principle of feedback control
which takes place in nature and is successfully used in engineering. Consider-
ing the models of coupled systems in biology, neuroscience, and ecology one
can see that in many of them the coupling between interacting elements is non-
linear, and usually has the form of quadratic functions of the subsystem vari-
ables. Such a coupling serves as the basis of an internal self-organization mech-
anism leading to a balanced motion in these systems. Synaptically coupled neu-
rons [31, 32], phase transitions in human hand movement [33], ecological sys-
tems [28], or spinal generators of locomotion [34] are only some well-known
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examples of balanced cooperative oscillatory motion, caused by a nonlinear cou-
pling. In engineering, nonlinear coupling, is used, for example, in coupled la-
sers [22, 23] or phase-locked loops (PLL) [21].

Different methods for controlling the behavior of dynamical systems have
been used for chaos control [35, 36, 37, 38, 39]. An adaptation of these methods
for the stabilization of a chaotic trajectory of one system to a chaotic trajectory
of another identical system, i.e., for a control of complete synchronization, is pre-
sented in [40–44]. In [45, 46] it was shown that the main problems of complete
synchronization being regarded as a control problem can be solved on the basis
of control theory methods. On the other hand, the problem of phase synchroni-
zation has not been formulated and hence considered before as a control theory
problem. In contrast to the mentioned methods, our novel approach is directed
at controlling the phases via characteristic time scales (CTS) of two (or many)
different interacting oscillators.

In contrast to unidirectional (Fig. 18.1 (a)) and bidirectional (Fig. 18.1 (b)) cou-
pling, the approach presented here supposes the existence of a special control-
ler, which allows to change the parameters of the controlled systems
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Fig. 18.1 Three main schemes of inter-element coupling
between two oscillators having natural frequencies �1 and
�2: (a) unidirectional, (b) bidirectional , and (c) coupling via
feedback loop with controller composed of quadratic form
(18.6) and linear operator (18.5).



(Fig. 18.1 (c)). For this purpose we extract first the mutual correlation between
the CTS, then filter the obtained signal, and finally change the systems’ parame-
ters which govern the CTS.

This chapter is structured as follows: First we discuss general principles of
automatic PS for arbitrary coupled systems with a controller whose input is giv-
en by a special quadratic form of coordinates of the individual systems and its
output is a result of the application of a linear differential operator. Second, we
demonstrate the effectiveness of our approach for controlled PS on several ex-
amples: (i) two coupled regular oscillators, (ii) coupled regular and chaotic oscil-
lators, (iii) two coupled chaotic Rössler oscillators, (iv) coupled chaotic Rössler
and Lorenz oscillators, (v) ensembles of locally coupled regular oscillators, (vi)
ensembles of locally coupled chaotic oscillators, and (vii) ensembles of globally
coupled chaotic oscillators.

18.2
General Principles of Automatic Synchronization

To begin with, we describe the automatic phase locking for two arbitrary differ-
ent regular or chaotic oscillators given by

dx1�2

d�1�2
� F1�2�x1�2� � �18�1�

where x1�2 and F1�2 are n1�2-dimensional vectors, �1�2 are time-dependent vari-
ables, e.g., in the simplest case �1�2 � �1�2t, where �1�2 are parameters defining
the time-dependence rate (in some cases, frequencies) of oscillations x1�2�t�. Let
us suppose that both systems have regular or chaotic attractors given by solu-
tions x�1��1� and x�2��2�, where �1�2 stand for independent variables. Our pur-
pose is to synchronize the oscillations using a feedback control of CTS of
coupled oscillators in such a way that the new CTS �	1

1�2 become equal. Here
�1�2 are the mean observed frequencies of the oscillators being controlled.

In order to synchronize the subsystems (18.1), we apply a feedback control of
the following form:

dx1�2

dt
� �1�2�1� �1�2u�F1�2�x1�2� � �18�2�

d�1�2

dt
� �1�2�1� �1�2u�� � �18�3�

Lu � Q�x1� x2�� �18�4�

where L is a linear stable operator:

L � 	k
dk

dtk
� 	k	1

dk	1

dtk	1
� � � � � 	1

d
dt
� 	0 �18�5�
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acting as a low-pass filter, all 	k are nonnegative constants. Q�x1� x2� is a quad-
ratic form:

Q�x1� x2� �
�ns

l�1

qlx
�l�
1 x�l�2 � �18�6�

where ns % min�n1� n2�, ql � const � 0, is weighted scalar product of vectors x1

and x2; �1�2 are control parameters, u � R1 is a control variable.
Statement. Systems 2–4 have the attractor

A � �xi � x�i ��i�� u � u��t� �

�i � �i��t� � �it� �i�i

3 t

t0

u����d�� �

i � 1� 2 �

�18�7�

Indeed, Eqs. (18.2) and (18.3), being equivalent to Eqs. (18.1), give
x1�2 � x�1�2��1�2�. Equation (18.4) at x�1�2��1�2� has a bonded set of solutions
S � ���u�� � K�, where K � const, due to the boundedness of Q�x�1 � x�2� and the
stability of the operator L. Therefore, the solution u��t� � S. Note that for the
equivalence of Eqs. (18.2) and (18.3) to Eqs. (18.1) we have to assume the condi-
tion 1� �1�2u��t� � 0, which is valid when 1	 �1�2K � 0.
Using the substitutions � � �2 	 �1 and � � �2 � �1 we transform Eqs. (18.3)
and (18.4) at x�1�2 into the system:

d�
dt
� �2 	 �1 � 
u � �18�8�

d�
dt
� �1 � �2 � 	u � �18�9�


	1L
d�
dt
	 ��2 	 �1�

 �
� Q�x�1��	 ��� x�2��� ��� � �18�10�

where 
 � �2�2 	 �1�1 and 	 � �1�1 � �2�2. � is the fast variable if
�1 � �2 �� 		1K. Assuming the latter and averaging (18.10) we obtain the
equation for the phase difference �:

ak
dk�1�

dtk�1
� � � � � a1

d2�

dt2
� a0

d�
dt
� a0��2 	 �1� � 
G��� � �18�11�

where

G��� �
�ns

l�1

qlx
�l�
1 x�l�2 �18�12�
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is the average with respect to the fast variable �, and has a form of a correlation
function. Then the stable either steady state(s) (G��� � a0��2 	 �1� or another
attractor(s) of oscillatory type in Eqs. (18.11) define the successful PS.

The described principle of synchronization is effectively used in applications
of PLL in a large number of radio- and telecommunication devices, radio-loca-
tion, etc. It can also be identified in a huge variety of examples in nature, where
the interaction of some oscillatory objects leads to their balanced behavior. This
behavior is mainly achieved by a nonlinear interaction of the elements [24–30].
Coupled lasers [23], synaptically coupled neurons [31], phase transitions in hu-
man hand movement [33], ecological systems [6], and spinal generators of loco-
motion [34] are only some well-known examples of balanced cooperative oscilla-
tory motion, caused by a nonlinear coupling. Usually this coupling has the form
of a quadratic function of variables of the interacting elements [47]. This type of
coupling is able to minimize the oscillators’ phase difference and therefore it
causes synchronization.

Moreover, another control principle very similar to Eqs. (18.2)–(18.4) can be
used for system (18.1), when the variable x1�x2� is increasing (decreasing) with
some characteristic exponent �1��2� for some bounded interval. Then, the sys-
tem (18.1) describes a growth-decay process. In order to manage this process we
apply the same type of feedback control, i.e., we use the quadratic form, but,
here we add our control variable u directly to the process velocities:

�x1�2 � F1�2�x1�2��1�2� � �1�2u �

Lu � Q�x1� x2� � �18�13�

where we state that some chosen �L�Q�-pair in Eqs. (18.13) leads to the emer-
gence of balanced (synchronized) oscillations of x1 and x2. As an example let us
consider a “predator-prey” system [48]:

�x1 � �1x1�1	 x1� � �1u �

�x2 � 	�2x2 � �2u �

� �u � 	u� 
x1x2 �

�18�14�

This system has a globally stable limit cycle, i.e., variables x1 and x2 become
balanced. For � � 0 the system (18.14) is the Lotka-Volterra-type equations from
mathematical ecology. They demonstrate the role of a hidden self-control inter-
action 
x1x2, causing the self-organization between predator’s growth and prey’s
decay.

In the proposed control schemes the control in the form of some quadratic
form is applied multiplicatively in order to achieve the PS and additively in or-
der to achieve the growth-decay rates balance.

It appears that our proposed feedback principle of PS as well as amplitudes
balance for synchronization is general and is realized in nature. We confirm
this statement via two model systems which are paradigmatic in nonlinear dy-
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namics. First, we show the error control system, where feedback control for PS
is applied to the linear system (a “predator-prey” system in eigenspace) with a
saddle steady state:

�x � 	�x 	 y� �
�y � �r 	 u�x 	 y �

�u � 	bu� xy �

�18�15�

It is easy to see that this is the Lorenz system [50] having a strange attractor.
We conclude that here an error in the control leads to the emergence of chaos.

The Rössler oscillator [51]

�x � 	y	 u �

�y � x � ay �

�u � 	b	 cu� xu �

�18�16�

is an example where the error control scheme of additive balance is applied to
an oscillatory system. The chaotic behavior is again a result of the error control.

We have performed many analytical and numerical investigations which show
successful application of proposed control scheme. Here, we shall present only
three examples.

18.3
Two Coupled Poincaré Systems

As the simplest case, we consider feedback control of PS in two coupled Poin-
caré systems:

�x1 � 	�1�1� �1u�y1 	 ��x2
1 � y2

1 	 p2�x1 �

�y1 � �1�1� �1u�x1 	 ��x2
1 � y2

1 	 p2�y1 �

�x2 � 	�2�1� �2u�y2 	 ��x2
2 � y2

2 	 p2�x2 �

�y2 � �2�1� �2u�x2 	 ��x2
2 � y2

2 	 p2�y2 �

�u � 		u� 
x1x2 �

�18�17�

Here, (xi� yi� describe the two Poincaré systems and u is the control variable.
�1�2 are the frequencies, p is the amplitude of oscillations and � � 0 determines
the relaxation to the limit cycle. 
1�2 and 	 are the parameters of the controller.
The constants �1�2 determine the coupling scheme. By simple modification of �i

it is possible to realize both bidirectional (�i �� 0� i � �1� 2�) or unidirectional
(�i � 0� �j �� 0) coupling. Note that in this scheme the coupling strength �i may
as well take negative numbers. In (18.17) we have taken very simple forms for
the quadratic form Q�x1� x2� � 
x1x2 and the linear operator L � d

dt� 	. How-
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ever, we note that also different, more sophisticated, functions may be used
with similar results. For example, we have checked that synchronization indeed
occurs with different quadratic forms such as Q�x1� x2� � �x1 	 x2�2, or
Q�x1� y2� � �x1 	 y2�2.

Using polar coordinates xi � �i cos�i� yi � �i sin�i, we rewrite system (18.17)
in the form

��1�2 � ��1�2�p2 	 �2
1�2� �

��1�2 � �1�2�1� �1�2u� �
�u � 		u� 
�1�2 cos��1� cos��2� �

�18�18�

The product of cosine functions in (18.18) can be decomposed into a slow and
a rapidly oscillating term. In the limit �1 � �2 � 	 the low-pass filter L is
damping out the ‘high’ frequencies, which further simplifies the dynamics. Let
�2 � �1 � ��. After relaxation of the radial equation, ��i � 0, the radius of each
oscillator is fixed to �i � p. Thus, after averaging we arrive at the following
simplified equations for the control variable u and the phase difference
� � �2 	 �1:

�� � ��� ��2�2 	 �1�1�u �

�u � 		u� 
 p2

2
cos � �

�18�19�

Rewritten as a second-order differential equation this leads to

��� 	 ��	 	��	 


2
p2��2�2 	 �1�1� cos � � 0 � �18�20�

This pendulum-like equation for the evolution of the phase difference describes
the synchronization regime of the two oscillators interacting via feedback con-
trol. The existence of this regime is defined by a stable steady state in (18.20)
with the coordinates

cos �� � 2	

p2

u� � u� � ��

�1�1 	 �2�2
� �18�21�

which does exist in the range


p2

2	
�

��

�2�2 	 �1�1

���� ���� � �18�22�

Synchronization is achieved when the effective coupling strength, here
�eff � 
p2��2	�, is larger than a function of the frequencies, i.e., �eff � f ��i� �i�.
In the contrast to the linear diffusive coupling, for example by terms

�x2�1 	 x1�2�, the condition (18.22) depends on the values of the amplitudes of
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oscillations p. Larger p provides the appearance of synchronization at smaller
values of coupling 
.

18.4
Coupled van der Pol and Rössler Oscillators

Now two structurally different oscillators are coupled: regular – van der Pol –
oscillator and chaotic – Rössler – oscillator [51]. The equations describing the
control scheme (same L and Q as in the previous section) for PS of such oscil-
lators are

�x1 � 	�1�1� �1u�y1 	 z1 �

�y1 � �1�1� �1u�x1 � ay1 �

�z1 � b	 cz1 � x1z1 �

�x2 � y2 �

�y2 � 	��2�1� �2u��2x2 � ��p2 	 x2
2�y2 �

�u � 		u� 
x1x2 �

�18�23�

where x1� y1� z1 are the variables of the Rössler oscillator, and x2� y2 are the vari-
ables of the van der Pol oscillator. u is again the control variable added in both
subsystems, �1�2� 
 and 	 are control parameters. We set 
 � 	 � 1. For the van
der Pol oscillator we choose the following set of parameters: �2 � 1, � � 0�01,
and p � 4. The parameters of the Rössler oscillator will be chosen as:
a � 0�15 
 0�2�, b � 0�1, c � 8�5, and �1 � 1. For these values the topology of
the chaotic Rössler attractor is rather simple, i.e., phase-coherent, and one can
introduce the phase in the form

�1 � arctan�y1�x1� � �18�24�

For chosen � the phase trajectory of the van der Pol oscillator regularly monoto-
nously oscillates around the origin, so we can use a similar definition of the
phase

�2 � 	 arctan�y2�x2� � �18�25�

In order to test the existence of PS between Rössler and van der Pol oscillators,
we use as in the previous chapters two criteria: PS sets in
(i) if the mean frequencies of both coupled subsystems become equal (fre-

quency locking)

�2 � �1 � �18�26�

where the frequencies are defined as
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�1�2 � lim
T��

�1�2�T� 	 �1�2�0�
T

� �18�27�

(ii) and if the phase difference is bounded

��2 	 �1� % const� �18�28�

We consider two types of unidirectional (drive–response) feedback coupling:
(a) we control the characteristic time of the Rössler oscillator (�2 � 0 in

(18.23)) (Fig. 18.2), or
(b) we control the characteristic time of the van der Pol oscillator (�1 � 0 in

(18.23)) (Fig. 18.3). In both the cases there are critical values of the feedback
control parameters ��1�2 corresponding to the onset of synchronization.

First, we study the case where the van der Pol oscillator is the drive system and
the Rössler oscillator is the controlled response system. We set a � 0�15, so that
the chaotic attractor of the Rössler oscillator is phase coherent. To illustrate the
transition to PS, we plot the mean frequency difference and the three largest
Lyapunov exponents versus the control parameter �1 (Fig. 18.2 (a)), as well as a
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Fig. 18.2 Transition to PS for the unidirec-
tionally (�1 � 0 in (18.23)) feedback coupled
Rössler and van der Pol oscillators. The van
der Pol oscillator is the drive system and
the Rössler oscillator is the controlled
response system. The mean observed
frequency of the Rössler oscillator �1 at

��1 � 0�00123 becomes equal to the
frequency of the van der Pol oscillator �2.
(a) The three largest Lyapunov exponents,
one of which is always zero, and the difference
of the mean observed frequencies �1 	 �2

(circles) versus the control parameter �1.
(b) Maxima of x1 versus �1.



bifurcation diagram (Fig. 18.2 (b)). We find that PS occurs at ��1 � 0�00123.
There the behavior of the Rössler oscillator remains chaotic but with the mean
observed frequency �1 equal to the frequency �2 of the van der Pol oscillator. A
similar situation of chaotic frequency locking was observed in [52, 53], where ef-
fects of PS were observed in a chaotic system forced by an external periodic sig-
nal. In contrast to this, our interacting subsystems are autonomous and there-
fore without coupling two zero Lyapunov exponents exist. In this case the tran-
sition to PS can be analyzed by means of the Lyapunov exponents spectrum. As
it can be seen from Fig. 18.2 (a) the frequency locking occurs approximately
(shortly after) at the same value of �1 for which one of the zero Lyapunov expo-
nents becomes negative. Our numerical experiments (for other values of a)
show that usually the behavior of the controlled Rössler oscillator remains chao-
tic. But there are also intervals of �1 where the behavior of the Rössler oscillator
becomes periodic (Fig. 18.2). Thus, very small coupling allows to control chaotic
systems in such a way that (i) we can govern the mean frequency of oscillations
and (ii) we can get periodic oscillations too.

In the second case of unidirectional feedback coupling, the Rössler oscillator
is the drive system and the van der Pol oscillator is the controlled response sys-
tem. Here we analyze not only the phase-coherent chaotic attractor (a � 0�16)
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Fig. 18.3 Transition to PS for the unidirec-
tionally (�2 � 0 in (18.23)) feedback coupled
Rössler and van der Pol oscillators. The
Rössler oscillator is the drive system and the
van der Pol oscillator is the controlled
response system. The observed frequency of
the van der Pol oscillator �2 after some ��2
becomes equal to the mean frequency of the

Rössler oscillator �1. (a) The difference of
the mean observed frequencies �1 	�2

(circles) versus control parameter �2.
(b)–(d) Maximal values of x2 versus �2. The
parameters are: (b) a � 0�24, (c) a � 0�22
(for a � 0�22 attractor in Rössler oscillator is
periodic), and (d) a � 0�16.



but also the funnel attractor (a � 0�24). In the latter case the topology of the at-
tractor is rather complicated and the phase can not be defined as in (18.24).
Thus, we introduce another phase definition [49]

�1 � arctan��y1� �x1� � �18�29�

and use the same two criteria (18.26) and (18.28) as in the previous case. We
plot in Fig. 18.3(a) the difference of the mean observed frequencies �1 	�2 ver-
sus the feedback control parameter �1 for different values of a. In all cases PS
occurs at some critical values ��2, but with increasing a a larger value ��2 is
needed to achieve the locking. The onset of PS is well manifested in the bifurca-
tion diagrams (Figs. 18.3 (b)–(d)). One can see that with increasing �2 the inter-
val l of possible maximum values of x2 becomes larger at first. But at the transi-
tion point to synchronization a strong shrinking of the interval l is observed. It
means that the variables x2 and y2 become localized in a relatively small area.

We have also performed numerical simulations where the van der Pol and
the Rössler oscillator are mutually coupled by feedback (�1�2 �� 0). The effect of
both regular and chaotic PS has been observed there as well.

18.5
Two Coupled Rössler Oscillators

In this section we will demonstrate feedback control of chaotic PS for two
coupled Rössler oscillators:

�x1�2 � 	�1�2�1� �1�2u�y1�2 	 z1�2 �

�y1�2 � �1�2�1� �1�2u�x1�2 � ay1�2 �

�z1�2 � b	 cz1�2 � x1�2z1�2 �

�u � 		u� 
x1x2 �

�18�30�

where x1�2� y1�2� z1�2 are the variables of the first and second Rössler oscillator re-
spectively. We set: 
 � 	 � 1, a � 0�15, b � 0�1, c � 8�5, �1 � 0�98, and
�2 � 1�02. Hence, for both oscillators the phase definitions (18.24) can be used.
The existence of PS between Rössler oscillators is tested again by the criteria
(18.26) and (18.28).

We computed the Lyapunov exponents spectrum (Fig. 18.4 (a)), the mean fre-
quency difference (Fig. 18.4(a)), and the evolution of the phase difference
(Fig. 18.4 (b)). PS sets in at the essentially small coupling ��1 � 	��2 � 0�000415.
Note that shortly before PS one of the zero Lyapunov exponents becomes nega-
tive. With increasing �1, the frequency difference decreases smoothly (without
jump), i.e., a soft transition to PS takes place. This is manifested in the evolu-
tion of the phase difference, namely for the control parameters close to the criti-
cal value ��1 phase locking at large time intervals is observed (Fig. 18.4 (b)).
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Let us compare the effectiveness of the proposed coupling scheme with re-
spect to the diffusive coupling usually considered. In the latter case the equa-
tions of motions for two diffusively coupled Rössler oscillators are (see [55]):

�x1�2 � 	�1�2y1�2 	 z1�2 � 
�x2�1 	 x1�2� �
�y1�2 � �1�2x1�2 � ay1�2 �

�z1�2 � b	 cz1�2 � x1�2z1�2 �

�18�31�

In order to estimate the critical coupling strength corresponding to the appear-
ance of synchronization, we make a transformation to cylindrical coordinates:
x1�2 � �1�2 cos�1�2 and y1�2 � �1�2 sin�1�2. Then for the feedback-coupled oscilla-
tors (18.30), the averaged equation for the difference � � �2 	 �1 of slow
phases �1�2 � �1�2 	 �0t reads as

��� � ��	 �
�1�2 sin � � �� � �18�32�

If we neglect the fluctuations of the amplitude, Eq. (18.32) has the stationary so-
lution:

�� � 	 arcsin����
�1�2�� � �18�33�
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Fig. 18.4 Synchronization of two coupled
Rössler oscillators (18.30). The parameters
are: a � 0�15� b � 0�1� c � 8�5��1 � 0�98�
�2 � 1�02� �1 � 	�2� and 
 � 	 � 1. (a) The
four largest Lyapunov exponents and the
difference of the mean observed frequencies

�1 	�2 (circles) versus the control para-
meter �1. (b) Difference of the phases
�2 	 �1 for nonsynchronous
(�1 � 0�0004� 0�000405� 0�00041) and
synchronous (� � 0�000415) regimes.



This state exists and is stable if���� �

�1�2

���� � 
 � �18�34�

The equation for the phase difference of (18.31) can be recast in the form:

��	 


2
�2

1 � �2
2

�1�2
sin � � � � �18�35�

The stable stationary state

�� � arcsin�2��1�2���
��2
1 � �2

2�� �18�36�

exists in the range


 � ��2��1�2�����2
1 � �2

2� � �18�37�

If we take not strongly different oscillators (i.e., �1 � �2) this range is reduced to


 � ��� � �18�38�

Therefore, by equivalent parameters of the interacting oscillators the synchroni-
zation range for the feedback coupling (Eq. (18.30)) is p2 � �1�2 times larger
than for the diffusive coupling (Eq. (18.31)). This estimation is in very good
agreement with our numerical results.

We have also analyzed the synchronization transitions for the simplest case of
a linear operator L. For � �� 1 the filtered control variable u can be expressed
by sin��2 	 �1�, where the phases �1�2 are introduced by (18.24). Then the
Eqs. (18.30) can be rewritten as

�x1�2 � 	�1�21� �1�2 sin��2�1 	 �1�2��y1�2 	 z1�2 �

�y1�2 � �1�21� �1�2 sin��2�1 	 �1�2��x1�2 � ay1�2 �

�z1�2 � b	 cz1�2 � x1�2z1�2 �

�18�39�

The dependence of the mean frequency ratio �2��1 on the parameter �1 � 	�2

for different a shows the onset of PS again for a very small coupling strength
(Figs. 18.5 and 18.6).

18.6
Coupled Rössler and Lorenz Oscillators

Now we will apply the automatic PS to the coupled Rössler and Lorenz oscilla-
tors, i.e., chaotic oscillators with a well-pronounced difference in topology (see
Sections 18.4 and 18.5). The model is (Fig. 18.7)
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�x1 � ��	��1� �1u�y1 	 z1� �
�y1 � ����1� �1u�x1 � ay1� �
�z1 � b	 cz1 � x1z1 �

�x2 � �y2 	 x2� �
�y2 � rx2 	 y2 	 x2z2 �

�z2 � �1� �2u��	bz2 � x2y2� �
�u � 		u� x1z2 �

�18�40�
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Fig. 18.5 Synchronization of two coupled Rössler oscillators
(18.39). The ratio of the mean observed frequencies �2��1

versus the control parameter �1. The parameters of the
individual oscillators are the same as in Fig.18.4.

Fig. 18.6 Synchronization of two coupled Rössler oscillators
(18.39) for different coupling schemes. Plotted is the fre-
quency of the mean observed frequencies �2 	�1 versus the
control parameter �. The coupling parameters �1 and �2 are
taken as explained in the figure. The parameters of the
individual oscillators are the same as in Fig. 18.4.



where x1�2� y1�2� z1�2 are the variables of the Rössler and Lorenz oscillators, re-
spectively. The parameters a� b� c and the phase of the Rössler oscillator are the
same as in the previous case; � � 0�98, � � 8�3,  � 10, r � 28, and b � 8�3
and the phase of the Rössler oscillator is measured as before. The phase of the
Lorenz oscillator is calculated as � � arctan��z2 	 27��� ���������������

x2
2 � y2

2

� 	 12��. In
Fig. 18.7 we present results of the transition to chaotic PS between Rössler and
Lorenz oscillators. One can see an interval of � where PS occurs. Therefore,
using the proposed scheme we are able to achieve chaotic PS between oscilla-
tors with a strong difference in their topology.

18.7
Principles of Automatic Synchronization in Networks of Coupled Oscillators

The formation of collective behavior in large ensembles or networks of coupled
oscillatory elements is one of the oldest problem in the study of dynamical sys-
tems. Nevertheless, it is an actually challenging field for a theoretical under-
standing as well as for applications in various disciplines, ranging from physics,
chemistry, earth sciences via biology and neuroscience to engineering, business
and social sciences. Due to the large number of effective degrees of freedom in
spatially extended systems, a rich variety of spatiotemporal regimes is observed.
Three main types of collective behavior are distinguished: (i) a fully incoherent
state or highly developed spatiotemporal disorder; (ii) partially coherent states,
where some of the participants in the network behave in some common
rhythm; (iii) a fully coherent state or a regime of globally synchronized ele-
ments. The basic phenomenon of these structure formations is synchronization,
i.e., regime of coherent activity, which is universal in many dynamical systems
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Fig. 18.7 Synchronization of coupled Rössler and Lorenz
oscillators (18.40). The parameters are: a � 0�15� b � 0�1�
c � 8�5�� � 0�98�  � 10� r � 28� b � 8�3� �1 � 	�2 � �� and

 � 	 � 1. The difference of the mean observed frequencies
�1 	�2 versus the control parameter �.



and can be understood from the analysis of common models of oscillatory net-
works.

Oscillatory arrays can have regular arrangement (1D arrays or 2D lattices)
with the coupling extended to the nearest neighbors (local coupling), or global
coupling among all the oscillators. Such simple coupling topology of the oscilla-
tors is relevant to many experimental and natural situations.
The locally or globally coupled networks can be considered as regular networks.
However, there are many real-world systems which are neither locally nor glob-
ally coupled, but often display a much more complicated coupling topology. Ex-
amples include Internet and world wide web in communication systems, neural
system or genetic regulation in biology, epidemic spreading and synchronization
in social and ecological systems, etc. [57–59].

Let us consider an ensemble of arbitrary regular or chaotic oscillators given
by the system

�xj � Fj�xj��j�� j � 1� � � � �N �18�41�

where xj and Fj are n-vectors, �j are parameters defining the time dependence
rate of oscillations xj�t� and N is the number of oscillators.

In order to synchronize these systems, we apply a feedback control between
all of them in the following form:

�xj � Fj�xj��j � �juj� �
Luj � Qj�x1� � � � � xN� � j � 1� � � � �N � �18�42�

where L is again a linear operator acting as a low-pass filter; the function
Qj�x1� � � � � xN� is:

Qj�x1� � � � � xN� �
�N

k�1�k��j

Qk�xj� xk� � �18�43�

where Qk is a quadratic form Qk � xT
j Hxk which characterizes the coupling be-

tween the jth and the kth oscillators.
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Fig. 18.8 Local feedback coupling in a chain of oscillators.



Now we study whether the control variable uj�t� added to each oscillator can
provide a synchronous behavior between interacting elements. Figure 18.8 pre-
sents a simple scheme which roughly describes the proposed coupling tech-
nique.

We demonstrate the method of feedback control for PS for ensembles of (i)
locally coupled regular oscillators (Section 18.8), (ii) locally coupled chaotic oscil-
lators (Section 18.9), and (iii) globally coupled chaotic oscillators (Section 18.10).

18.8
Synchronization of Locally Coupled Regular Oscillators

As the simplest case, we consider feedback control of PS in an ensemble of lo-
cally mutually coupled Poincaré systems:

�xj � 	��juj � �j�yj 	 ��x2
j � y2

j 	 p2�xj �

�yj � ��juj � �j�xj 	 ��x2
j � y2

j 	 p2�yj �

�uj � 	uj � 
j�1xjyj�1 � 
j	1xjyj	1 �

�18�44�

where j � 1� � � � �N, �j are the frequencies, p is the amplitude of oscillations,
and � � 0 is a damping parameter of the oscillators, uj is the control variable, �j

and 
j are the parameters of the jth controller. We assume free-end boundary
conditions: 
0 � 
N�1 � 0. For the quadratic form Qj we take the simplest form
of coupling with nearest neighbors

Qj � 
j�1xjyj�1 � 
j	1xjyj	1 � �18�45�

In this example we take the linear operator L in the form L � d
dt� 1. Using po-

lar coordinates xj � �j cos�j� yj � �j sin�j, we rewrite (66) in the following
form:

��j � ��j�p2 	 �2
j � �

��j � �juj � �j �

�uj � 	uj � 
j�1�j�j�1 cos�j sin�j�1�
� 
j	1�j�j	1 cos�j sin�j	1� j � 1� � � � �N �

�18�46�

We take a linear increasing distribution of individual frequencies
�j � �1 � ��j	 1�, and �j � �, 
j � 
. Then by introducing the phase differ-
ence variable �j � �j 	 �j�1, 	� � �
�2 and averaging the system (18.46), we ob-
tain:

��1 � ��1 � �1 � 	�p sin �1 � �18�47�

��j � ��j � �� 	�p�sin �j�1 	 2 sin �j � sin �j	1�� j � 1� � � � �N 	 1 � �18�48�
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with the boundary conditions: �0 � �N � 0. These equations describe the syn-
chronization regime in an ensemble of coupled Poincaré systems. The existence
of a PS regime is defined by a stable steady state in (18.48). This state
���1� � � � � ��j� � � � � ��N	1) in system (18.48) corresponds to a regime of global syn-
chronization in the chain. Hence, the system of equations for the stationary
phase differences ��n can be written as

�� 	�p �sin ��2 	 2 sin ��1� � 0 �

�� 	�p �sin ��j�1 	 2 sin ��j � sin ��j	1� � 0 � j � 2� � � � �N 	 2 �

�� 	�p �sin ��N 	 2 sin ��N	1� � 0�

�18�49�

The distribution of ��j is [54]:

sin ��j � �

2	�p
�Nj	 j2� � �18�50�

It follows from (18.50) that the system (18.48) can have 2N	1 steady states. But
only one of them (��j � 	��2� ��2� for all j � 1� � � � �N 	 1) can be stable. As the
frequency mismatch � is increased, the condition for the existence of steady
states

�

2	�p
�Nj	 j2�

���� ���� � 1 � �18�51�

is violated first for j � N�2 at even N, i.e., for the middle element in the chain.
Thus, the condition for the existence of a stable steady state in the N-element
chain is given by the inequality

�N2

8	�p

���� ���� � 1 � �18�52�

The frequency of global synchronization �s may be determined from Eqs. (18.48),
such that

�s � �1 � �

2
�N 	 1� � �18�53�

Then the frequencies for all elements are equal to the mean frequency of the
elements in the ensemble. With an increase of the frequency mismatch � (or
decrease of the coupling �), a loss of global synchronization takes place. For a
long chain two synchronization clusters occur, i.e., the chain is divided into two
clusters each of size N�2, both consisting of mutually synchronized oscillators.
Further increase of � (decrease of �) leads to a sequence of destruction of the
one cluster structure of the synchronized elements and to the appearance of an-
other structure. This sequence obtained in numerical experiments is presented
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in Fig. 18.9. From this figure, we recognize two types of transitions between
cluster structures. In the first type, a “hard” transition without intermediate
structures occurs from the state with n (n� 1) clusters to the state with n� 1
(n) clusters (see, for example, the interval 0�019 
 0�023�). In the second type, a
“soft” transition happens with a smooth transition of intermediate structures
one into the other. As follows from Fig. 18.9, the theoretically and numerically
obtained condition of global synchronization and the global synchronization fre-
quency are in very good agreement.

18.9
Synchronization of Locally Coupled Chaotic Oscillators

Now we will demonstrate feedback control of chaotic PS in ensembles of locally
coupled Rössler oscillators (Fig. 18.10)

�xj � 	��j � �juj�yj 	 zj �

�yj � ��j � �juj�xj � ayj �

�zj � b	 czj � xjzj �

�uj � 		juj � 
j�1xjyj�1 � 
j	1xjyj	1� j � 1� � � � �N �

�18�54�

We set: a � 0�15, b � 0�1, c � 8�5, �j � �, 	j � 
j � 1. Like in the Poincaré
systems, we introduce a gradient distribution of natural frequencies
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Fig. 18.9 Observed frequencies �j in a chain of Poincaré
systems (Eqs. (18.44)) with linear distribution of individual
frequencies versus �. N � 20, p � 1, �1 � 0�98, � � 0�001.



�j � �1 � ��j	 1� with �1 � 0�98, and � � 0�0001. Another variant considered
below is a random distribution of natural frequencies in the range
�1��1 � ��N 	 1��. We again assume free-end boundary conditions:

0 � 
N�1 � 0. The control scheme Qj is the same as in the previous section
and L � d

dt� 	j. As a condition of synchronization we again consider the coinci-
dence of the observed partial frequencies defined in (18.27).

We have performed numerical simulations with a chain of 100 elements with
a linear and a random distribution of the individual frequencies. For each ele-
ment for different � the frequency �j has been calculated. We find that in both
the cases by increasing the coupling � all frequencies �j become equal, which
means global chaotic PS sets in.

We have also analyzed synchronization transitions in the simplest case of a
linear operator L. For 	j �� 1 the filtered control variable uj can be expressed as

uj � sin��j�1 	 �j� � sin��j	1 	 �j� � �18�55�

where the phases �j are introduced via (18.24). Then Eqs. (18.54) can be rewrit-
ten as

�xj � 	�jyj 	 zj�
	 �j��sin��j�1 	 �j� � sin��j	1 	 �j��yj �

�yj � �jxj � ayj�
� �j��sin��j�1 	 �j� � sin��j	1 	 �j��xj �

�zj � b	 czj � xjzj� j � 1� � � � �N �

�18�56�
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Fig. 18.10 Mean frequencies �j in a chain of Rössler oscillators with
a linear distribution of individual frequencies for different �.
The number of elements N � 100, �1 � 0�98, � � 0�0001.



The dependence of the mean frequencies �j on the parameter � with linear
(Fig. 18.10) respectively random (Fig. 18.11) distributions of the individual fre-
quencies exhibit the onset of PS for a very small coupling term.

18.10
Synchronization of Globally Coupled Chaotic Oscillators

Finally we study the potential of the presented method for globally coupled
Rössler oscillators:

�xj � 	��j � �juj�yj 	 zj

�yj � ��j � �juj�xj � ayj �

�zj � b	 czj � xjzj �

�uj � 		juj � xj

�N
k�1�k��j


kyk� j � 1� � � � �N �

�18�57�

We take the same parameters of individual elements as in the previous section
and randomly distributed frequencies �j. Let us choose again all 	j �� 1. Then
the filtered control variable uj can be described in the form

uj �
�N

k�1�k��j

sin��j 	 �k� �18�58�
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Fig. 18.11 Mean frequencies �j in a chain of Rössler oscillators with
randomly distributed frequencies in the interval [0.98,1] for different
�. The number of elements N � 100.



and (18.57) can be rewritten as

�xj � 	�jyj 	 zj�

	 �j�
�N

k�1�k��j

sin��j 	 �k��yj �

�yj � �jxj � ayj�

� �j�
�N

k�1�k��j

sin��j 	 �k��xj �

�zj � b	 czj � xjzj� j � 1� � � � �N �

�18�59�

Following [30], we characterize the degree of synchronization by means of the
order parameter:

R � lim
N��

Nl

N
� �18�60�

where Nl is the size of the largest cluster of synchronized oscillators. This fre-
quency order parameter is for fully incoherent oscillators R � 0, and reaches for
globally synchronized behavior the maximum R � 1. The order parameter R
averaged over 10 samples of randomly distributed frequencies �j is presented
in Fig. 18.12. We see that there exists a critical value �� when all oscillators be-
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Fig. 18.12 Frequency entrainment in the ensemble of globally feedback
coupled Rössler oscillators with randomly distributed frequencies in the
interval [0.98,1] versus �. The number of elements is N � 100.



come synchronized. This transition from a fully incoherent behavior to a fully
coherent (synchronized one) has been typically observed in ensembles of glob-
ally coupled elements.

18.11
Conclusions

In this chapter we have presented a feedback control method for automatic
phase locking of regular and chaotic oscillators.

The main advantages of this method are the following:
� The effect of the amplitudes of the interacting subsystems on the difference of

their phases provides a high efficiency of this approach; large amplitudes lead
to a small phase difference.

� The proposed method can be used for automatic synchronization of oscilla-
tors of different nature (regular and chaotic), and different topology (e.g.,
coupled Rössler and Lorenz oscillators) and complexity (e.g., chaotic and hy-
perchaotic Rössler oscillators).

� Phase synchronization already sets in at very small values of control parame-
ters, which is very important from an energetical point of view.

� The method can be used to synchronize elements coupled in small (two
units) and large (chains and lattices) ensembles. In the latter case the cou-
pling can be local or global.

� Synchronization can be obtained for very small coupling values. On the other
hand, sometimes synchronization cannot be obtained at all. This seems to be
a trade-off.

This presented approach can be helpful (i) for the understanding of self-organi-
zation mechanisms in many systems in the nature with regular and complex
structure and (ii) for the design of different schemes of automatic synchroniza-
tion in communication and engineering (phase antenna arrays [60, 61], and
PLL [62–64]) and could be applied to ecology and medicine.
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Part V
Applications to Optics





Lucas Illing, Daniel J. Gauthier, and Jonathan N. Blakely

19.1
Introduction

Recent studies have shown that fast chaotic dynamics can be used for a variety
of applications such as information transmission with high power efficiency [1],
generating truly random numbers [2, 3], radar [4–8], as well as novel spread
spectrum [9], ultrawide bandwidth [10, 11], and optical [12, 13] communication
schemes. In these applications, it is desirable to generate chaos in the fast re-
gime where the typical time scale of the fluctuations is on the order of 1 ns or
less [12, 14]. The ability to control the chaotic trajectory to specific regions in
phase space is also desirable [1, 15, 16].

For applications requiring controlled trajectories, it is possible to use recently
developed chaos-control methods. The key idea underlying these techniques is
to stabilize a desired dynamical behavior by applying feedback through minute
perturbations to an accessible parameter when the system is in a neighborhood
of the desired trajectory in state-space [17–19].

In particular, many of the control protocols attempt to stabilize one of the
unstable periodic orbits (UPOs) that are embedded in the chaotic attractor
(although the control of unstable steady state has also been investigated, see, for
example, [20–23]). While the control of UPOs has been very successful for slow
systems (characteristic time scale � 1 �s) [24–27], applying feedback control to
fast chaotic systems is challenging because the controller requires a finite time
to sense the current state of the system, determine the appropriate perturbation,
and apply it to the system. This finite time interval, often called the control-loop
latency �l, can be problematic if the state of the system is no longer correlated
with its measured state at the time when the perturbation is applied. Typically,
chaos control fails when the latency is on the order of the period of the UPO to
be stabilized [28–30].

Another difficulty faced in controlling fast chaos is the fact that many high-
speed chaos generators are delay dynamical systems. Time-delayed feedback oc-
curs naturally in high-speed systems, where the time it takes signals to propa-
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gate through the device components is comparable to the time scale of the fluc-
tuations. Hence many fast systems are most accurately described by time delay
differential equations. In fact, most fast chaos generators reported in the litera-
ture make explicit use of the propagation delay through components to generate
delay-induced chaotic oscillations. Such systems evolve in an infinite-dimen-
sional phase space and can display very high-dimensional chaotic attractors [31].
Examples of fast broadband chaotic oscillators that are modeled as time delay
systems include electronic [32], optoelectronic [14, 33], and microwave oscillators
[1], as well as lasers with delayed optical feedback [12], and nonlinear optical
resonators [34].

One approach to avoid the failure of chaos control due to latency is to simpli-
fy the controller as much as possible in order to minimize �l. An example of
this approach are methods that apply perturbations of a predetermined strength
when the system crosses some threshold in phase space [35, 36]. Using these
methods, successful control of fast but low-dimensional chaos was demon-
strated. As an example, an UPO with period TPO � 23 ns was stabilized [35]. A
drawback of these methods is that they rely on the ability to easily define win-
dows and walls in phase space. This task is conceptually much more difficult in
the case of delay systems where the phase space is infinite dimensional. Per-
haps for this reason, these methods have not yet been applied successfully to
delay systems.

The control of very fast chaotic delay dynamical systems is an outstanding
problem because of two challenges that arise: control-loop latencies are unavoid-
able, and complex high-dimensional behavior of systems is common due to
inherent time delays. The primary purpose of this chapter is to explain, by
means of a simple example, why latency can be a significant problem adversely
affecting control and to describe an approach for controlling time delay systems
even in the presence of substantial control-loop latency. This is a general
approach that can be applied to any of the fast time delay systems described
above. As a specific example, we demonstrate this general approach by using
time delay autosynchronization control [37] to stabilize fast periodic oscillations
(TPO �12 ns) in an optoelectronic device. In principle, much faster oscillations
can be controlled using, for example, high-speed electronic or all-optical control
components, paving the way to using controlled chaotic devices in high-band-
width applications.

19.2
Control-Loop Latency: A Simple Example

To get an idea of why latency poses a practical problem, we consider in this sec-
tion the control of a first-order linear dynamical system by a simple but com-
monly used control method known as proportional feedback [38]. In this meth-
od, the controller produces a perturbation proportional to the difference be-
tween a measurement of the state of the system and a reference value. An anal-
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ysis of this system provides a simple demonstration of how control fails due to
latency.

Consider the linear differential equation

�x � ax with a � 0 �19�1�

and suppose it is our goal to stabilize the unstable fixed point x� of this system,
that is to stabilize x� � 0.

Note that a is the exponential growth rate of perturbations and therefore a	1

is the natural time scale of the dynamical system. When control is added to the
system, it is reasonable to expect that latency will degrade the performance of
the controller when it is of the order of or greater than a	1. In this case, the
perturbation can grow significantly before the controller can respond. Before
demonstrating this formally, let us examine the case of instantaneous feedback.

To apply proportional closed-loop feedback, the system’s state is compared to
a reference state (the fixed point in this case) and a signal proportional to the
difference is fed back to the system affecting its future evolution. When the
feedback is instantaneous, the dynamical system in the presence of the control-
ler is described by the differential equation

�x � ax 	 	�x 	 x�� � �a	 	�x� �19�2�

where 	 denotes the strength of the feedback or control gain.
From Eq. (19.2), the effect of the controller is clear. If 	 � a, the perturbation

decays and the fixed point is stable. A useful method for visualizing the effect
of a controller is to plot the control gain 	 versus the parameter a, as is shown
in Fig. 19.1 (a). The region in this plot where the unstable state is stabilized by
the controller is referred to as the domain of control.

The effect of latency on the controller can be quantified by determining how
the domain of control changes as latency becomes significant. Suppose the con-
trol signal is applied at a time �l later than it would be if it were instantaneous.
The evolution of the dynamical system is then given by
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Fig. 19.1 Schematic depiction of the domain of control for
the linear system with (a) instantaneous control feedback
(Eq. (19.2)) and with (b) latency (Eq. (19.3)).



�x�t� � ax�t� 	 	�x�t	 �l� 	 x���
� ax�t� 	 	x�t	 �l�� �19�3�

The controller’s effect on the stability of the fixed point is determined by exam-
ining the evolution of a small perturbation � � x 	 x� of the form

��t� � �0e�t� �19�4�

Substituting Eq. (19.4) into Eq. (19.3) yields the characteristic equation

�	 a� 	e	��l � 0� �19�5�

The left-hand side of Eq. (19.5) is known as the characteristic quasipolynomial
and will be denoted by ����. If the fixed point is stable, that is the perturbation
decays, then ���� must have no roots with positive real parts. The region in the
a	 parameter space where this condition is satisfied is the domain of control.

Although the roots � of Eq. (19.5) can be written in closed form in terms of
the Lambert W function [39] in this simple example, it is instructive to deter-
mine the domain of control by the method of D-partition [40]. In this method,
one divides the a	 plane into distinct regions separated by curves on which
���� has at least one root with real part equal to zero. At all points within one
such region of the plane, ���� has the same number of roots with a positive
real part. To locate the domain of control, one has to identify the particular re-
gion in which that number is zero.

The first boundary is found by setting � equal to zero to obtain the line

a � 	� �19�6�

To obtain the rest, assume � � iy so that Eq. (19.5) becomes

iy	 a� 	e	iy�l � 0� �19�7�

Separating the real and imaginary parts gives the parametric form of the infi-
nite set of curves that make up the remaining boundaries

a�l � y�l

sin y�l� � cos y�l� �� 	�l � y�l

sin y�l� � � �19�8�

One curve defined by these equations meets the line a � 	 at a cusp point
�a� 	� � �1��l� 1��l� and defines Region I, as is shown schematically in Fig.
19.1 (b). The remaining infinite set of curves have an approximately hyperbolic
shape and the curves’ location is also indicated in Fig. 19.1 (b).

In the case where a � 0 and no control is applied (	 � 0), the fixed point is
stable so that no solutions to Eq. (19.5) have positive real parts. Therefore, for
all points in Region I of Fig. 19.1 (b), there are no solutions to Eq. (19.5) with
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positive real parts. To determine the number of roots with positive real part in
Region II, note that the characteristic equation reduces to the simple form

� � a �19�9�

along the line 	 � 0, and therefore there is clearly only one root with a positive
real part.

To determine the number of roots with positive real part in Region III, con-
sider the sign of the differential of the root of ���� with zero real part as a
boundary is crossed. Specifically, if

� �� a� 	� � � 0� �19�10�

then

��

��
d�� ��

�a
da� ��

�	
d	 � 0� �19�11�

The differential of the real part of the root is

Re d�� � � Re
	 ��

�a da	 ��
�	 d	

��
��

� �
� �19�12�

Moving from Region II to III across the line a � 	, assuming da � 0, d	 � 0,
and 	 � 1��l, Eq. (19.12) becomes

Re d�� � � da
1	 	�l

� 0� �19�13�

The real part receives a positive increment, implying that points in Region III
have at least one more root with positive real part than in Region II. A similar
analysis of the other boundaries shows that further roots with positive real parts
appear as each boundary is crossed on the line a � 0 moving away from Region
I. Therefore, Region I is the only region with no unstable roots. The domain of
control is simply the section of Region I to the right of the line a � 0 as shown
in Fig. 19.1(b).

In contrast to the latency-free case, no control is possible when �l � a	1. Con-
trol can only be achieved if the latency is shorter than the characteristic time-
scale of the system. This result is consistent with the intuitive argument pre-
sented above that perturbations to the system may grow too rapidly for the con-
trol response to be effective. Figure 19.1(b) also shows that the domain of con-
trol is of finite extent even when �l � a	1� whereas it extends to arbitrarily large
values of feedback gain 	 when latency is not present. Thus, large feedback gain
tends to enhance the destabilizing effect of latency. Analogous effects of control-
loop latency have been found in chaos-control schemes. Some examples are
cited in the following section.
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19.3
Controlling Fast Systems

Proportional feedback and related approaches have been very successful in con-
trolling chaos in slow systems (characteristic time scale > 1 �s), but scaling these
schemes to significantly higher frequencies, such as those encountered in high-
speed electronic or optical systems, for example, is challenging for several rea-
sons. One important issue in high-speed feedback control of chaotic systems is
the latency through the control loop, as we have discussed in Section 19.2. An
additional important issue is that it is difficult to accurately determine, store,
and regenerate the reference state. The reference state in the example that is
discussed in Section 19.2 is the fixed point x� � 0. For the case where the stabi-
lization of an UPO is the control aim, the reference state is the phase space tra-
jectory of the UPO, denoted by x��t�.

As first suggested by Pyragas [37], the UPOs of a dynamical system can be
controlled using continuous feedback that does not require knowledge of x��t�.
In this scheme, which we refer to as ‘‘time delay autosynchronization” (TDAS),
the control perturbations are designed to synchronize the current state of the
system to a time delayed version of itself, with the time delay equal to one peri-
od of the desired orbit. Specifically, UPOs of period TPO can be stabilized by
continuous adjustment of an accessible parameter by an amount

��t� � 		 s�t� 	 s�t	 ���� �19�14�

where � is the delay with � � TPO, 	 is the control gain, and s is the measured
signal, that is a function of the system’s internal degrees of freedom. Note that
��t� vanishes when the system is on the UPO since s�t� � s�t	 �� for all t. This
control scheme has been successfully applied to diverse experimental systems
such as electronic circuits [28, 30, 41–43], Taylor-Couette fluid flow [44], an
15NH3 laser [45], a strongly driven magnetic system [46], plasma instabilities
[47, 48], and a chemical reaction [49, 50] (see also other chapters of this book).
The simplicity of TDAS allows it to be implemented with much less latency
than most control schemes. However, some finite latency is always present and,
if large enough, can lead to failure as shown below. However, the main draw-
back to TDAS is that it is not effective at controlling highly unstable orbits.

Socolar et al. [51] introduced a generalization of TDAS, called ‘‘extended time
delay autosynchronization” (ETDAS), that is capable of extending the domain of
effective control significantly [30, 52] and is easy to implement in high-speed sys-
tems. Stabilizing UPOs is achieved by feedback of an error signal that is propor-
tional to the difference between the value of a state variable and an infinite series
of values of the state variable delayed in time by integral multiples of �. Specifical-
ly, ETDAS prescribes the continuous adjustment of the system parameter by

��t� � 		 s�t� 	 �1	 R�
��
k�1

Rk	1s�t	 k���� �19�15�
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where 	1 % R � 1 regulates the weight of information from the past. Highly un-
stable orbits can be stabilized as R � 1. The case R � 0 corresponds to TDAS. We
emphasize that, for any R, ��t� vanishes when the UPO is stabilized since
s�t	 k�� � s�t� for all t and k, and therefore there is no power dissipated in the
feedback loop whenever ETDAS is successful. Note that no property of the UPO
must be known in advance except its period. In periodically driven systems, where
the period of the orbit is determined from the driving, no features of the UPO
need ever be determined explicitly. The control parameters 	 and R can be deter-
mined empirically in an experiment or by performing a linear stability analysis of
the system in the presence of ETDAS feedback control [53, 54].

TDAS and ETDAS are often the control method of choice in high-speed
chaotic systems because they are continuous feedback controllers that do not re-
quire knowledge of a reference state. Nevertheless, deleterious effects of control-
loop latency have also been found in these chaos-control schemes. For example,
Sukow et al. [30] investigated the effect of latency on control of a fast chaotic
electronic circuit using ETDAS. The electronic circuit was a diode resonator and
is shown schematically in Fig. 19.2 (a). In both the cases, the domain of control
decreased in size as the latency increases, until control is finally lost.

As can be seen in Fig. 19.2 (b), the maximum latency at which control was at-
tained was as much as four times larger with ETDAS than TDAS, but ETDAS
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Fig. 19.2 Diode resonator. (a) Schematic of
circuit: It consists of a rectifier diode, an in-
ductor and a resistor, which is driven by a
leveled sinusoidal voltage (10.1 MHz) that
passes through a high-speed signal condi-
tioner where it is combined with the control-
ler signal. (b) Effects of control-loop latency

�l on the domain of control for the period-1
UPO. Controlled regions are shown for
R � 0 and R � 0�68. The dashed vertical line
at �l � 10 ns indicates the minimum latency
attainable with our implementation of
ETDAS.



control failed when the latency reached � 86� of the correlation time of the un-
controlled orbit even in the best case observed. Just et al. [28] developed an ap-
proximate prediction for the critical latency at which TDAS control fails. They
predict that TDAS control can be achieved when

�l � TPO
1	 �TPO�2� �

�TPO
� �19�16�

where TPO and � are the period and Floquet exponent (or average growth rate
of perturbations) of the UPO to be stabilized, respectively. This prediction was
tested in experiments on a nonlinear electronic circuit with Rössler type behav-
ior. Control failed experimentally when the latency reached a value � 11� of
the period of the UPO. Equation (19.16) predicted failure at � 12�5� of the per-
iod, in reasonable agreement with the experimental results [28].

We have discovered that the effects of control-loop latency can be mitigated
when controlling chaotic systems involving a nonlinear element and an inher-
ent time delay TD, as shown schematically in Fig. 19.3 (a). Chaos can be con-
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Fig. 19.3 (a) Schematic of a typical topology
of a time-delay system consisting of a non-
linear element and a long loop connecting
the output to the input of the element, intro-
ducing a total time-delay TD. (b) Schematic
of feedback control that measures the state

at point p1 and perturbs the system at p2.
The propagation time through the controller
(control-loop latency) is denoted by �� and
�21 is the propagation time from p2 to p1.
Note that the signal takes a time TD 	 �21 to
get from p1 to p2.

Time-Delay System (b) Time-Delay System with Control

TD

p1

Nonlinear Element

Nonlinear Element

Input

Input

Chaos
Controller



trolled in time delay systems by taking advantage of the fact that it is often pos-
sible to measure the state of the system at one point in the time delay loop (p1)
and to apply perturbations at a different point (p2), as shown in Fig. 19.3 (b).
Such distributed feedback is effective because the state of the system at p2 is
just equal to its state p1 delayed by the propagation time TD 	 �21 through the
loop between the points. The arrival of the control perturbations at p2 is timed
correctly if

�l � �21 � TD� �19�17�

Hence, it is possible to compensate for a reasonable amount of control-loop la-
tency �l by appropriate choice of p1 and p2. The advantage of this approach is
that the propagation time through the controller does not have to be faster than
the controlled dynamics. In contrast, the conventional approach for controlling
chaos is to perform the measurement and apply the perturbations instanta-
neously (�l � 0), which requires controller components that are much faster
than the components of the chaotic device to approximate instantaneous feed-
back. Note that we have not specified a method of computing the control pertur-
bations. In principle, any of the existing methods [18] may be used as long as
they can be implemented with latency satisfying Eq. (19.17).

19.4
A Fast Optoelectronic Chaos Generator

To demonstrate the feasibility of controlling fast chaos using this general con-
cept, we apply it to a chaotic optoelectronic device. The device consists of the la-
ser, which acts as a current-controlled source, the interferometer, which consti-
tutes the passive nonlinearity in the system, and the feedback loop with band-
pass characteristics. A schematic of the experimental setup is shown in
Fig. 19.4, where the labels A–M correspond to components that we refer to and
describe below.

The light source is an AlGaInP diode laser (A – Hitachi HL6501MG, wave-
length 0.65 �m) with a multiquantum well structure. The diode is housed in a
commercial mount (B – Thorlabs TCLDM9) equipped with a bias-T for adding
an RF component to the injection current. Thermoelectric coolers in the mount
are connected to a proportional-integral-derivative feedback controller (Thorlabs
TEC2000) to provide 1 mK temperature stability thereby minimizing frequency
and power drift. The output light of the laser is collimated by a lens (D – Thor-
labs C230TM-B, f � 4�5 mm) producing an elliptical beam (1 mm � 5 mm)
with a maximum output power of 35 mW.

The passive nonlinearity in the experiment consists of a Mach-Zehnder inter-
ferometer with unequal path lengths (path difference 45 cm) into which the la-
ser beam is directed. A silicon photodetector (E – Hammamatsu S4751, DC-750
MHz bandwidth, 15 V reverse bias) measures the intensity of light emitted
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from one output port of the interferometer. The size of the photodiode is much
smaller than the width of the laser beam so only a fraction of the interferome-
ter’s output is detected. The small detector size ensures that only one fringe ap-
pears within the beam cross section thus compensating for wavefront aberra-
tions and slight laser beam misalignment and improving the fringe visibility. A
neutral density filter is fixed to the front of the laser mount limiting the optical
power reaching the photodiode to prevent saturation.

The feedback-loop photodiode produces a current proportional to the optical
power falling on its surface. The current flows through a 50-� resistor. The voltage
across that resistor is transmitted down a coaxial cable (F – RU 58, total length
� 327 cm). The signal emanating from the cable passes through a low-noise,
fixed-gain, AC-coupled amplifier (G – MiniCircuits ZFL-1000LN, bandwidth
0.1–1000 MHz), a DC-blocking chip capacitor (H – 220 pF), an AC-coupled ampli-
fier (K – Mini-Circuits ZFL-1000GH, bandwidth 10–1200 MHz), and a second DC-
blocking chip capacitor (L – 470 pF). The capacitors reduce the loop gain at fre-
quencies below � 7 MHz, where a thermal effect enhances the laser’s sensitivity
to frequency modulation [55, 56]. The system is subject to an external driving force
provided by adding an RF voltage to the feedback signal (M). (The driven system
has more prominent bifurcations than the undriven device.) The resulting voltage
is applied to the bias-T (B) in the laser mount. The bias-T converts the signal into a
current and adds it to a DC injection current from a commercial laser driver (C –
Thorlabs LDC500). The length of the coaxial cable can be adjusted to obtain values
of the time delay TD in the range 11–20 ns.

This optoelectronic device displays a range of periodic, quasiperiodic, and
chaotic behavior [57] that is set by the amplifier gain and the ratio of the time
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Fig. 19.4 Experimental setup of a chaotic time-delay device of
the type shown in Fig. 19.3(a). The device consists of a volt-
age-controlled source, a passive nonlinearity, and a feedback
loop with bandpass characteristics. The components labeled
A–M and details of the setup are explained in the text.



delay to the characteristic response time of the system (typically set to a large val-
ue). As an example, we show, in Fig. 19.5, experimental time series and power
spectra of the optical power at the second interferometer port with Vm � 225
mV and �m�2� � 51�7 MHz. With the feedback gain below � � 6�7! 0�4 mV/
mW, the system displays a periodic oscillation at the external modulation fre-
quency (to within the 300 kHz resolution bandwidth of the spectrum analyzer)
as shown in Fig. 19.5 (a) and (c). As the gain increases, a peak appears in the
power spectrum at about half the fundamental frequency. As the gain is increased
further, the broad background rises and the tall peaks at the fundamental fre-
quency and its harmonics weaken. The power spectrum for � � 15�0! 0�5 mV/
mW, shown in Fig. 19.5 (d), is quite broad and the peaks have nearly dropped to
the level of background which has risen significantly above the noise floor. This
is indicative of high-dimensional chaos in the system.

A theoretical model for the optoelectronic device is given by [57]

�l
�V�t� � 	V�t� � �P�t	 TD� 1� b sin � P�t	 TD� 	 P0� � �� �� �19�18�

�P�t� � 	 1
�h

P�t� 	 P0� � � � �V�t� ��mVm cos �mt� �� �
� �19�19�
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Fig. 19.5 Experimentally measured time series and power
spectra of the output power at the second port of the active
interferometer with external modulation showing route to
chaos as � is increased. The loop gain � is (a), (c) 2.2 mV/
mW and (b), (d) 15.4 mV/mW.



All parameters in this model can be measured and are displayed in Table 19.1.
Using the same gain values as in the experiment, very similar time series

and power spectra are produced by the model, as shown in Fig. 19.6. With
� � 2�2 mV/mW, as shown in Fig. 19.5 (a), the model displays a period-1 orbit.
In Fig. 19.6 (d), where � � 15�4 mV/mW, the power spectrum is considerably
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Table 19.1 Definition of symbols and measured values of the
model parameters.

Symbol Value Description

�� 0�66! 0�05 ns Low-pass filter time constant
�h 22! 0�5 ns High-pass filter time constant
TD 19�1! 0�1 ns Device delay-time
� �4�8 ! 0.1) �W�mV Modulation sensitivity
� 1�89! 0�05 mW	1 Interferometer sensitivity
b 0�8! 0�02 Fringe visibility
P0 26! 0�5 mW Operating point optical power
� 0–18 mV/mW Feedback gain
Vm 225 mV External drive amplitude
�m 3�25� 108 rad/s External drive frequency

Fig. 19.6 Time series and power spectra from the numerically
integrated model of the modulated system showing the route to
chaos. The gain � is (a, c) 2.2 mV/mW and (b, d) 15.4 mV/mW.



flattened and the system is clearly chaotic. High-dimensional chaos is also con-
firmed in numeric simulations that determine the Lyapunov spectrum and find
positive Lyapunov exponents and attractor Lyapunov dimension DL 0 5 [57].

19.5
Controlling the Fast Optoelectronic Device

We apply our control method to the optoelectronic device using the setup
shown in Fig. 19.7 by measuring the state of the system (denoted by s�t�) at
point p1 and injecting continuously a control signal ��t� �l� at point p2. For a
given device time delay TD, coaxial cable can be added or removed from the con-
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Fig. 19.7 Experimental system with control-
ler. The measurement point p1 is the second
beam splitter of the interferometer. Perturba-
tions are applied at p2, an RF-power combi-
ner. The time �21 for a signal to propagate
from point p2 to p1 is � 3 ns. The controller
contains two delay lines, the first sets �, the
period of the orbit to be controlled, and the

second is used to adjust the latency �l to
properly time the arrival of perturbations at
p2. The state of the system is monitored
through a directional coupler positioned di-
rectly after the photodiode in the delay loop
of the optoelectronic device. The control sig-
nal is measured through a directional cou-
pler at the output of the controller.



trol loop to obtain a value of �l � �21 satisfying Eq. (19.17). To compute the con-
trol perturbations �, we use TDAS, that is the controller synchronizes the sys-
tem to its state one orbital period in the past by setting ��t� � 		s�t� 	 s�t	 ���,
where � is a control-loop delay that is set equal to the period TPO of the desired
orbit, and 	 is the control gain [37, 42]. When synchronization with the delayed
state is successful, the trajectory of the controlled system is precisely on the
UPO and the control signal is comparable to the noise level in the system. We
emphasize that this modified TDAS control was chosen for ease of implementa-
tion in this proof-of-concept experiment but that our approach is consistent with
other control methods applicable to delay systems (e.g., [51, 58]).

Controlling the fast optoelectronic device is initiated by setting the various
control-loop time delays (�l � �21 and �) and applying the output of the TDAS
controller to point p2 with 	 set to a low value (	 � 0.1 mV/mW). Upon increas-
ing 	 to 10.3 mV/mW, we observe that ��t� decreases, which we further mini-
mize by making fine adjustments to � and �l � �21. Successful control is indi-
cated when ��t� drops to the noise level of the device. Figure 19.8 (c) shows the
periodic temporal evolution of the controlled orbit with a period of TPO �12 ns.
The corresponding power spectrum, shown in Fig. 19.8 (d), is dominated by a
single fundamental frequency of 81 MHz and its harmonics. The observation of
successful stabilization of one of the UPOs embedded in the chaos of the un-
controlled optoelectronic device is consistent with the theoretical prediction of a
mathematical model describing the optoelectronic device in the presence of con-
trol, as shown in Fig. 19.8 (g) and (h), where the simulated time series and
power spectrum, respectively, indicate periodic oscillations.

The data shown in Fig. 19.8 are the primary result of this experiment, dem-
onstrating the feasibility of controlling chaos in high-bandwidth systems even
when the latency is comparable to the characteristic time scales of the chaotic
device (compare TPO �12 ns and �l � 8 ns).

To control this fast UPO, we used the smallest value of �l � �21 attainable
with our current experimental apparatus. Hence, it is not possible to fully ex-
plore the effects on control when we change �21. Therefore, we slowed down
the chaotic optoelectronic device by increasing the device delay-time TD. In this
way, we can explore (�l � �21) over a range including values that are shorter than
TD. Figure 19.9 shows the size of the measured (circles) and predicted (line)
control perturbations as a function of �l � �21. It is seen that control is possible
over a reasonably large range of time delays (� 0.5 ns) centered on TD so that it
is not necessary to set precisely the control-loop delay, a practical benefit of this
scheme.

From the data shown in Fig. 19.9, we can infer what would happen if p1 � p2

(the conventional method of implementing chaos control with nearly in-
stantaneous feedback). In this case, �21 � TD and hence control would only be
effective when �l �0.5 ns, which is not possible using our implementation of
TDAS.

Increasing the feedback gain � of the chaotic optoelectronic device increases
the complexity of the dynamics, that is the dimension of the chaotic attractor
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grows [31, 57]. In Fig. 19.10 we show that the domain of control shrinks as � is
increased and that control fails for large values of � (� � 14 mV/mW). This
demonstrates that the modified TDAS control fails to stabilize UPOs when the
optoelectronic device operates in a regime of high-dimensional chaos in the ab-
sence of control. The domain of control could be increased by using ETDAS.
However, experimental implementation of ETDAS is likely to be more challeng-
ing than the modified TDAS method because, in many cases, it can require a
predistortion stage in the controller [30]. Thus, the modified TDAS method pro-
vides a balance of design simplicity and tolerance to latency.
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Fig. 19.8 Experimental (a)–(d) and simu-
lated (e)–(h) data showing control of fast
chaos. The state of the system is monitored
by measuring the voltage in the delay loop
before the amplifier (see Fig. 19.7). The de-
vice delay-time is TD � 11 ns. (a) The chao-
tic time series of the monitored voltage in
the absence of control, (b) the correspond-
ing broad power spectrum, (c) the periodic

time series of the stabilized orbit with con-
trol on, and (d) the corresponding power
spectrum. The effect of control in simula-
tions is consistent with our experimental re-
sults, as shown by the simulated time series
of the monitor voltage without (e) and with
(g) control and the corresponding power
spectra (f) and (h).
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Fig. 19.9 Time-averaged control signal in the
experiment (circles) and simulation
(triangles). The minimum centered around
TD � 19�1 ns is the region of successful
control, where ���t�� is at the noise level
(� 30 mV, estimated by breaking the control
loop and measuring the control signal when

the optoelectronic device is in a periodic
regime). The width of the minimum
(� 0�5 ns) indicates that control succeeds
despite small errors in �l � �21. Noise in the
experiment smooths out the sharp transition
from controlled to uncontrolled behavior ob-
served in simulation.

Fig. 19.10 (a) Experimental and (b) theoretical domains of
control in the parameter plane spanned by feedback gain �

of the chaotic optoelectronic device and the control gain 	.
The device delay-time was TD � 19�1 ns.



19.6
Outlook

In this chapter, we have demonstrated control of a fast delay dynamical system
using a controller with substantial control-loop latency. For comparison, we list
in Table 19.2 the period of the stabilized UPO and the estimated controller la-
tency for a few experiments that have been reported in the literature. Note that
the modified TDAS controller discussed in this chapter not only controls fast
systems, that is, stabilizes the UPO with the shortest period, but the latency of
the modified TDAS controller is also nearly equal to the period of the stabilized
orbit. This tolerance to latency is in contradistinction to other methods such as
limiter control but is shared by ETDAS, which also has demonstrated a similar
tolerance to latency.

In principle, faster time delay chaotic systems can be controlled using our
approach as long as the controller uses technology (e.g., integrated circuits, all-
optical) that is as fast as the system to be controlled so that �l is comparable to
TD. Traditional chaos-control schemes require that �l be much shorter than TD,
increasing substantially the cost and complexity of the controller. With regard to
potential applications, we note that adjustments to our controller allows for con-
trolling different UPOs embedded in the chaotic system, which could be used
for symbolic-dynamic-based communication schemes. Overall, our research
points out the importance of using time delay dynamical systems combined
with distributed control for applications requiring fast controlled chaos.

Finally, our approach of control in the presence of control-loop latency is
equally useful for nonchaotic fast and ultrafast time delay devices, where the
fast time scale makes the suppression of undesired instabilities challenging
(e.g., the double-pulsing instability in femtosecond fiber lasers [60]).
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Table 19.2 Period of some experimentally stabilized UPOs
and latency of the controller. The modified TDAS method de-
scribed in this chapter is used to stabilize the UPO with the
highest frequency reported to date. Note that with this meth-
od the latency need not be small compared to the period of
the orbit.

Chaos control method Orbit period, TPO Control-loop latency, �l

TDAS [30, 51] 99 ns < 30 ns
ETDAS [30, 51] 99 ns < 120 ns
Pulsewidth modulation [35] 52 ns 4.4 ns
Limiter control [36] 23 ns �1 ns a

Modified TDAS [59] 12 ns 8 ns

a N. Corron, private communication.
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Nicoleta Gaciu, Edeltraud Gehrig, and Ortwin Hess

The light emitted by a broad-area semiconductor laser is spectacularly bright
but at the same time generally displays vivid spatiotemporal and even chaotic
dynamics. This very “un-laser-like” feature is a footprint of the complex inter-
play of ultrafast carrier and light-field dynamics within the laser leading to spa-
tiospectral hole burning, light diffraction and self-focusing. From the viewpoint
of application, the stabilization and control of the chaotic dynamics of semicon-
ductor lasers clearly is most important. However, this task is here particularly
challenging since the large cavity width needed for achieving the high output
signal leads to a complex spatiospectral mode dynamics. One thus has to find
ways to control a continuum of spatial, temporal, and even spectrally dependent
processes.

This chapter presents modeling results of the complex spatiotemporal and
spatiospectral dynamics of large-area lasers controlled by delayed optical feed-
back. Our theory is based on a Maxwell-Bloch approach taking into account the
transverse and longitudinal dependence of the light fields and the charge car-
riers. Results of the spatially and temporally resolved simulations open a way to
an identification of parameter regimes – such as length of the delay line and
feedback strength – where an optimum control can be achieved and show the
importance of a fundamental analysis for the understanding of the physical pro-
cesses within the laser structure. This may pave the way for the development
and design of novel control schemes for semiconductor lasers with optimized
spatial and spectral emission characteristics.

20.1
Introduction: Spatiotemporally Chaotic Semiconductor Lasers

Due to their high output power, broad-area semiconductor lasers (BALs) are
widely used in different applications such as environmental sensing, telecom-
munications and printing technologies. This generation of (for semiconductor
lasers) exceptionally high output powers of up to several Watts is achieved by in-
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creasing the laser stripe width of typically a few microns up to a few hundred
microns (50 �m to 500 �m [1]). However, the large transverse stripe width also
leads to the coexistence and interplay of a multitude of longitudinal and trans-
verse modes. This complex mode dynamics and the interplay of spatial with
temporal degrees of freedom are responsible for the formation of dynamic fila-
mentation and chaotic spatiotemporal dynamics on nano- and picosecond time
scales [2–4]. These processes affect the spectral and spatial coherence and finally
limit the laser performance.

The destabilizing mechanism in BALs is, in particular, closely related to the
nonlinear dynamics and interplay of multiple transverse modes. For practical
reasons, it is thus desired to stabilize the emission dynamics by reducing the
number of excited transverse modes. Several concepts have been proposed and
applied aiming to control and stabilize the spatiotemporal instabilities. In optics
and laser science a common route of applying control is based on external feed-
back components such as conventional mirrors. Configurations with so-called
delayed optical feedback use the light fields emitted by the laser itself to stabi-
lize the dynamics (after the roundtrip in an external resonator). An early at-
tempt to control complex semiconductor laser dynamics based on this principle
is described in [5] for a diode laser array.

If we consider BALs with delayed optical feedback (BALDOFs), the action of
the external cavity may be characterized by two parameters: the reflectivity of
the external mirror and the external round-trip time. If we recall the complexity
of the spatiotemporal dynamics of broad-area lasers it is not surprising that in
various experiments [6–8] and numerical studies [4, 9, 10] the application of de-
layed optical feedback was shown to lead to both, controlled dynamics or in-
stabilities depending on the particular value of the reflectivity of the external
mirror or on its distance from the laser. While this demonstrated a strong de-
pendence of the overall behavior on these parameters few systematic tendencies
emerged. It has become clear that the key to achieving a successful and, in par-
ticular, robust control is to explore the nature of the underlying physical pro-
cesses and including them in schemes that may allow us to set up suitable con-
trol scenarios.

Although having been studied for some time, semiconductor lasers with de-
layed optical feedback have recently generated considerable renewed interest [8,
11–17]. In the short-cavity regime (i.e., external cavities with a few cm length)
the formation of regular pulse packaging forming a low-frequency state com-
bined with fast regular intensity pulsations has been found [18]. This could be
explained by the characteristic dynamics of the system around the steady state
solution in the phase space. Theoretical studies [19] have discussed the role of
low-frequency fluctuations (LFFs) in semiconductor lasers and the influence of
coexisting modes has been highlighted in [20]. Experiments have shown [21–23]
that the multimode dynamics is of particular importance in the regime where
LFFs occur (i.e., dropouts arising at injection currents close to threshold and
moderate feedback levels). It was demonstrated that in the LFF regime an exci-
tation of longitudinal side modes can occur near power dropouts for both fre-
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quency-selective [24] and non-selective optical feedback [21, 23]. Further compu-
tational studies [7, 25] have shown that external optical frequency filters may al-
low the control over several dynamical attractors and to stabilize the modes [26].
Recent works also explore the influence of electrooptical feedback on the dy-
namics of semiconductor lasers [27, 28].

With improvements in semiconductor material technology and the growing
sophistication of the laser devices themselves the derivation of suitable theoreti-
cal models that realistically take into account the respective material properties
and cavity design is thus still an issue of high importance.

The time-honored theoretical basis for the study of delay-induced temporal
instabilities in semiconductor lasers are the Lang-Kobayashi rate equations
[29], disregarding any direct influence of spatial effects. More recent exten-
sions that explicitly take into account the spatiotemporal nature of the light-
field and charge carrier dynamics are based on the Maxwell-Bloch approach [4,
30–32].

In the following we discuss the application of delayed optical feedback in var-
ious modifications to achieve suppression of spatiotemporal instabilities in
BALs. Our comprehensive modeling approach for large-area semiconductor la-
sers (such as laser arrays or broad-area lasers) is based on an extended system
of Maxwell-Bloch equations [4, 30–32]. This framework allows us to study the
influence of delayed optical feedback on the spatiotemporal dynamics of large-
area semiconductor lasers and eventually enables us to demonstrate the success-
ful stabilization of coherent single-mode emission.

The next section (20.2) gives a summary of the Maxwell-Bloch theory. We will
discuss the model equations that combine a multimode and transversely re-
solved description of the dynamic optical fields with delayed optical feedback
with a spatially and temporally resolved model of the active medium. This will
allow us to visualize the mode spectrum of the free-running laser (Section 20.3)
and monitor the complex spatiotemporal dynamics (Section 20.4). Section 20.5
presents modeling results on delayed optical feedback configurations highlight-
ing regimes where a suppression of higher order transverse modes can be ob-
tained. A particular focus lies in the influence of external cavity length and ex-
ternal mirror reflectivity on spatiotemporal dynamics and emission properties of
BALDOFs. Section 20.6 concludes this chapter.

20.2
Theory: Two-Level Maxwell-Bloch Equations

The structure of a typical broad-area laser is illustrated in Fig. 20.1. The pump
current is injected via a contact stripe. The current density is J�x� above the ac-
tive stripe and zero in the regions surrounding the active region. The injected
carriers pass the cladding layers and lead to stimulated emission, spontaneous
emission, and nonradiative recombination processes. Our theoretical description
is based on a spatially resolved Maxwell-Bloch approach [4] and describes the

20.2 Theory: Two-Level Maxwell-Bloch Equations 429



spatiotemporal light field and carrier dynamics in spatially extended semicon-
ductor lasers. Here we use an effective two-level multimode Maxwell-Bloch
approach. The system of coupled nonlinear and stiff partial differential equa-
tions consists of spatiotemporally resolved wave equations for the counter-propa-
gating light fields (including the full longitudinal mode dynamics) and two-level
Bloch equations for the dynamics of the charge carriers and dipoles. The theory
includes, in particular, (multimode) counter-propagating light waves, light dif-
fraction, polarization dynamics, dynamic self-focusing, carrier diffusion, and
scattering.

To model the laser dynamics the equations of motion are integrated by fully
resolving the lateral (i.e., over the whole width of the laser) and longitudinal
(i.e., propagation) direction thereby taking into account the spatially and tempo-
rally varying light-matter coupling. The dynamic spatiotemporal interplay of
longitudinal modes that typically affects the emission dynamics of broad-area la-
sers is included via a multimode expansion of the fields. These spatially depen-
dent multimode wave equations for the dynamics of the light fields propagating
in the forward (‘+’) and backward (‘–’) direction thus read
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In Eqs. (20.1) and (20.2) the quantities P!�0�, P!�1�, N�0� and N�1� are the (lowest
and first order) coefficients of the mode expansion. � describes carrier injection
via the contact stripe, Df is the carrier diffusion constant and kz denotes the
wave number of the propagating light fields. �� is the frequency detuning be-
tween the frequency of the electron–hole pair and the light frequency. 	nr de-
scribes the rate of nonradiative recombination and 	p is the dephasing of the di-
pole. The dimensionless constant 
 determines the maximum gain. The materi-
al parameters � and  consider the increase in the polarization decay rate and
the drift of the gain maximum with increasing carrier density, respectively. The
�-factor describes the amplitude phase coupling. The parameter �0 guarantees
a vanishing gain at transparency.

These multimode Maxwell-Bloch equations will in the following be the basis
for our studies of the spatiotemporal dynamics of broad-area lasers with coher-
ent external injection in external cavity configuration with the aim of a control
and/or stabilization of the spatiotemporal dynamics. We focus on a specific but
representative model system of a BAL with a GaAs active layer sandwiched be-
tween cladding layers of AlxGa1	xAs. The devices have a cavity length of 1–2
mm and a stripe width of 100 �m. The material parameters used in the simula-
tions are summarized in Table 20.1.
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Fig. 20.1 Schematic figure of a broad-area
semiconductor laser with delayed optical
feedback.

Table 20.1 Parameters of the broad area semiconductor laser
used in the numerical simulations

L (cavity length) 1000 �m
w (stripe width) 100 �m
d (thickness of active layer) 0.15 �m
nc (refractive index of the cladding layers) 3.35
na (refractive index of the active layer) 3.59
� (laser wavelength) 807 nm
R2 (front facet mirror reflectivity) 0.05
R1 (back facet mirror reflectivity) 0.95
R0 (external mirror reflectivity) From 0.01 to 0.30
Ipump (injection current) From 300 mA to 1050 mA
Ith (threshold current) 295 mA
�in (internal round-trip time) 24 ps
�ext (external round-trip time) From 0.6 ps to 666 ps



20.3
Dynamics of the Solitary Laser

In the first step, we will analyze the solitary BAL (i.e., without feedback or injec-
tion). In this context, it is particularly instructive to discuss optical spectra that
have been calculated from the time-dependent light-field dynamics (as obtained
from the multimode Maxwell-Bloch equation) using a Fourier analysis. Figure
20.2 shows the optical spectra of a free-running broad-area laser for three differ-
ent values of the injection current. The horizontal axis depicts the frequency
and the vertical axis the position on the laser facet.

The multimode structure of a free-running BAL is a direct consequence of
the large stripe width and lack of a lateral confinement of the diffusing charge
carriers. The nonlinear interaction of the optical fields and the semiconductor
active medium thereby leads to an additional complexity and determines the
number and intensity of the various modes. Each mode group is associated with
a particular longitudinal mode of the laser. The longitudinal modes are sepa-
rated by �� �0.09 nm (�� �41.78 GHz). Within each longitudinal mode “fam-
ily” higher order transverse modes can be easily identified by their shorter wave-
length and their multilobed spatial intensity distribution. The number of sup-
ported transverse modes is given by the Fresnel number F � w2��L, where w is
the stripe width, � is the wavelength of transmitted light, and L is the cavity
length. In the given example, the calculated maximum number of transverse
modes is 12. The dependence of the number of longitudinal and transverse
modes on current is further visualized in Fig. 20.3. When the injection current
reaches a value of about two times the threshold current, the number of trans-
verse modes doubles (compared to the number at threshold) within each group
of longitudinal modes. A further increase in injection current leads to a further
and fast increase in the number of transverse modes. This effect originates
from the increased importance of carrier dynamics: with increasing current the
nonlinear spatial and spectral dynamics leads to an increased rise in the gain.
Moreover, the carrier-induced refractive index induces dynamic filamentation in
the gain medium which is a principal cause of multimode dynamics. In the
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Fig. 20.2 Optical spectra of a solitary BAL in dependence
on injection currents: (a) Ipump �1.2 Ith, (b) Ipump �2 Ith,
(c) Ipump �2.8 Ith.



next section, we will discuss the control in the mode dynamics via a coherent
external light field.

20.4
Detection of Spatiotemporal Complexity

In order to reveal the ultrafast emission dynamics of a large-area laser we will
in the following simulate the injection of a coherent light field into the active
area. This allows us to investigate the spatiotemporal light-field and carrier dy-
namics within the active area of the laser. Thereby, we will concentrate on the
following situations:
� A continuous wave optical injection reveals a significant reduction of the num-

ber of coexisting transverse modes of the free-running laser. Thereby, the se-
lection and stabilization of individual transverse modes can be controlled by
the amplitude and the lateral profile of the injected light field.

� The injection of a single optical pulse demonstrates the possibility of an effi-
cient coupling and synchronization of the longitudinal modes of the laser
leading to the emission of short regular pulse sequences [33].

20.4.1
Reduction of the Number of Modes by Coherent Injection

In order to investigate the fundamental interaction processes within the active
area of a BAL we can detect parts of the laser-internal dynamics by injecting a co-
herent light beam of an external laser into the resonator of the BAL. The output

20.4 Detection of Spatiotemporal Complexity 433

Fig. 20.3 The number of transverse modes of a free-running
BAL as a function of injection current.



signal emitted by the BAL then visualizes the response to such an additional co-
herent optical injection (next to the normal electrical pumping). In the first exam-
ple we monitor the near-field dynamics with and without (optical) injection of a
continuous single-mode light beam on the basis of the multimode Maxwell-Bloch
equations. The results are summarized in Fig. 20.4 for a time window of 10 ns.
Without injection (Fig. 20.4 (a)) the nonlinear interaction between diffraction
and propagation on the one hand and carrier diffusion and scattering on the other
hand lead to a complex dynamics of the light fields. The light-field dynamics
shows the influence of both, the ultrafast spatiotemporal dynamics (correspond-
ing to the longitudinal mode dynamics) and the slow transverse dynamics (corre-
sponding to the transverse modes). The injection of a coherent resonant light
beam (Fig. 20.4 (b)) can – depending on the power and spatial profile of the in-
jected light field – lead to the excitation and selection of a specific transverse mode.
As an example, Fig. 20.4 (b) shows the near-field dynamics of a BAL (width 100
�m, length 2 mm) into which we have injected a Gaussian light beam (full width
at half maximum 15 �m). Clearly, one can see a regular, slow transverse dynamics.
The fast dynamics originating from the existence and interplay of longitudinal
modes, on the other hand, is clearly reduced (Fig. 20.4 (b)).

The selection of a transverse mode can be further studied on the basis of the
spatially resolved emission spectra (Fig. 20.5). The spectra have been calculated
from the light fields at the output facet. They show that the injection of an ex-
ternal laser leads to a reduction of the number of coexisting modes. The effi-
ciency of the mode-selection process as well as the order of the chosen mode
thereby strongly depends on the injection current and properties of the input
beam (power, beam waist, angle of incidence). In the given example, the input
power was in the order of magnitude of the free-running laser and the beam
waist has been varied in the regime 10–50 �m. In the next example, Fig. 20.6
shows the near-field dynamics of a large-area laser for a width of the injected
field of (a) 20 �m and (b) 10 �m, respectively. The model results clearly reveal
that a reduction of the beam waist lead to the selection of another mode (in the
example: a mode of higher order).
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Fig. 20.4 Near-field dynamics of (a) the free-running and of
(b) the optically injected large-area laser.



20.4.2
Pulse-Induced Mode Synchronization

In the final step (considering external optical injection) we investigate the possi-
bility to monitor the ultrashort emission dynamic with an injected light pulse.
As we have seen, the emission of a free-running large-area laser is typically
characterized by transverse filaments and the formation of fast intensity pulsa-
tion as consequence of light fields counter propagating in the laser-active media
thereby interacting with the spatially inhomogeneous active laser medium. To
enhance and to detect the formation of this intensity pulsation, we now inject
an optical ps-pulse into the (running) laser and investigate its propagation and
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Fig. 20.5 Spatially resolved emission spectrum at the output
facet (x) of a large-area laser without (a) and with (b) contin-
uous light injection.

Fig. 20.6 Near-field dynamics of the optically injected BAL for
a beam waist of (a) 20 �m and (b) 10 �m.



its impact on the emission. The peak power of the injected pulse is slightly larg-
er than the power emitted by the free-running laser. The results are summa-
rized in Fig. 20.7. The figure shows the near-field dynamics of the optically in-
jected large-area laser for two time windows of 1000 ps, starting (a) 200 ps and
(b) 3200 ps after the optical injection, respectively. In the simulations the injec-
tion of the light pulse (without chirp, pulse duration 50 ps) has been realized
via the boundary conditions of the light fields in the wave equation.

The plots reveal the buildup and decay of a coherent enhancement and stabi-
lization of dynamic longitudinal mode coupling: in the first time-trace
(Fig. 20.7 (a)), 200 ps after the injection, the injected light pulse starts its dy-
namic interaction with the laser-internal light field. After a few round-trips in
the active area the pulse has established a synchronization of the complex trans-
verse light-field dynamics of the free-running laser leading to the formation of
regular pulses with a homogeneous lateral light field distribution that extends
over the whole width of the laser. After the pulse injection the emission of the
BAL thus changes into an almost completely pulsed output synchronized across
the laser stripe resulting in high output peaks that can be seen in the figure.
The periodicity of the emitted light pulses thereby corresponds to the round-trip
time in the large-area laser. The periodic intensity modulations that can be seen
in the free-running laser (see Fig. 20.4 (a)) thus are triggered by the propagating
light pulse leading to a dynamic mode-locking of the longitudinal modes.

In the second time window, starting 3200 ps after the injection of the light
pulse, the transverse light pattern has changed significantly. A complex trans-
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Fig. 20.7 Emission dynamics of a large-area laser triggered by
a light pulse. The horizontal axis shows time and the vertical
axis the lateral position on the laser facet. Displayed is the
dynamics in a time window of 1000 ps, starting at (a) 200 ps
and (b) 3200 ps after pulse injection.



verse light-field dynamics arises leading to asymmetric intensity patterns. This
behavior originates from the dynamic wave mixing caused by the dynamic non-
linear interaction of the injected light pulse and the laser-internal light fields
within the active charge carrier plasma inside the laser medium. The nonlinear
light-matter coupling then leads to a decrease in the influence of the controlling
light pulse and to a reduction of the pulse amplitude. Instead, the transverse de-
gree of freedom gains more and more importance leading to characteristic
transverse dynamics that is typical for the free-running laser: the light fields mi-
grate from one side to the other on slower timescales of several hundreds of pi-
coseconds. The coupling of the longitudinal modes of the large-are laser has fi-
nally diminished. The laser emission then is again characterized by a complex
spatiotemporal light-field dynamics given by the mutual interplay of light dif-
fraction, hole burning and carrier scattering leading to a complex longitudinal
and transverse light-field dynamics.

The complex spatiospectral modes existing in a large-area laser thus play an
ambivalent role in the dynamics: On the one hand, they support the buildup of
a mode locking realized by an external signal leading to a pulsed emission
across the entire laser stripe. On the other hand, the lateral extension is finally
responsible for a decay of the mode locking generated by an injected light pulse
due to chaotic dynamics and lateral instabilities.

Integration of the light fields at the output facet in transverse direction allows
the calculation of the duration of the emitted pulses in dependence of the number
of round trips. The computational results summarized in Fig. 20.8 clearly reveal a
reduction in pulse duration from 50 ps to 13 ps indicating the occurrence of long-
itudinal mode locking. This behavior could also be seen in experiments [33]. The
spectral width of the injected unchirped pulse is less than the longitudinal mode
separation and thus cannot simultaneously couple to the numerous longitudinal
modes coexisting in the semiconductor gain spectrum. This clearly proofs that the
observed mode locking is a dynamic effect originating from dynamic interplay be-
tween pulse propagation and spatiospectral mode dynamics.
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Fig. 20.8 Evolution of the pulse duration as function of the
number of cavity roundtrips. The value of 13 ps is the finally
stable pulse duration which persists for several nanoseconds.
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Our space–time modeling illustrates how the dynamic interaction of the in-
jected pulse with the internal laser field efficiently couples the longitudinal
modes and synchronizes the output across the laser stripe. However, we have to
conclude that the control of the light emission by an injected light pulse as in
the shown mode-locking example typically persists for only several nanose-
conds, i.e., in the order of 50–100 round trips. On the one hand, this indicates
the potential of semiconductor lasers for short optical pulse generation. On the
other hand, this clearly demonstrates that more complex schemes are required
to control the radiation on longer time scales. This can be obtained by using de-
layed optical feedback as realized in an external cavity configuration. This will
be shown in the next section.

20.5
Self-Induced Stabilization and Control with Delayed Optical Feedback

In many applications semiconductor lasers subject to back reflections of their
own emitted light field exhibit a complex dynamics such as low-frequency fluc-
tuations or coherence collapse [23]. However, the main goals as required for and
in applications are, in particular, high output power in few modes, good spatial
and temporal coherence as well as stable emission. It is highly remarkable that
in spite of a considerable number of scientific studies and resulting publications
having focused on the influence of external optical feedback on (semiconductor)
lasers, there still remain many unanswered questions.

The operation of BALs with delayed optical feedback is strongly dependent on
two control parameters: the external mirror reflectivity R0 (i.e., feedback
strength, spatial structure or frequency selectivity) and the external cavity length
Lext (delay of the feedback). For a BALDOF, the equations describing the dy-
namics of the light fields propagating in forward and backward directions with-
in the laser read
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The last term in Eq. (20.3) is the time delayed term describing the field re-
flected from the external mirror. �in � 2naL�c and �ext � 2Lext�c are the internal
round-trip time and external round-trip time, respectively. c is the speed of light,
na is the refractive index of the active medium, and L is the laser cavity length.
The dimensionless parameter k takes into account the reflectivity of the external
mirror (R0) and the laser facet mirror reflectivity (R1).
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Thus, the external cavity is described by two parameters: the strength of the
feedback and the external delay time.

20.5.1
Influence of Delayed Optical Feedback

The application of a delayed optical feedback may have a significant influence
on the transverse mode dynamics. As we will show it is, in particular, possible
to influence the number of modes. Indeed, experiments have demonstrated [6]
that an optical feedback with low feedback strength may stabilize the emission
dynamics and reduce the number of modes drastically.

In the first step, we will focus on the conventional feedback setup (i.e., plane
external mirror) described in Fig. 20.1. To characterize the behavior of the delay-
system we have calculated the optical spectrum for various external mirror re-
flectivities (from 1% to 10%) and injection currents Ith % Ipump % 3.5 Ith for a
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Fig. 20.9 Near-field intensities (left column)
and optical spectrum (right column) of a free-
running BAL ((a) and (c)) and of BALDOF
((b) and (d)) with an external mirror reflec-

tivity of 2%. The injection current is close to
threshold, the external cavity length is
Lext �3 cm.



fixed value of external cavity length (Lext �3 cm). The partial reinjection of the
light emission (after the passage in the external cavity) into the active area leads
to a broadening of the spectrum and to a reduction of the number of longitudi-
nal and transverse modes. This effect originates from the dynamic gain compe-
tition generated by the interaction of the multimode BALDOFs emission and
the external cavity. This phenomenon is associated with the spatiotemporal dy-
namics of the filaments. Generally, the local gain is depressed in regions of
high optical intensity leading to a local increase in refractive index, which
further confines the light and increases the local field intensity. The superposi-
tion of internal cavity modes with the external cavity modes as realized by the
reinjection of the emitted light fields lead to self-stabilization and spatiospectral
condensation of the laser emission. Optical feedback thus can be seen as the ba-
sis of a regenerative self-focusing feedback. This effect is visualized in Fig. 20.9.
Shown are the dynamics of the intensity at the output facet (left column) and
optical spectra (right column) for a free-running BAL (a) and (c), and a BAL-
DOF (b) and (d) with an external mirror reflectivity of 2%. The emitted near-
field intensity is coded via colored scale, such that the red to yellow shading cor-
responds to high intensities and blue shading corresponds to low intensities.
The migrating filaments manifest themselves in spots of high to low intensity
which change their position in space and time.

Corresponding simulation results showing the result of an increase in the in-
jection current are summarized in Fig. 20.10. As shown in this figure, the same
tendency, namely the reduction of the number of transverse and longitudinal
modes, can be seen for all current values. This highlights the large potential of
the feedback-induced mode selection.

20.5.2
Influence of the Delay Time

It is well known that the delay time (determined by the length of the external
cavity) has a strong influence on the spatiotemporal dynamics of BALDOF. This
is due to the fact that the optical field that is fed back into the laser cavity
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Fig. 20.10 Optical spectra of a BALDOF subject to delayed
optical feedback (R0 = 2% and Lext �3 cm) and different injection
currents: (a) Ipump �1.2 Ith, (b) Ipump �2 Ith, (c) Ipump �2.8 Ith.

a) b) c)



strongly interacts with the different intercavity modes. The coupling between
these modes is, in turn, influenced by the length of the external cavity and thus
determines the spatiotemporal dynamics of the system. As a consequence, very
different operation regimes may be obtained, ranging from stable emission to
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Fig. 20.11 Optical spectra of a BALDOF with external mirror
reflectivities of R0 �2% (first row), R0 � 4% (second row)
and R0 � 6% (third row). The external cavity length is
Lext �3 cm (first column) and Lext �4 cm (second column).
The injection current was set to Ipump �1.5 Ith.

R0 = 2%

R0 = 4%

R0 = 6%



coherence collapse. It has been demonstrated in experiments [34] that there is a
resonant coupling between these modes if the ratio between the length of the
external cavity and the optical length of the semiconductor laser cavity is a mul-
tiple integer or half integer within the interval 2 and 5. This corresponds to an
external cavity length between 1.18 cm and 2.96 cm.

In the following we will discuss, in particular, the influence of the delay time
on the spatiotemporal dynamics of the semiconductor laser by varying the exter-
nal cavity length between 1 cm and 10 cm (in steps of 0.5 cm), without being
restricted by the condition mentioned above. In the numerical simulations, the
external mirror reflectivity was varied between 1% and 10%. The optical spectra
shown in Fig. 20.11 visualize the change in number of transverse and longitudi-
nal modes in dependence on the feedback regime. The injection current was set
to 1.5 Ith. For values of the external cavity length of less than 3 cm a strong re-
duction in the number of transverse modes could only be obtained for compara-
tively moderate feedback strength (2% reflectivity of the external mirror, Fig.
20.11 (a)).

Increasing the external cavity length to 4 cm leads to a much stronger reduc-
tion in transverse and longitudinal modes. This stabilization of emission dy-
namics not only occurs at low value of the external reflectivity (4%) but also for
higher values (between 4% and 9% ).
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Fig. 20.12 Comparison of averaged near-field intensities
between BAL and BALDOF.



In order to gain further insight into the mode competition we will in the fol-
lowing cast a closer look on the time-averaged near-field intensity. The results
summarized in Fig. 20.12 clearly indicate the correlation between spatial and
spectral dynamics. For a length of the external cavity of 3 cm (left column in
Fig. 20.12) only few differences can be seen between the free-running laser and
the BALDOF: as a general tendency the external mirror reflectivity slightly nar-
rows the near-field intensity profile. This is due to a reduction of the transverse
modes. If the external cavity length reaches a value of 4 cm, a strong mode
competition arises leading to a considerable reduction of the modes (Fig. 20.12
(right column)).

Thus we may conclude that the number of transverse modes can be signifi-
cantly reduced if the external cavity length is set to proper values (above 3 cm).
For a sufficiently high delay time it is possible to significantly reduce the num-
ber of transverse and longitudinal modes in a large range of values of external
mirror reflectivities. Of particular interest are the BALDOFs with an external
mirror reflectivity between 2% and 10% and external cavity length between
4 cm and 9 cm. In this regime the number of transverse modes decreases dra-
matically (Fig. 20.13) for all injection currents (here: varied between threshold
and three time threshold current).
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Fig. 20.13 Number of transverse modes as function of exter-
nal mirror reflectivity and external cavity length. The injection
current is 1.5 Ith.



20.5.3
Spatially Structured Delayed Optical Feedback Control

With our space–time modeling of the multimode dynamics of large-area lasers
with delayed optical feedback from a distant plane mirror we have so far dem-
onstrated that the reinjection of parts of the emitted light into the active area
can – for appropriate parameters corresponding to an appropriate setup – lead
to a partial stabilization of the light-field dynamics and to a reduction of the
number of modes. However, the results have also shown that a complete sup-
pression of all modes except the fundamental mode still seems to be out of
reach with a simple setup involving delayed-feedback from a flat reflector.
Furthermore, the selection of suitable parameters seems to be particularly cru-
cial. On the one hand, a careful choice of the feedback parameters may lead to
a successful stabilization of the spatiotemporal chaos in semiconductor lasers.
On the other hand, a naive application of a delayed optical feedback with an ar-
bitrary choice in the feedback parameters may even increase the spatiotemporal
complexity of the system [32, 38].

For an improved control over the interplay of spatial and spectral degrees of
freedom one thus has to consider more complex control setups. A straightfor-
ward method is the application of a spatially structured delayed optical feedback
(SDOF). This can easily be incorporated in the delay equations
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The feedback term now depends on the curvature of the radius R of the exter-
nal convex mirror:

 � R������������������������������������
�w2�2 � �Lext � R�2

� �20�6�

In this section we will thus discuss the influence of SDOF on the emission dy-
namics of BALs. In particular, we will vary the radius and reflectivity of the ex-
ternal curved mirror and the length of the external cavity. The results will be
compared to the system with unstructured (flat) delayed optical feedback. Ear-
lier results [35] had demonstrated that it should be possible to coherently couple
the chaotic filaments and to obtain a narrow far-field for a suitable choice of the
control parameters. Experimental investigations have been performed on config-
urations where the radius of the convex mirror was R � 1 mm and the external
cavity length was varied between 1.2 mm and 1.6 mm [36] or set to 3 cm [37].
In order to get a full overview on the influence of all parameters on the spatio-
temporal dynamics we here vary the radius of external mirror in the range
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1 mm � � � 9 cm, the external mirror reflectivity between 2% and 20% and the ex-
ternal cavity length between 3 cm and 9 cm.

The schematic drawing of the setup for the structured delayed optical feed-
back is shown in Fig. 20.14. The external length for the curved mirror is set to
Lext � 3 cm to comply with the regime where a controlled reduction of modes
has been obtained.

The radius of the external mirror determines the spatial fraction of the radia-
tion that is fed back: For sufficiently small values of the radius only light near
the transverse center of the active area is fed back whereas radiation coming
from parts near the lateral edges is – due to the curvature – reflected to the
sides and thus does not reenter the active area. We thus expect a strong influ-
ence of a variation in the radius of the external mirror on the emission dy-
namics.

As an example, Fig. 20.15 presents numerical results on the optical spectra.
The radius of the curved mirror was varied between 1 mm and 9 cm. The nu-
merical results reveal a very strong dependence of the number of modes on the
radius of the external mirror. A small value (R �3 mm) of the radius does in-
deed, as expected, lead to a spectral condensation and stabilization of lower or-
der transverse modes. Larger values, however, may even increase the chaotic
spatiospectral dynamics: In this case, a larger spatial fraction of the light at the
external mirror is reflected back into the active area thereby inducing – due to
the curvature of the mirror – an additional mixing of transverse modes. For val-
ues of the radius of less than R � 3 mm the fraction of the reflected light is too
small to have a significant influence on the internal light-field dynamics.

Please note that the small value of R � 3 mm not only stabilizes low-order
transverse modes but additionally reduces the number of longitudinal modes.
In order to gain further insight into this effect we visualize in Fig. 20.16 two
snapshots of the spatial distribution of the intracavity intensity for (a) a free-
running BAL and (b) one for a system with SDOF where the radius of the
curved mirror has been set to 3 mm and the external mirror reflectivity to 2%.
As can be seen in Fig. 20.16, smaller intensity variations in propagation direc-
tion can be seen in the system with SDOF revealing a reduced number of par-
ticipating longitudinal modes. Our numerical results thus clearly demonstrate
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Fig. 20.14 Schematic figure of a broad-area laser with struc-
tured delayed optical feedback (SDOF). The radius of the
curve mirror is denoted by R.



that a thorough choice in the parameter of the radius of the external mirror is
crucial for the behavior of the system.

We will now vary the reflectivity of the external mirror between 2% and 20%
and investigate its influence on the spectral emission properties. The parameter
of the radius will remain constant (R � 3 mm). Figure 20.17 summarizes re-
sults of our modeling of the optical spectra in dependence of the external mir-
ror reflectivity. The figure illustrates the strong effect of the reflectivity on the
higher order transverse modes and longitudinal modes: Compared to the low
mirror reflectivity (R0 �2%) the introduction of a stronger feedback (i.e., larger
mirror reflectivities) leads to a less efficient mode reduction. The moderate feed-
back level with R0 �2% thus represents the optimum for the stabilization of
the light-field dynamics. In that regime, the zigzag moment that is typical for
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Fig. 20.15 Optical spectra of a BAL with SDOF for different
values of the radius of the external curved mirror. The reflec-
tivity of the curved mirror is 2%.



the transverse light-field dynamics does not extend over the full lateral width.
Instead, the emitted intensity is to a higher degree concentrated in the center of
the laser. In combination with the curvature of the external mirror the moderate
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Fig. 20.16 Snapshots of the spatial distribution of the intra-
cavity intensity in (a) free-running BAL and (b) a BAL with
SDOF (R0= 2%, Lext = 3 cm, R = 3 mm) . The injection
current is Ipump = 1.5 Ith in both cases. The snapshots were
taken 19 ns after the start-up.

Fig. 20.17 Optical spectra of a BAL with SDOF in dependence
on the reflectivity of the external curved mirror. The radius of
curved mirror was set to 3 mm.



feedback level thus leads to a better transverse modes control and longitudinal
side mode suppression.

In a next step of our analysis of the broad-area laser with SDOF setup, we
will investigate the influence of the external cavity length on the optical spectra.
For this purpose, this control parameter was varied in the same regime as in
the case of the system with plane external mirror (see Section 20.5.2). The sys-
tematic calculation of optical spectra has shown that an external cavity length of
Lext �3 cm leads to an analogue tendency as in the case of the plane mirror.
Similarly, setting the external mirror reflectivity of the system with SDOF to 2%
leads to a strong influence on the higher transverse mode dynamics and to a re-
duction of mode number. The results are summarized in Fig. 20.18. If the dis-
tance is increased to 4 cm, the minimum number of transverse modes is ob-
tained for an external mirror reflectivity of R0 � 6�. It is important to note that
generally the feedback strength and delay line represent coupled parameters in
their influence on the dynamics of the laser. A change in one of the two param-
eters implies also a corresponding shift in the second parameter if one wants to
bring the system back to optimized behavior. Nevertheless, our modeling shows
that the delay line and thus the external cavity length play the major role (com-
pared to the influence of the reflectivity of the external mirror) in the control of
mode dynamics. For a given resonator length, the external mirror reflectivity
then can be used for a “fine-tuning” of the dynamics control. Our numerical re-
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Fig. 20.18 Number of transverse modes versus external mir-
ror reflectivity for a plane mirror (black square points) and
curved mirror (red star points). The top graphic is for a 3 cm
external cavity length and bottom graphic is for 4 cm.



sults clearly reveal the influence of SDOF on the spatiotemporal and spatiospec-
tral dynamics. A curvature in the mirror leads to a reduction of the modes and
to a stabilization of the light-field dynamics: the filaments in the near field are
pinned and a spectral condensation of the modes occurs. This clearly demon-
strates the positive influence of appropriately tailored SDOF on the spatiotem-
poral dynamics of BALs.

20.5.4
Filtered Spatially Structured Delayed Optical Feedback

The high complexity of the spatiotemporal light dynamics in a BAL involving
and coupling longitudinal “modes” with transverse “modes” immediately leads
to the question whether it is possible at all to obtain a full mode control, i.e.,
the reduction to single-mode operation. Recent studies [7, 25, 26, 39] have dem-
onstrated that a spectrally filtered optical feedback (e.g., a Fabry-Perot interfe-
rometer) can lead to a further control and mode selection.

Filtered delayed optical feedback may, in general, be classified into different
regimes with respect to the filter bandwidth relative to the external-cavity mode
spacing and the relaxation oscillation frequency of the laser: large, intermediate,
and narrow filter situations. Here, we concentrate on a system with a narrow fil-
ter (10 MHz, � � �, 1 GHz). We will show that such a system may lead to a
further reduction in mode number.

In order to include the spectral lineshape of the filter, we include in our mod-
el an additional equation describing the dynamics of the feedback amplitude [7,
25, 26]. Assuming a Lorentzian lineshape of the filter one obtains the following
equations:
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where �f is the center frequency of the filter relative to the frequency of the so-
litary laser (�0), �� is the full width at half maximum of the filter.

In the following we will show selective results of the modeling of a system
with spectrally filtered and spatially structured delayed optical feedback. In a first
step we have varied the linewidth of the spectral filter in a range 10 MHz � � � 1
GHz. The results are summarized in Fig. 20.19 (for a current of 1�5Ith and a
length of 4 cm of the external cavity). Generally, the application of a narrow-fil-
tered feedback enables the reduction of mode number. In our example the par-
ticular values of the linewidth in the order of a few hundred MHz allowed for
both, the reduction of the spectra to a longitudinal mode group and the selec-
tion of a single transverse mode (the fundamental mode) of this group. With in-
creasing linewidth (approaching the GHz regime) more modes can coexist lead-
ing to a more complex multimode behavior.
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The investigations on the system with a curved external mirror have revealed
that feedback systems may exhibit a strong dependence on the reflectivity of the
external mirror. In a second step, we thus vary the feedback strength (i.e., the
reflectivity of the external mirror) and analyze the influence on the emission
spectra. Figure 20.20 summarizes the results. Similar to the situation without
filter one can recognize a strong dependence on the feedback strength. In par-
ticular, the optimum value of the external reflectivity of the system with spec-
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Fig. 20.19 Optical spectra of the BAL with spectrally filtered
feedback: dependence on the linewidth (FWHM) of the filter.

Fig. 20.20 Optical spectra of the BAL with spectrally filtered
feedback: Dependence on feedback strength.



trally filtered feedback is not necessarily identical to the value of the BAL sys-
tem with only spatially selective feedback. In the given example, we can obtain
an almost single-mode emission for R � 12�, whereas the optimum reflectivity
of the respective system without filter was R � 6�.

20.6
Conclusions

We have investigated the influence of delayed optical feedback on the (coupled
transverse and longitudinal) multimode dynamics of broad-area semiconductor
lasers. Our study was performed on the basis of spatially resolved multimode
Maxwell-Bloch equations that allow us to analyze the correlation between exter-
nal mirror reflectivity, delay time and emission characteristics aiding in the in-
terpretation of experimental results and allowing the prediction of regimes
where a controlled reduction of modes can be obtained.

In particular, it has been shown that the external round-trip time and the
reflectivity of external mirror strongly determine the behavior of the laser.
Extensive numerical simulations allowed us to confirm the external cavity
length as a major control parameter: small modification of the external delay
time leads to large changes in the spatiotemporal dynamics. This clearly high-
lights the complexity and nonlinearity of dynamic coupling of light fields and
carriers in BALDOFs. Furthermore, application of spatially structured feedback
by using a curved external mirror can improve the stabilization of the mode
dynamics.

At the same time, the results of our systematic study presented here in this
chapter demonstrate the high complexity of the spatiotemporal dynamics of de-
layed optical feedback systems. They reveal, in particular, that an efficient emis-
sion control requires the systematic control of all degrees of freedom.

Figure 20.21 summarizes the schematic setup and resulting emission charac-
teristics (as represented by the spatially resolved emission spectra) of the broad-
area laser systems considered in this chapter:
� The plane-mirror setup (top) represents the easiest configuration. The feed-

back is defined via the feedback strength and the round-trip time in the exter-
nal resonator. However, the complex interplay of spatial, spectral, and tempor-
al degrees of freedom may – depending on delay time and feedback strength
lead to both, a partial emission control (with a reduced mode number) or
chaotic lasing. A thorough control thus is difficult to achieve.

� Spatially structured delayed optical feedback (middle row) realized by, e.g., a
curved external mirror allows a much higher emission control. Due to the
control of spatial (via the x-dependence of the feedback) and temporal (via the
delay time) degrees of freedom this system allows an improved control of the
spatiotemporal dynamics. Furthermore, a feedback-induced genesis of a chaot-
ic behavior is less probable compared to the plane-mirror configuration. De-
pending on chosen parameters such as, e.g., curvature and reflectivity of the
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external mirror the spatially structured feedback configuration allows a signifi-
cant reduction in mode number.

� Spectrally filtered spatially structured optical feedback as realized by combin-
ing spatially structured feedback with a spectral filter eventually leads to the
over-all control of spatial, spectral and temporal degrees of freedom and to
single-mode operation.

In future work, we will more systematically simulate the influence of filtered
optical feedback on the spatiotemporal dynamics of BALs. The influence of this
configuration on the spectral degree of freedom will further improve the mode
reduction process and allow to derive further conditions for both, single-mode
emission characteristics and controlled spatiotemporal dynamics as desired in
advanced applications such as, for example, complex spatiotemporal encryption
schemes.
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Fig. 20.21 Schematic overview of setup (left) and characteristic
spatially resolved spectra (right) of a broad-area semiconductor
laser with delayed optical feedback. Top: plane-mirror setup.
Middle: spatially SDOF. Bottom: spectrally filtered SDOF.

BAL
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Hans-Jürgen Wünsche, Sylvia Schikora, and Fritz Henneberger

Semiconductor lasers are key components of modern optical information tech-
nologies. Due to inherent nonlinearities, they can emit not only continuous
light but also periodic pulse trains or even chaotic output. The role of chaos is
two edged. For many purposes, it has to be avoided in order to maintain stable
operation of the laser. On the other hand, secure communication by using
chaotic light has become an issue of growing interest [1–3].

In this context, methods of chaos control become important [4]. Among them,
the Pyragas schema has attracted particular attention, as detailed knowledge of
the target state is not required here [5]. The control signal is built from the dif-
ference s�t� 	 s�t	 �� between the present and an earlier value of an appropriate
system variable s. We denote this control schema and variations of it (e.g. [6–
12]) as differential delayed feedback control (DDFC).1� DDFC primarily aims at
the stabilization of an unstable periodic orbit embedded in a chaotic attractor. It
is noninvasive if the delay � equals the period T of the orbit. Noninvasive con-
trol stabilizes unstable states but does not change the states themselves, since
the control force acts only if the system deviates from the state to be stabilized.
This property entails a further aspect of DDFC. Unstable states frequently inter-
connect attractors in phase space and form thus the skeleton of the nonlinear
dynamics. Bifurcation analysis uncovers mathematically also the unstable ob-
jects of the phase portrait. Their experimental study is, however, difficult, be-
cause they are visited for short times only. DDFC overcomes this difficulty and
provides direct access to unstable orbits and equilibria in the experiment.

Involving no numerically expensive computations, DDFC is capable of con-
trolling systems with fast dynamics still in real-time mode. This feature is par-
ticularly important for semiconductor lasers. Technical progress goes toward
increasingly higher speed of operation. Multisection semiconductor lasers, as
being used in this study, have been operated at tens of GHz [13, 14] and the
THz range is in view. These picosecond timescales are too short even for fast
electronic control circuits. Therefore, it is desirable to perform the control en-
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1) The Pyragas schema is also known as time delayed feedback control (TDFC) or as time delayed
autosynchronization (TDAS).



tirely in the optical domain where the velocity of light sets the ultimate speed
limit.

Two configurations for all-optical DDFC have been proposed already a decade
ago: optical feedback from a Michelson interferometer [15] and optical feedback
from a Fabry-Pérot (FP) cavity [7, 16]. The Michelson configuration is the optical
version of the original Pyragas method [5], whereas the FP setup corresponds to
the extended version introduced by Socolar et al. [16]. In both cases, the variable
s is given by the optical field amplitude E emitted by the device. We will expli-
citly consider the FP configuration of Fig. 21.1. The laser emission is forwarded
into the cavity and a part reinjected into the device by the reflections at the cavi-
ty mirrors. In this way, a control signal of the form E�t� 	 E�t	 �� can indeed
be constructed under appropriate conditions. Compared to DDFC in the electri-
cal domain, the optical phase becomes important and its role must be thor-
oughly analyzed [32, 34, 43].

Although being conceptually evident and despite a numerical proof-of-concept
study [15, 17], optical DDFC has not yet been implemented experimentally. The
difficulty lies in the relatively long timescales on which the chaotic behavior of
most lasers proceeds. They translate in cavity lengths that are either completely
impractical or where the efforts to stabilize the cavity are so extensive that meth-
ods relying on optoelectronic feedback are much better suited. For multisection
semiconductor lasers, the situation is just reversed: optoelectronic control, as
mentioned already above, is no longer practical, while external cavities in the
few-millimeter range can be easily combined with the laser in a robust setup. A
future option is even integration of laser and FP cavity in a single device.

This chapter describes the first step toward all-optical DDFC, namely noninva-
sive stabilization of unstable steady states. This approach should not be con-
fused with long-established methods for stabilizing laser emission by external
cavities like the powerful Pound-Drever–Hall technique [18] or the use of fil-
tered feedback [19–22]. Those methods are either not all-optical or invasive.

21.1
The Role of the Optical Phase

Before considering specific models, we discuss general features of optical
DDFC. Each component of the electromagnetic field emitted by a laser varies as
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Fig. 21.1 Scheme of the FP configuration for all-optical DDFC
of a laser. R: mirror reflectivity, ���: round-trip time and phase
shift in the cavity, respectively, �l� �: the same for the latency
between laser and cavity.



5�t� � Re E�t�e	i�t
) *

� �21�1�

The exponential factor represents the carrier wave. Its period 2��� is in the
femtosecond range and thus much shorter than any other time constant in-
volved in the laser dynamics. The complex amplitude E�t� varies orders of mag-
nitude slower in time, even much slower as in the illustrations of Fig. 21.2. The
control scenario considered in what follows relates to this slowly varying part of
the electromagnetic field. The modulus of E�t� determines the optical power

P�t� � �E�t��2� �21�2�

that is measured, e.g., by a photodiode. The optical phase is lost in such a mea-
surement. It plays, however, a central role in the interferometric control setup
of Fig. 21.1. If the phase shift between the partial waves is �, the fields cancel
each other and the total power fed back to the laser becomes zero (cf. Fig.
21.2 (b)). This cancellation is the basis for noninvasive all-optical control. Let us
consider a periodic orbit. In the optical domain, such an orbit corresponds to a
power-pulsation, while the total field 5�t� represents a torus of two frequencies,
� and the frequency of �E�t��. Control of a torus is a complicated goal. However,
as the two frequencies are so extremely different and as the laser equations are
invariant under multiplication of the field with a constant phase factor, the
torus is merely a modulated wave without any coupling between the two fre-
quencies [23].

In order to calculate the field sent back from the interferometer to the laser,
one has to sum up over all partial waves created by the reflectivities of the set-
up. Assuming plane-waves, this procedure yields [24, 25]

Eb�t� � Kei�
��
n�0

�6ei��n + ei�E�tn�1� 	 E�tn�
� �

with tn � t	 �l 	 n�� �21�3�

We have arranged the terms in such a way that the equivalence with the control
signal needed in DDFC becomes obvious. For the Michelson configuration, only
the term with n � 0 is present. � and � are the cavity round-trip time and phase
shift, respectively. Note that the amplitude propagation and hence � are deter-
mined by the group velocity, while the phase velocity enters �. The quantities
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Fig. 21.2 Scheme of modulated optical waves. Thin: total field
5�t�. Bold: slow amplitude �E�t��. (a) Periodic pulsation. (b)
Subtractive superposition of two identical pulses with carrier
waves phase-shifted by an odd multiple of �.



6 � Re		r Lr , and + � 6� 7 combine the other cavity parameters (R: mirror
power reflectivity, 7 : transmittance, Lr : resonator length, 	r : absorption coeffi-
cient). The round-trip between the laser and the cavity is associated with a con-
trol latency �l [26, 27] and an extra phase shift �. K characterizes the strength of
the control signal and includes the reflection at the front mirror (

����
R

"
) as well as

all propagation losses.
Noninvasive control demands Eb � 0. If E�t� is a periodic function, this is ob-

viously fulfilled if � is an integer multiple of the period T and + ei� � 1. The
Fourier transform of Eq. (21.3),

Eb��� � 	Kei� 1	+ ei������

1	6ei������ E���� �21�4�

provides another view on these conditions. The prefactor of E��� is the ampli-
tude reflectivity of the interferometer. Its modulus exhibits distinct minima at
the resonance frequencies �FP

m � 	�� 2�m�� (m integer) which tend to zero
for + � 1 (cf. Fig. 21.3). Hence, the control signal can vanish only if the laser
emits a periodic pulsation with spectral components exactly at these resonances.
Such a match by proper choice of � can be achieved, if the ratio of the pulsa-
tion frequency 2��T and the round-trip frequency of the cavity 2��� is integer.

The latency round-trip enters the control signal of Eq. (21.3) twofold: First,
via the phase � and, second, directly by �l in the slowly varying field amplitudes.
The dynamics of the latter is governed by the timescales of the internal laser dy-
namics. �l itself becomes thus important, if it approaches these timescales. In
many practical setups and, in particular, in the experiments presented below,
this is indeed the case. Too large latency times generally decrease the ability of
control as they reduce the role of the cavity. The latency phase � is tunable by
subwavelength changes of the optical path which has no effect on the slow am-
plitudes. Therefore, while the cavity phase � is fixed by the resonance condition,
� is an additional free parameter that makes the control phase-sensitive. Con-
ventional DDFC corresponds to � � 0. When changing � by �, the control force
just reverses sign and, by this, the direction into which the system is driven: to-
ward or away from the target state. Consequently, control can be only achieved
in one half of a 2� phase period.
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Fig. 21.3 Spectrum of the control signal according to
Eq. (21.4). Thick solid: modulus �Eb����E���� of the inter-
ferometer reflectivity. Dashed: line positions of a pulsation
with period T . Parameter: 6 � 0�7�+ � 0�95� T�� � 0�903.



Experimentally, it is quite challenging to meet both the two cavity conditions,
ei� � 1 and ��T � integer, as well as to adjust a sufficiently short latency time.
In the remainder, we concentrate on the control of continuous-wave (cw) states.
Stabilization of steady state operation of lasers is of high practical relevance
[28, 29]. In the spectral domain, a cw state is a special case of a periodic orbit
where the frequency spectrum is shrunk to a single line. The specific topology
we consider is a focus point – the �� �������� � 	
�	 ������ ���	���� �� �

���� ������	��� �
��� � ������� ����	 ������������ 	� � ����� �����������

	��� �� ����� �
���
 	
� ��T�����	��� �� ������� 
���� �� �
��� ��� 	
�	 ����

	
�� ��� �� ��� ���� ����� �������

21.2
Generic Linear Model

In this subsection, basic features of phase-dependent optical DDFC are dis-
cussed in the framework of a simple but generic model. We consider a non-
linear system with a focus point E0, the stability of which is governed by the
complex eigenvalues �! i�. The system is located closely beyond a Hopf bifur-
cation. Here, the focus is unstable, i.e., it holds � � 0 for the damping term.
Adding a control force and linearizing around the fixed point provides the gen-
eric equation [30–32]

�E�t� � ��	 i���E�t� 	 E0� � Kei� E�t	 �l 	 �� 	 E�t	 �l� �� �21�5�

The second term on the right-hand side is identical to the control signal of
Eq. (21.3) assuming resonance and neglecting multiple round-trips (n � 0). At a
Hopf bifurcation, a pair of complex eigenvalues crosses the imaginary axis. The
location of the bifurcation in the parameter space in the presence of the control
signal is thus obtained by seeking solutions E�t� 	 E0 � exp�	i�t� of Eq. (21.5)
with real �. This ansatz yields the algebraic equation

Kei� � i
�� i��	 ��
2 sin����2� e	i���l���2�� �21�6�

Variation of � defines a curve in the ���K�-plane where the number Nu of ei-
genvalue pairs with positive real part changes by one. Such a Hopf curve is de-
picted in Fig. 21.4 (a) for given � and �l. It consists of several branches which
even cross each other. We are interested in the domain Nu � 0 enclosed by the
lowest branch as it represents the domain of control. There is a minimum value
Kmin � ��2 of the strength parameter below which no control is possible. The
existence of such a minimum is reasonable as the focus must be triggered suffi-
ciently much by the control force within the destabilization time �	1. It is
reached for � � � at a latency phase � � 	��l (modulo 2�) and under the con-
dition � � �m � 1�2�T0 (m: integer). The latter relates the intrinsic period of the
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unstable focus T0 � 2��� to the round-trip time in the cavity: spiral motion out
of focus and control signal are in anti-phase and the system thus stabilized. For
larger K, control becomes possible in a continuous band of �. However, the
band width behaves nonmonotonic and, eventually, the ability of control is lost
again at certain maximum value Kmax where the Hopf curve crosses itself. De-
lay-induced oscillations with frequencies � far from the intrinsic frequency �

are responsible for this limitation. As a function of the latency time �l, Kmin is a
constant, while Kmax decreases rapidly and monotonic (Fig. 21.4 (b)). At the
point where the maximum reaches the minimum, the derivative of Eq. (21.6)
with respect to � vanishes. A plot of this double root as a function of � is
shown in panel (c) of Fig. 21.4. For half-integer ��T0, the latency time is re-
stricted by

�l �
1
�
	 �

2
� �21�7�

Such a condition holds also for other classes of systems [26, 27]. The reduction
by � is plausible because a larger � gives the focus more time to destabilize.
When detuning ��T0 from the optimum half-integer resonances, the control
range decreases rapidly and the required K increases. Reaching integer ��T0,
control is ultimately lost. This is intuitively clear because the control force is al-
ways zero at these points.

In the context of laser emission, the above model supposes that the plane of
the optical amplitudes represents the center manifold of the unstable focus.
This is strictly not correct, because the occupation inversion is an extra degree-
of-freedom of the laser. In fact, its dynamics comes into play by distinct relaxa-
tion oscillations when approaching the focus. Furthermore, the model is only
valid in direct vicinity of the focus point, while the real dynamics in the laser is
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Fig. 21.4 Stabilization of an unstable focus
by optical DDFC according to Eq. (21.6). (a)
Solid: Hopf bifurcations in the (��K) plane
(note the logarithmic vertical scale). Domain
labels: number Nu of eigenvalue pairs with
positive real part. (b) Lowest Hopf bifurca-
tion (solid) and maximum of the control do-

main (dashed) versus latency time �l for op-
timum latency phase �. (c) Largest allowed
latency �l (solid) and the corresponding K
(dotted) required for noninvasive control ver-
sus cavity round-trip time �. Dashed: limit
(21.7). The focus can be stabilized only in the
gray regions. Focus parameters: �T0 � 0�5.



essentially determined also by the phase space topology in the farer distance.
Nevertheless, we shall see that features of the generic model indeed occur in
more elaborated models and in the experiment.

21.3
Generalized Lang-Kobayashi Model

In this subsection, we consider the most simple nonlinear model of optical
DDFC of a semiconductor laser. Although limited to lasers with stable single-
mode emission, it reveals new generic effects of optical DDFC beyond the linear
approximation. It generalizes the paradigmatic Lang-Kobayashi (LK) equations
[33] to the control configuration of the previous subsection. Details can be
found in [34]. The optical field and the occupation inversion in the laser are re-
presented by a mean amplitude E�t� and a mean carrier density N�t�, respec-
tively, obeying the equations of motion

dE
dt
� �1	 i��NE � Kei� E�t	 �l 	 �� 	 E�t	 �l� �� �21�8�

dN
dt
� ��J 	 N 	 �2N � 1� E� �2�� �21�9�

J is the excess pump current, �
 1 is the ratio between photon and carrier life-
times, and � is the linewidth enhancement factor governing the amplitude-
phase coupling. All times are measured in units of the photon lifetime.

Independent of K and �, this system has always the particular solution 2�

N � 0� E � ��
J

�
ei� �� : arbitrary phase�� �21�10�

the so-called solitary laser mode (SLM). For the solitary laser (K � 0) above
threshold (J � 0), this solution is a stable focus and represents the only attrac-
tor. The impact of control (K � 0) is illustrated in Fig. 21.5. The SLM can
change its stability in a local Hopf bifurcation (see panel (b)). This behavior is
in qualitative agreement with the linear model. In addition, however, new solu-
tions of the type E � e	i�t can appear in pairs at saddle-node (SN) bifurcations.
Because of constant power �E�2 and constant carrier density N, these external
cavity modes (ECM) also represent steady laser states with cw-emission. The
ECMs are situated on a figure eight in the ���N� plane, the crossing point of
which is given by the SLM. Changing �, they move along the eight and meet
the SLM at transcritical bifurcations (cf. panel (a)). Bistability between ECM and
SLM can occur too.

The creation of feedback-induced steady states is a general consequence of
the invariance of the laser equations against multiplication of E with a phase
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2) Strictly speaking, the family of solutions with different phases �.



factor (rotational invariance). Therefore, the related instabilities set a general
limitation of optical DDFC, which does not occur in systems without rotational
symmetry. Their influence on the control domains cannot be obtained within
the LK model which produces always a stable cw state for K � 0. A more realis-
tic laser model is thus considered in Section 21.5 in conjunction with the ex-
periment.

21.4
Experiment

The device utilized in the experiment is an integrated tandem laser (ITL). A
schematics of the experimental setup combining the ITL with a properly de-
signed FP cavity is depicted in Fig. 21.6.

The emission from one of the ITL facets is collimated by a spherical ball lens
and sent under normal incidence through a neutral density filter to the cavity.
The reflected light is fed back to the ITL along the same path. The power
spectrum is measured by coupling the emission from the opposite device facet
into a fiber and recording it by a 40 GHz electrical spectrum analyzer (ESA)
after amplification and optoelectronic conversion by a 50 GHz photodiode.
Optical spectra are measured with a resolution of 0.01 nm. The average power
transmitted through the etalon is determined with a large area IR photo diode.
For reasons of stability, the whole setup is installed on a vibration-damped
table.
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Fig. 21.5 Optical DDFC within the general-
ized LK model. Parameter: � � 2� J � 0�3�
� � �l � 0�001� � � 40. (a) Curves of feed-
back induced modes in the ���N� plane for
K � 0�05. SN: saddle-node bifurcation. ECM:
external cavity mode at a particular latency
phase. SLM: solitary laser mode. Solid line:
node. Dashed: saddle. Arrows indicate how
the ECM moves with increasing latency

phase. SLM keeps its position independent
of phase. (b) Bifurcations in the ���K� plane.
Solid (H): Hopf of a stable mode. Dashed
(TR): transcritical. Dotted (SN): saddle-
node. Stability of the central mode. White
area: stable cw operation. Light-gray region:
unstable regime of SLM. Dark-gray regions:
bistability between SLM and ECM.



21.4.1
The Integrated Tandem Laser

The ITL chip has a design similar to [35]. It consists of two DFB lasers, each
220 �m long, separated by a 500 �m wide passive waveguide section. The
coupling of the two lasers in the ITL is comparatively strong, as about 50% of
the optical power passes the passive section. Nevertheless, owing to a specific
grating design, both lasers of the tandem operate always single-mode. Current
induced heating changes the refractive index in the active sections. The asso-
ciated wavelength shift of about 20 nm/A enables us to tune separately the
emission wavelengths of the lasers by asymmetric current pumping. An impor-
tant internal parameter is the phase shift in the passive section. Current injec-
tion in this section modifies the refractive index via free-carrier transitions, by
which this phase shift can be adjusted. The device is mounted on a copper heat
sink and the temperature is controlled by a Peltier cooler with an accuracy of
0.01 K.

In the parameter space of the three injection currents I1, I2, and Ip, the ITL
exhibits a rich variety of operational modes [35]. Among them are the regions
of cw operation, regular power pulsation, and also chaotic emission. Representa-
tive examples of optical and power spectra of the solitary device in these re-
gimes are shown in Fig. 21.7. The RO pulsations with lower frequencies are
due to undamped relaxation oscillations, while those in the few-10 GHz range
denoted by MB result from beating between competing optical modes [35, 36].
The transitions between these dynamical regimes take place through certain bi-
furcations. Here, we focus on the Hopf bifurcation in which the laser output
changes from steady state to a RO-type self-pulsation when the phase current Ip

is tuned through a critical value. The bifurcation is experimentally identified by
the emergence of a respective peak in the power spectrum [37]. A noisy precur-
sor of the pulsation is already present before the bifurcation and its width ��

decreases dramatically when approaching the bifurcation point (Fig. 21.8). Be-
yond this point, the peak height grows strongly, while the width stays small, in-
dicating a well-developed self-pulsation.
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Fig. 21.6 Schematics of the experimental
control configuration. In the ITL, two distrib-
uted feedback (DFB) lasers are connected
via a passive waveguide section. Amplitude
K and latency phase � of the control signal

from the FP are defined by a variable neutral
density filter and a piezo positioning, respec-
tively. ESA: electrical spectrum analyzer.
IR-Diode: power measurement.



21.4.2
Design of the Control Cavity

Parallelism and stability of the FP mirrors on a subwavelength scale are para-
mount for generating a well-defined control signal. Both requirements are ful-
filled by a block of quartz glass with a dielectric coating of 76% reflectivity.
Figure 21.9 displays the transmission and reflection spectrum of the Lr � 4
mm thick etalon. The distance between adjacent resonances corresponds to a
free spectral range of 1�� � 26 GHz. The pulsation frequency of the ITL at the
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Fig. 21.7 Main types of dynamical regimes of the ITL. From
left to right: cw emission, relaxation oscillations (RO), mode
beating pulsations (MB), chaos. Upper row: optical spectra,
lower row: power spectra.

Fig. 21.8 Width (circles) and height (squares) of the domi-
nant peak in the power spectrum of the solitary ITL versus
phase current. Dashed: guide for the eye. Solid: linear fit for
determining the Hopf bifurcation (H). DFB currents:
I1 � 30 mA, I2 � 45 mA.



Hopf bifurcation is 1�T0 � 12 GHz. The round-trip time in the FP cavity is
thus close to the optimum � � T0�2 found in Section 21.2. The further parame-
ters of the etalon are obtained from a fit of the standard FP formulas to the ex-
perimental data. The refractive index is �n �1.43, the absorption coefficient is
	r � 0.05 cm	1, and the mirror reflectivity and absorbance are R � 0.76 and
A � 0�005, respectively. These values yield + � 0�98, i.e., a reflectivity as small
as 4� 10	4 at the FP resonances.

21.4.3
Maintaining Resonance

The second requirement for noninvasive control is resonance between the FP
cavity and the device emission. When moving the device through the Hopf bi-
furcation by tuning the phase current, the emission wavelength changes in gen-
eral too. Therefore, to maintain resonance, the laser wavelength has to be read-
justed. This is accomplished as follows: After setting a certain value of Ip, the
device temperature is accommodated until a maximum of the power trans-
mitted through the cavity indicates resonance. In this way, the bifurcation is tra-
versed along a line of constant wavelength in the current-temperature plane.
The temperature change involved in the accommodation is far below 1 K. The
essential characteristics of the Hopf bifurcation in the solitary ITL device like
the frequency of RO pulsations and their damping are unaffected under such
small temperature variations.

21.4.4
Latency and Coupling Strength

As pointed out in Section 21.2 (Fig. 21.4 (b)), the ability of control rapidly de-
clines for increasing latency time. The minimum separation between ITL and
FP cavity, given by the space required for filter and lens, sets a lower limit of
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Fig. 21.9 Transmission (a) and reflectivity (b) spectra of the
FP quartz-glass etalon. Symbols: measured data. Line: theo-
retical fit with the parameters given in the text.



�l � 60 ps for the present experimental arrangement. According to Eq. (21.7),
the critical value beyond which control is ultimately lost is �l � �	1 	 ��2. The
order of the damping � can be estimated from the width �� of the self-pulsation
precursor in the power spectrum (cf. Fig. 21.8). This yields ��� � ��� � 3 ns	1

and, in view of the short cavity round-trip of � � 40 ps, an upper boundary for
the latency time of about 300 ps. The experimental setup is thus capable of
DDFC.

The phase shift � associated with the latency is an extra parameter. Depend-
ing on its value, stabilization or destabilization occurs. � can be tuned over sev-
eral periods of 2� by translating the whole cavity on a subwavelength scale with
the aid of a piezo-actor. The change of the latency time in this range is of no in-
fluence on the ITL dynamics.

The strength K of the control signal is adjusted by the density gradient of the
filter. If K becomes too large, instabilities due to feedback-induced modes dis-
turb the control experiment, as predicted by the LK model of Section 21.3. On
the other hand, K has to overcome a certain level in order to affect markedly
the ITL. We have found that K � 5% is an appropriate compromise in this
trade-off.

21.4.5
Results of the Control Experiment

The power spectra measured in the presence of the FP cavity clearly demon-
strate successful stabilization of the steady state emission beyond the Hopf bi-
furcation. Typical results are summarized in Fig. 21.10. The narrow peak asso-
ciated with the well-developed self-pulsation of the solitary ITL collapses by
nearly two orders of magnitude (Fig. 21.10 (a)). The frequency shift under con-
trol is indicative of the fact that the stabilized state is different from the stable
state of the solitary ITL before the bifurcation. Plotting width and height of the
peak as a function of the phase current, a distinct shift of the bifurcation point
becomes evident (Figs. 21.10 (b) and (c)). The feedback from the cavity generates
a significant damping (� � 0) of the relaxation oscillations. At the solitary bifur-
cation current, a value of ��� � 1 ns	1 is found.

Periodicity with respect to the latency phase � is demonstrated in Fig. 21.11.
The experimental data are in very good agreement with numerical simulations
presented in detail in Section 21.5.

The spectrally integrated power transmitted through the FP cavity undergoes
the same cyclic variation as the peak height of the self-pulsations. Outside the
control domains, nonresonant Fourier components arise which reduce the
transmission signal. In the domains, high transmission indicates low reflectivity
of the FP cavity. In the calculations, the reflected power is indeed many orders
of magnitude below the significance level. From the experimental signal at the
transmission plateaus, it can be estimated that much less than 1 per mille of
the intensity is fed back into the device. These findings clearly signify noninva-
sive character of the control.
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Fig. 21.10 Stabilizing a steady state through
a Hopf bifurcation. (a) Typical power spectra
beyond the bifurcation. Gray dots: measured
for the solitary ITL. Dashed: Lorentzian fit.
Solid black: with external FP cavity. (b) and
(c) Height and width, respectively, of the

spectral peak versus phase current IP. Open
circles: solitary ITL. Full circles: with control
by the FP. Solid and dashed lines in panel
(c): linear fits for determining the bifurcation
points.

Fig. 21.11 Control of unstable steady states in
dependence on the latency phase. The point of
operation is Ip � 58�5 mA. Left column: ex-
periment, �l � 3� � 120 ps, the latency phase
decreases proportional to the voltage at the
piezo actor (cf. Fig. 21.6). Right column: simu-

lation, K � 4%, �l � � � 45 ps, the phaseshift
is varied via �l (see Section 21.5). Upper row:
amplitude of the RO self-pulsations. Dotted:
without control. Lower row: power transmitted
through the FP (solid) and reflected power
(dashed) in the case of simulation.



21.5
Numerical Simulation

In this subsection, we present a device-specific numerical simulation which con-
firms the experimental results and yields a deeper understanding of the condi-
tions for optical DDFC of semiconductor lasers.

The waveguide geometry under consideration is sketched in Fig. 21.12. The
laser tandem is extended by two additional passive sections. The lossless FP sec-
tion with identical reflectivities R � 0�7 is connected to the ITL by a latency sec-
tion with variable coupling strength K and phase shift �. Round trip times
� � �l � 44�6 ps are used unless noted otherwise. Transverse effects like diffrac-
tion or collimation are ignored in the model.

21.5.1
Traveling-Wave Model

In the framework of the Maxwell-Bloch equations [38], the field-carrier dy-
namics in multisection DFB lasers can be described by a well-established travel-
ing-wave (TW) model [39–42]. The extension of the TW model to the control
configuration of Fig. 21.12 is straightforward. We consider the case where the
medium polarization can be adiabatically eliminated. We also use a mean-field-
type approximation assuming that the occupation inversion in the DFB laser
sections can be described by spatially averaged carrier densities [32]. The total
optical field along the whole compound cavity is expressed by a superposition
of forward and backward traveling waves

5�z� t� � Re E��z� t�e	i��t	kz� � E	�z� t�e	i��t�kz�
+ ,

� �21�11�

of central frequency � and wavenumber k. By normalization, �E!�z� t��2 repre-
sents the guided optical power.

The equations of motion of the field-carrier dynamics are [35, 36]
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Fig. 21.12 Scheme of the simulated waveguide setup of the
control configuration. Parameters are chosen according to the
experiment.



dns

dt
� Is

eV
	 ns

�n
	 cggsSs

1� �Ss
�s � 1� 2� �21�13�

(cg : group velocity, Is: injection current, e: elementary charge, V : volume of ac-
tive zone, �n: carrier life time, � 
 coefficient of nonlinear gain saturation). The
index s numbers the sections of the setup. The complex DFB coupling constant
� and the carrier density ns are nonzero only in the DFB sections s � 1� 2. The
propagation parameter 
 is given by


 � �s � i
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2
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2
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 �
�21�14�

(�: linewidth enhancement factor, �s and 	s: constant background contributions
from refraction and absorption, respectively, at the central frequency � of the
guided wave). The unsaturated optical gain in the active sections is approxi-
mated by a linear relation

gs � g � � �ns 	 ntr� �21�15�

(g �: differential gain, ntr: transparency concentration, gs � 0 for s �� 1� 2).

Ss � �cg�h�V�	1
3

s
dz��E��2 � �E	�2� �21�16�

denotes the effective photon number. The TW model is completed by linear
boundary conditions
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 �
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 �
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E	��� t�
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�21�17�

at all interfaces. Arguments and subscripts # refer to incidence from left- or
right-hand sight, with E��	� t� � 0 and E	��� t� � 0 at the front and end facet,
respectively. The transmission (t!) and reflection (r!) coefficients are interre-
lated by power-conservation conditions. Neglecting interface absorbance, it holds

t! �
������������������
1	 �r!�2

�
.

The FP etalon is loss-free (	r � 0) and has external and internal mirror reflec-
tivities 	 ����

R
"

and � ����
R

"
, respectively, with R � 0�7. All other reflectivities are

r! � 0. Values for further parameters can be found in [32]. Variable losses 	l

and wavenumbers �l in the latency section with length Ll � 1�76 mm are used
to tune the control parameters K � exp�		lLl� and � � 2�lLl.
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21.5.2
Noninvasive Control Beyond a Hopf Bifurcation

Instead of the current Ip, the internal phase shift �p � 2Lp�p in the passive sec-
tion is used as a bifurcation parameter. It is tuned via the static wavenumber �p.
Note that increasing Ip means decreasing �p. Figure 21.13 (a) shows the mini-
mum and maximum value of the emitted power taken from transients calcu-
lated over a time interval of 8 ns. Equal values mean cw output. The solitary
ITL undergoes the Hopf bifurcation under study at �p � 4�277. In full analogy
to the experiment, relaxation oscillations with a period of T0 � 87 ps become
undamped here. The bifurcation is also evidenced by the optical spectrum
where extra peaks equidistantly separated by the frequency of the self-pulsations
emerge (Fig. 21.13 (b)).

With latency and resonant FP section added, cw operation is maintained be-
yond the solitary bifurcation point. The feedback signal practically disappears in
the whole stabilization range, confirming the noninvasive character of the con-
trol. Only a single peak is present in the optical spectrum. Like in the measure-
ments, the peak shifts under variation of the bifurcation parameter. Thus, also
in the computations, the resonance frequencies of the FP cavity have to be read-
justed. An iteration procedure is applied that stops when at least one spectral
line coincides with a FP resonance. Control is lost at �p � 3�765 where again a
self-pulsation appears. In what follows, the ITL is set well beyond the solitary
bifurcation point (�p � 4�15).

21.5.3
Control Dynamics

The simulation provides insight into the dynamics of the control force that is
hardly obtainable experimentally. Switching suddenly K from zero to a value of
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Fig. 21.13 (a) Maximum and minimum of
the laser emission vs. internal phase shift
�p. Solid: Solitary ITL. Dashed: ITL with loss-
less FP (� � 0�K � 0�1� ei� � 1). Dotted:
Time averaged control signal Eb. (b) Main

peaks in the optical spectrum (within 20 dB
below maximum). Gray circles: Solitary ITL,
thick black: ITL with lossless FP, dashed: re-
sonances of the FP. DFB currents: I1 � 8
mA, I2 � 80 mA.



5% (left panel of Fig. 21.14), the ITL turns from a free-running stable self-pulsa-
tion into steady state mode. The control signal returned from the FP section is
initially about 1% of the 15 mW device output, but it drops dramatically down.
The steady state is approached with an exponential time constant of �con � 260
ps. This time is a quantitative measure of the control efficiency and is investi-
gated below as a function of the control parameters. Under the reverse switch
of K, the self-pulsation recovers (right panel of Fig. 21.14). The rise time 0.59
ns and frequency 11.5 GHz of the small-amplitude oscillations arising at the
initial stage represent the complex eigenvalue �	 i� of the unstable focus. The
frequency 11.2 GHz of the fully developed pulsation is only slightly slower be-
cause the point of operation is still close to the Hopf bifurcation.

21.5.4
Variation of the Control Parameters

The specific photon–gain coupling of the ITL also determines essentially the do-
main of control. In what follows, the initial state of the device is always set to a
self-pulsation of the uncontrolled ITL. The criterion of noninvasive control is
that the emitted power and wavelength asymptotically approach those of the un-
stable focus for K � 0.

For given K, the phase range of control is bordered by different bifurcations.
At the right border in Fig. 21.15 (a), a self-pulsation is born in a Hopf bifurca-
tion. When decreasing �, stability is first transferred through a transcritical bi-
furcation to a cw state that is nonresonant to the FP cavity, as already predicted
by the LK model of Section 21.3. Here, the character of the control changes
from noninvasive to invasive. The nonresonant �� �������� ���� ����	�����

��	
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Fig. 21.14 Output transients after switching control on (left)
and off (right), lower left: control signal. Parameters of
Fig. 21.13 and �p � 4�15.
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The control islands in the ���K� plane are depicted in Fig. 21.16. In addition,
the role of the latency time �l is demonstrated. A plot in the (�l� �) plane reveals
cyclic behavior. The size of the control domains shrinks with increasing �l, con-
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Fig. 21.15 Control properties vs. latency
phase � (a) and strength (b). Solid: mini-
mum and maximum of the emitted power,
dashed: mean wavelength relative to 2�c��,
thin dashed: control time �con, thin dotted:

wavelength and power of the unstable cw
emission. Symbols mark the bifurcations as
follows: H – Hopf bifurcation, T – transcriti-
cal bifurcation. Circles: ��� � 1�16 and
K � 7%.

Fig. 21.16 Two-parameter control domains. Black: noninva-
sive, gray: invasive, white: no cw emission achieved. Upper
panels: ���K� domains for different latency times �l. Lower
panel: ��� �l� domains for K � 5% and � � T0�2. Thin solid:
� � 	��l.



trol is lost for the present device beyond �l�� � 7. These findings disagree with
the predictions of the linear generic model of Section 21.2 in two regards. First,
the control domains are shifted by about � from the line � � 	��l. This shift is
related to the phase difference between the counter-propagation waves in the la-
ser. Such a difference is ignored in the generic model but has to be additionally
provided by the control loop in the real device. Second, the control islands break
up for half integer �l�� in contrast to the generic model (cf. Fig. 21.4 (b)). The
experiments described above are performed in the large control island at
�l�� � 3. A direct experimental verification of the �l 	 � relation was not possi-
ble because the absolute value of � is unknown after having readjusted �l. How-
ever, the measurements confirm optimum control near to integer �l�� and loss
of control for large �l.

21.6
Conclusions

In a proof-of-concept experiment, the noninvasive all-optical control of the stable
state of a semiconductor laser close to a Hopf bifurcation is demonstrated by
using an external FP cavity. Both the experiments as well as a theoretical in
depth analysis, reaching from a generic model up to a device specific numerical
simulation, uncovers a quite complex control scenario which is produced by the
latency phase in conjunction with the other control parameters. In practical de-
vices, extra bifurcations come into play that determine the domain of control.
In a more mathematical context, we have investigated the control of a modu-
lated wave where, unlike other systems, the phase is an inherent parameter
generating a complex-valued control gain. The experimental access to such a
gain configuration offers the possibility of studying many other interesting
questions, e.g., under what conditions periodic orbits of a modulated-wave state
can be stabilized.
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Junji Ohtsubo

Chaos is controllable although we cannot foresee the future of chaotic evolu-
tions due to the sensitivity of the initial condition of a nonlinear system. A
chaotic system may be controlled by a small perturbation for the accessible pa-
rameters even when the system originally outputs irregular chaotic oscillations.
The minute perturbation required for chaos control is extracted by the examina-
tion from the chaotic attractor of the system. The idea of chaos control is com-
pletely different from ordinary control methods. The perturbation for a non-
linear system is very small and little affects the state of the system. The method
is also applicable in nonlinear chaotic optical systems. Here we discuss chaos
control methods in chaotic semiconductor laser systems. The idea of chaos con-
trol gives rise to good indications for the development of new stable laser
devices.

22.1
Introduction

A semiconductor laser is an intrinsically stable laser which is categorized into
class B. Indeed, a semiconductor laser does not show any instability as far as it
is operated at solitary mode. However, a semiconductor laser that is theoretically
described by the field and carrier density equations can be easily destabilized by
the introduction of external perturbations (additional degrees-of-freedom) such
as external optical feedback, optical injection, or modulation. A variety of dy-
namics has been studied by many researchers for the past two decades [1, 2]. Re-
cently, semiconductor lasers, which have new device structures, have been
developed, for example, vertical-cavity semiconductor lasers, which has a vertical
cavity against for the semiconductor substrate, and broad area laser (BAL), which
has a broad stripe width of the active area. These lasers have quite different struc-
tures of cavities from those of ordinary edge-emitting semiconductor lasers. They
originally have extra degrees-of-freedom compared with ordinary edge-emitting la-
sers and are essentially unstable chaotic lasers even in their solitary oscillations

475

22
Chaos and Control in Semiconductor Lasers



[2, 3]. For semiconductor lasers destabilized by external perturbations and for new-
ly developed semiconductor lasers, controls of laser oscillations are very important
issues in practical applications [1].

We cannot foresee the future of chaotic evolutions, since a small deviation
from the initial condition in a nonlinear system results in a completely dif-
ferent solution of the system output. However, chaos can be controllable [4]. Of
course, a nonlinear system does not always show unstable oscillations. Indeed,
the system can be controlled and stabilized to one of steady states by appro-
priately shifting the parameters even when the system originally outputs ir-
regular chaotic oscillations. In such control, the perturbations for the system
may be large and the system is switched to another state from the original oscil-
lation by the parameter shifts. But, the idea of chaos control is completely dif-
ferent from ordinary control methods. The perturbation for a nonlinear system
is very small and affects the state of the system only little. In chaos control, the
system is controlled to nearby unstable periodic or fixed orbit (saddle node point
of the system). In this chapter, we discuss the method of chaos control and give
some applications in semiconductor laser systems. We demonstrate suppression
of unstable oscillations in semiconductor lasers. Also some examples for laser
controls in newly developed lasers as device structures are presented [2].

22.2
Chaos in Semiconductor Lasers

22.2.1
Laser Chaos

A laser is defined by three variables, the complex field E in the laser medium,
the macroscopic polarization P of matter, and the population inversion W to at-
tain the laser oscillation. The dynamic properties of a laser can be described by
these three variables. A laser is usually modeled by three-level or four-level
atoms with a Fabry–Perot-type resonator. However, we here assume a model of
two-level atoms with unidirectional ring resonator, which is a good approxima-
tion for actual laser oscillations [1, 2, 5–7]. Starting from the Maxwell equation
of a complex field with polarization of matter in a laser medium and applying
the slowly varying-envelope approximation (SVEA) we obtain the rate equation
for the laser oscillations. Also from the coupled Bloch equations for the transi-
tions between the two-level atoms, we obtain the population inversion equation.
In actual lasers, we require pumping for the laser oscillations, so that the
pumping term should be added to the population inversion equation. Further
the phenomenological terms for the damping oscillations are added to each
term. Then we finally obtain the Maxwell-Bloch equations for the scaled three
variables of the laser oscillations as follows [2]:
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where �E is the complex field, �P is the polarization of matter, and �W is the pop-
ulation inversion. Here c is the velocity of light, � is the reflectivity of the medi-
um, � is the atomic detuning, �W0 is the population inversion due to pumping
at the threshold, and Isat is the saturation intensity. Tph, T2, and T1 are the re-
laxation times of the photon, the polarization, and the population inversion,
which play crucial roles for the dynamics of the laser oscillations. Equations
(22.1)–(22.3) are known as the Lorenz-Haken equations, since the three equa-
tions are almost the same as the Lorenz equations, which describe convective
fluids as a model for the atmospheric turbulence, and the laser rate equations
are derived by Haken [5]. Therefore, a laser is intrinsically a chaotic system.

Taking into consideration the rate equations (22.1)–(22.3), the laser first
shows stable intensity oscillation above the first threshold with the increase in
the pump. Then, far above the first threshold, the laser reaches the second
threshold where it exhibits chaotic dynamics [7]. From a dynamical point of
view, lasers can be categorized into three different classes depending on the typ-
ical timescales of the relaxations [8]. However, lasers do not always show in-
stabilities and chaotic behaviors, and most lasers are actually stable. Indeed,
chaotic dynamics are only observed for a laser when all the relaxation times are
compatible. In some lasers, the timescales of these three relaxations are the
same, such as infrared-gas lasers. These lasers are called class C lasers and
show chaotic instabilities far above the first laser threshold, usually at or above
ten times the pump current of the first laser threshold [9, 10]. In some lasers
one of the time scales is much faster than the others. Such lasers are essentially
stable lasers. In these lasers, the relaxation time is much faster than those of
the photon decay time and the relaxation time of the population inversion, and
the two rate equations, the complex field and population inversion equations,
are enough to describe the laser operations. These lasers are called class B la-
sers, which are commercially available and very important in applications. Ex-
amples are solid-state lasers, fiber lasers, CO2 lasers, and semiconductor lasers.
The other lasers are categorized into class A, in which the laser is described
only by the field equation. These lasers are mostly stable lasers. Examples for
this class are visible gas lasers. So lasers which are commercially available and
under practical applications are stable in their solitary oscillations.

In spite of such stable lasers of classes A and B, the lasers can still exhibit
chaotic dynamics with the introduction of extra degrees-of-freedom, such as
gain modulation, external optical feedback, and optical injection. Semiconductor
lasers are easily destabilized by external perturbations [2]. Since a semiconductor
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laser is modulated through the injection current and it has a low internal reflec-
tivity in the case of edge-emitting semiconductor laser, the laser parameters are
easily accessible. For examples, semiconductor lasers indeed show chaotic dy-
namics when subject to injection current modulation, self-optical feedback from
an external reflector, and optical injection from a different laser. Another exam-
ple of the introduction of extra degrees-of-freedom is the installation of addi-
tional laser structures to ordinary edge-emitting laser [2]. Vertical-cavity surface-
emitting lasers (VCSEL) are promising candidates for future optical communi-
cations and optical data storage systems [11]. But VCSELs have quite a different
spatial structure with circular aperture compared to ordinary edge-emitting la-
ser, then we must consider the spatial dependence of the radial direction in the
laser oscillation, namely we must take into consideration the spatial-dependent
terms in the laser rate equations. This spatial dependence means an additional
degree-of-freedom and the laser exhibits unstable oscillations without external
perturbations to the laser.

Another example of unstable laser oscillations under solitary laser mode are
BALs [3]. The structure of a BAL is almost the same as that of an edge-emitting
laser except for the large stripe width along the active layer. The stripe width of
an ordinary edge-emitting laser is only a few micron meter; on the other hand,
a BAL has a stripe width of several tens to hundred micron meters. Therefore,
we must consider the spatial dependence along the stripe width and this intro-
duces the extra degree-of-freedom to the laser which leads to chaotic dynamics
in its solitary oscillations. In the following, we focus on chaotic dynamics of op-
tical feedback effects in ordinary edge-emitting lasers and also some newly de-
veloped semiconductor lasers.

22.2.2
Optical Feedback Effects in Semiconductor Lasers

Instability in semiconductor lasers is much enhanced by optical feedback from
an external reflector [2]. Figure 22.1 shows a geometry for optical feedback in a
semiconductor laser. Depending on the feedback fraction, the external cavity
length, and also the operating conditions of a semiconductor laser, the laser ex-
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Fig. 22.1 Model of semiconductor laser with optical feedback.



hibits various stable and unstable oscillations. The important parameter is the
optical feedback fraction and the dynamics are roughly categorized into five re-
gimes [12]. With moderate optical feedback around 1% of the optical amplitude
feedback from an external reflector (regime IV), the instabilities are much en-
hanced in semiconductor lasers, and strong chaotic oscillations are observed in
the laser output power. The amount of optical feedback is moderate in a sense
of optical amplitude; however, the optical feedback counted in intensity is only
10	4%. It is surprising that, even for such small optical feedback intensity, the
laser is destabilized and shows irregular intensity fluctuations which do not
come from a statistical origin but from a deterministic way. The amount of opti-
cal feedback in this regime is not only important for fundamental chaotic dy-
namics but also for practical applications. In optical data storage systems, the
returned light from a disk surface to the laser corresponds to this level. Also
the optical feedback from optical fiber is the same order as this amount in opti-
cal fiber communications. For weaker optical feedback, the feedback introduces
small effects to the laser and the laser shows either stable or slight unstable os-
cillations. On the other hand, the laser oscillation is stabilized at higher feed-
back fraction. We are here interested in this moderate optical feedback where
the laser exhibits chaotic oscillations.

The rate equations for the complex field E and the carrier density n (which
corresponds to the population inversion) in the presence of optical feedback are
described by Lang-Kobayashi equations [13].
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In the field equation, � is the linewidth enhancement factor, � is the feedback
coefficient due the external optical feedback, Gn is the gain, nth is the carrier
density at the threshold, � � 2L�c is the round trip time of light within the ex-
ternal cavity, �in is the round trip time of light in the internal cavity, �0 is the
angular oscillation frequency of the laser. The extra term has a delay time � and
the complex field is described by a delay differential equation. This is the origin
of instability and chaotic dynamics in semiconductor lasers. In the carrier equa-
tion, e is the elemental charge, J is the injection current density, d is the thick-
ness of the active layer, n0 is the carrier density at transparency, and �s is the
carrier relaxation time. We assume regime IV where optical feedback is not so
high, so that the multiple optical feedback effect within the external reflector
can be neglected.

Figure 22.2 is an examples of chaotic oscillations in semiconductor laser with
optical feedback. Figure 22.2 (a) shows chaotic laser output and its power spec-
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trum obtained from experiments. The chaotic fluctuation has mainly two spec-
tral components; one is a chaotic fluctuation related to the laser relaxation oscil-
lation and the other is a frequency corresponding to the external cavity length.
In this waveform, the external cavity frequency of 480 MHz, which is related to
the external cavity length, is observable. Figure 22.2 (b) shows the calculated
chaotic output using Eqs. (22.4) and (22.5). The right is the chaotic attractor cal-
culated from the waveform. The chaotic oscillation is well reproduced by the
numerical simulation (note that the experimental signal is DC cut one). But, of
course, we could not exactly trace the chaotic waveform due to the dependence
of the various parameters and also the initial condition of the system. Chaotic
oscillations are also observed by optical injection and injection current modula-
tion. Similar dynamic characteristics are observed depending on the variations
of perturbation parameters. Thus chaos is common in perturbed semiconductor
lasers.

22.2.3
Chaotic Effects in Newly Developed Semiconductor Lasers

At present, edge-emitting semiconductor lasers are commonly used as light
sources in a wide range of applications in optical communications, optical data
storage systems, and so on. Those narrow stripe Fabry-Pérot lasers, multi quan-
tum well lasers, and distributed feedback lasers are essentially stable in their so-
litary oscillations. Recently, a variety of laser structures are proposed to fabricate
coherent light sources, such as functional light oscillations, high power opera-
tions, low threshold operations, etc. Those lasers usually have additional struc-
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Fig. 22.2 (a) Chaotic oscillation (left) and its rf spectrum
(right) with strong optical feedback in semiconductor laser
(experiment). (b) Numerical simulations of chaotic waveform
(left) and its chaotic attractor (right).



tures on top of ordinary laser configuration. One of the promising lasers of
newly developed structures are vertical-cavity surface-emitting lasers (VCSELs)
[11]. Figure 22.3 is a schematic geometry of a selective oxidized VCSEL. A
VCSEL emits light vertical to its substrate surface and usually has circular disk
aperture, while edge-emitting laser emits light along the substrate surface and
the laser beam is usually an elliptic form. Due to their circular beam VCSELs
could be used in various applications. However, a VCSEL involves instability in
its solitary operation, since it has a spatial dependence due to a disk diameter
larger than the optical wavelength and it has a polarization ambiguity. Further-
more, a VCSEL oscillates at higher spatial modes at a high bias injection cur-
rent and the modes sometimes compete with each other for the same reason
(large disk diameter). Therefore, a VCSEL itself is an unstable laser even with-
out external perturbations [2].

Here, we briefly discuss VCSEL operations and some examples of unstable
oscillations. As already discussed, the spatial dependence must be included to
explain the dynamics of VCSELs. The total complex field of VCSEL oscillations
is expanded by spatial modes as follows [14, 15]:

�total r��� z� t� � � 1
2

�M
j�1

	�jEj t� ��j r��� �A0 sin 
zz� � exp 	i�th�jt
� �� c�c�� �22�6�

where M is the total number of the spatial modes, 	�j is the polarization vector
for the Jth mode, �j is the eigenfunction for the Jth mode, 
z is the pro-
pagation constant for the z direction, and A0 is the normalization coefficient.
The rate equation for the field E has the same form as that of edge-emitting
laser. Since the carrier diffusion in the radial direction must be taken into
account for the VCSEL dynamics, the rate equation for the carrier density is
written by
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Fig. 22.3 Schematics of a selectively oxidized VCSEL structure.



d
dt

n r��� t� � �D)2
T n r��� t� � � J r��� �

ed
	 n r��� t� �

�s

	 �d

d

�M
j�1

Gn�j�n r��� t� � 	 n0� Ej t� ��j r��� �
��� ���2 � �22�7�

where D is the coefficient for the carrier diffusion, the subscript T denotes the
operation for the transverse coordinates, and �d is the confinement factor for
the longitudinal direction in the active layer. The spin–flip model for the carrier
density is sometimes used to describe the dynamics of VCSELs [16, 17]. The
rate equations are convenient to analyze simply the polarization dynamics of
VCSELs. However, the model is limited only to the analysis of the dynamics for
the fundamental spatial mode oscillations.

Figure 22.4 shows examples of instability observed in solitary VCSELs. Figure
22.4 (a) is the light–injection current (L–I) characteristics of a VCSEL experi-
mentally obtained for a disk diameter of 6 �m [18]. In this experiment, clear
switching of the polarization modes from y-mode (dominant polarization mode)
to x-mode (perpendicular to the y-mode) is visible at the bias injection current
of 9.5 mA. The device characteristics including polarization switching strongly
depend on the properties of the laser materials. We can observe clear polariza-
tion switches for the increase of the bias injection current for some VCSELs,
while we cannot see clear switching for others. The total output power at certain
bias injection current is simply the addition of the outputs of the y- and x-polar-
ization modes. Even in solitary oscillations, VCSELs exhibit dynamic characteris-
tics. One of such dynamics is an antiphase irregular oscillation of the optical
output powers between the two crossed polarization modes. Figure 22.4 (b)
shows an experimental example of antiphase oscillations of the y- and x-polari-
zation modes in a VCSEL. Unstable pulsations and bistability are sometimes ob-
served at the switching point of the two polarization modes without any external
disturbances. In this figure, when the output power of the y-polarization modes
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Fig. 22.4 (a) L–I characteristics of VCSEL. (b) Unstable
antiphase oscillations of crossed polarization components.



goes down, the output power of the x-mode grows up, and vice versa. This is
the well-defined anticorrelation phenomenon of the polarization modes in the
laser output power in VCSELs.

High-power semiconductor lasers are one of the promising light sources for
industrial applications, since the power conversion efficiency from electricity to
light in those semiconductor lasers is much higher than in other lasers. One of
the technologies for high-power semiconductor lasers is a broad area laser that
has a broad stripe width (�100 �m that is about 20 times larger than those of
ordinary edge-emitting semiconductor lasers). Broad area semiconductor lasers
have a broad stripe width of the active region, hence the name. The effects of
the carrier diffusion and the diffraction of light in the active region are essential
for the dynamics in such a structure. Broad area semiconductor lasers have a
similar structure as ordinary edge-emitting semiconductor lasers except for the
broad stripe width. Figure 22.5 is an example of the device structures [19].
Although BALs can emit high optical power, the qualities of the laser beam
show rather poor performances. For example, BALs usually operate at multi-
mode both for the longitudinal and transverse modes. A broad area laser typical-
ly shows twin-peak or multiple-peak pattern in the far field. There exists carrier
hole burning effects in the active region along the stripe width at high bias in-
jection current [20]. The positions of the hole burning change and fluctuate
with time. This gives rise to pulsating oscillations with picosecond and fast spa-
tiotemporal filamentations. Filamentation of BALs, which shows zigzag motions
of high intensity peaks along the internal cavity, is one of the typical features of
BALs and it deteriorates much the laser performance [21].

A broad-area semiconductor laser itself is also an unstable device due to the
spatial dependence in the laser oscillations. Broad area lasers usually oscillate
with multiple modes. However, in the following considerations we assume a
single longitudinal mode operation for the simplicity. Starting from the Helm-
holtz equation for the complex laser field E x� t� � (x is the coordinate perpendi-
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Fig. 22.5 BAL structure.



cular to the emitting direction fo the laser in the active layer, i.e. the direction
along the laser stripe width), the rate equation is written as [2, 22]

�E x� t� �
�t

� iDe
�2E x� t� �

�x2
� 1

2
1	 i�� �Gn�n x� t� � 	 nth�E x� t� � � �22�8�

where De � d�2k0�
2 is the diffraction coefficient of the light (k0 being the wave-

number in vacuum). The first term on the right-hand side of the equation is
the diffraction effect due to the broad active area. The diffusion effect must also
be included in the rate equation for the carrier density and it is given by
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where Dn is the diffusion coefficient of the carrier and it is defined by
Dn � l2d��s (ld is the diffusion length). In reality, the injection current is a func-
tion not only of time but also of the x coordinate.

A BAL shows spatiotemporal instabilities without any external perturbations.
Figure 22.6 is a filamentation observed in a near-field output of a BAL [21]. We
can see that bright spot particles move back and forth with a zigzag manner
along the stripe width. This coil-like pattern is called filamentation and it is a
typical structure of the output power in BALs. The width of migrating filaments
is typically around 10 �m and it takes them about several picoseconds to mi-
grate from one edge of the active region to the other one. Figure 22.6 (a) is the
numerical simulation for the experiment for Fig. 22.6 (b). Filamentation is uni-
versally observed not only for wide strip lasers but also for semiconductor laser
arrays [23].
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Fig. 22.6 Filamentation in BAL. (a) Numerical simulation.
(b) Filamentation experimentally observed by a streak camera
(©1996 EDP Science).



The origin for dynamic filamentation in BALs is not fully understood yet.
However, the phenomena can be related to the effects of self-focusing, diffrac-
tion, and spatial hole-burning, which depend on spatial carrier diffusion as the
relevant physical mechanisms [20, 24]. The self-focusing tends to guide high in-
tensity regions resulting in a decrease of the optical gain. Thus, in the neighbor-
ing regions, the gain is higher. In addition, diffraction couples light into this
neighboring region so that the spot of high intensity starts to migrate. At the
edges of the active area, coupling via diffraction occurs only to one side, leading
to the change of direction of migration. To control and reduce the effect of fila-
mentation, a flared laser having a tapered cavity has been used [3]. In such la-
sers, the filamentation have been reduced but different complex spatiotemporal
dynamics have been encountered.

22.3
Chaos Control in Semiconductor Lasers

Chaos induced by nonlinear effects is usually an unfavorable phenomena and we
keep away from such irregular oscillations in practical applications. However,
chaos is controllable. In 1990, the algorithm of chaos control OGY method was
proposed in which the method applies appropriately estimated minute perturba-
tions to an accessible system parameter to select and stabilize a certain periodic
orbit (unstable periodic orbit: UPO) [4, 25]. The idea indicates that a chaotic sys-
tem can be turned into a system with multipurpose flexibility in the meaning that
one can obtain various desired orbits from only a simple system without drama-
tically modifying the configurations of the system. The method is called chaos
control. The application of the OGY method requires the full mathematical de-
scription of a nonlinear model. We need the attractors or the Poincaré map in ad-
vance to analyze and control the system. Based on this information, the parameter
is perturbed by the mathematical method and the system is forced to fall down
onto an unstable periodic orbit. Therefore, the OGY algorithm is difficult to apply
to real experimental systems. The method comes from a rather mathematical ba-
sis and can only be applicable for experimental situations where one knows expli-
citly the exact parameter values in the dynamical system, since the parameter val-
ues are important for the calculations of unstable periodic orbits. Although the
method is difficult to apply to actual situations of chaos control, it has been mod-
ified and new techniques applicable to actual experimental systems have been pro-
posed by taking over the essence of the OGY method.

As an alternative method of the OGY algorithm in practical applications, the
method of continuous control algorithm which is suitable for control of practi-
cal nonlinear systems has been proposed. The continuous control method is ap-
plicable to a system with fast chaotic oscillations such as semiconductor lasers
[26, 27]. In the following, we show an example of stabilization of chaotic oscilla-
tions induced by optical feedback in semiconductor lasers based on the continu-
ous control method. Figure 22.7 shows an example of the continuous control
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systems in chaotic semiconductor lasers induced by optical feedback. The chao-
tic output from a semiconductor laser is once detected by a photodetector and
electronically fed back into the bias injection current of the laser. The control
signal is the difference between the detected intensities from the laser at pres-
ent and before the time �e. Using the feedback gain �K , the term for the injec-
tion current in the carrier density equation in Eq. (22.5) is replaced by

J � Jb 1� �K�S t	 �e� � 	 S t� �� � � �22�10�

where Jb is the bias injection current without control. The second term of the
parenthesis on the right-hand side equation is the control signal. The delay time
�e for the control is usually chosen to be the same as the optical feedback time.
But, there is an optimum time delay for the control depending on the
parameter conditions and it is not always the same value as the optical feedback
time �. After the continuous control is succeeded and the output of the laser is
forced to a periodic or fixed oscillation, the control signal vanishes
(S t	 �e� � � S t� �) and the original state is little affected by the control.

The continuous control method has been applied to suppress irregular oscilla-
tions in chaotic semiconductor laser systems and a number of studies for the
numerical simulations have been published [28]. However, little experimental
work has been reported for the implementation of the continuous chaos control.
In actual, the delay �e is electronically generated by an analogue circuit and the
control signal is fed back into the bias injection current of the laser. Therefore,
we must design a fast response circuit for fast laser oscillations. The finite re-
sponse of the electronic circuits, including photodetector and amplifier, always
encounters beside of the setting of the delay �e. For real systems, we must take
these effects into account. It is noted that a perturbation for the chaos control
must be very small and the system is scarcely affected by the control. Therefore,
it is not easy to realize laser stabilization in a strict sense of chaos control.
Nevertheless, the analysis of finding stable points in the bifurcation diagram
gives rise to good indication for the control of irregular oscillations of the sys-
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Fig. 22.7 Block diagram of continuous chaos control system.



tem even if the control signal does not have small value and the residual of the
control is not small.

Another powerful method for the application in experimental systems is the oc-
casional proportional feedback (OPF) method [29–31]. The OPF method modifies
the OGY algorithm. The OPF method also perturbs one of the system control pa-
rameters by carefully feeding back a part of the output signal. It creates only small
alterations of the attractor and pushes the system so as to stabilize to the periodic
orbit. Digital and analogue electronic circuits, such as comparator and sample/
hold circuits, are required for the implementation of the method and periodic
components of the attractor are extracted from the chaotic output of the system.
Then, the system is stabilized to a periodic orbit by appropriately setting a syn-
chronous signal. The seeding synchronous signal is estimated from the system pa-
rameters. Therefore, we require the information only for the characteristic time of
the system such as the delay time in advance. However, we do not need the exact
characteristic time but only a rough estimate of it. When the parameters are set
within certain ranges of the appropriate values, a signal for the chaos control is
autonomously output. The control signal is pulse-like and much smaller than
the chaotic oscillations and the level is also small enough for the assumption of
minute perturbation for the system in chaos control. It is noted that the control
signal is continuously generated in the OPF method even after the control is suc-
ceeded. This is different from the continuous control in which the control signal
vanishes after the success of the control.

Figure 22.8 shows an example of an OPF control system for stabilization of
chaotic laser output induced by optical feedback in a semiconductor laser. Since
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Fig. 22.8 Control of chaotic oscillation induced by optical
feedback in semiconductor laser based on the OPF method.



the OPF technique is implemented using analogue and digital electronic cir-
cuits, the control can be performed very fast and is applicable to a variety of
nonlinear systems. Different from the continuous control method, the electronic
circuits used in the OPF method are not simple and the implementation may
not be easy for a nonlinear system with fast response over nanosecond oscilla-
tions. It should be pointed out that the OPF method is essentially a limited case
of the OGY algorithm, when the contracting direction of the chaos attractor is
infinite in strength. In laser systems, the controls of chaotic oscillations have
been successfully performed based on the OPF method. The OPF method has
been applied for stabilization and control of class B lasers with slow relaxation
oscillations, such as solid-state lasers, fiber lasers, and CO2 lasers. In semicon-
ductor lasers, the method is also applied to the control in optoelectronic hybrid
systems.

The chaos control methods discussed above more or less require the detection
of chaotic signal, the processing of the post-detection signal, and feedback of it
to the laser. Therefore, it is sometimes difficult to implement the methods for
fast response nonlinear laser systems in practical applications. There is a simple
way to realize chaos control suitable for systems with fast chaotic oscillations.
Based on the linear stability analysis for the steady states in chaotic semicon-
ductor laser systems, we can derive the characteristic equation related to stable
and unstable states of the system output [32, 33]. The real parts of the solutions
for the characteristic equation derived from the linear stability analysis repre-
sent the damping rate of the oscillations and the imaginary parts denote the ac-
companying frequencies. The obtained frequencies are the candidates for peri-
odic oscillations of unstable saddle node points which are embedded into the
system close to the initial operating point. In accordance with this fact, the
chaotic system can be controlled to a periodic or fixed state by modulating the
accessible parameter with one of the frequencies obtained by the linear stability
analysis. The control method works indeed as far as unstable periodic orbits are
not far away from the operating point. In a semiconductor laser with optical
feedback, a sinusoidal injection current modulation is the easiest way to per-
form the control. The modulation is applied to the bias injection current in Eq.
(22.5) as

J � Jb�1�m sin 2�f0t� �� � �22�11�

where f0 is the modulation frequency calculated from the linear stability analy-
sis and m is the modulation index with small amplitude. There is an allowable
range for the parameter values of f0 and m for successful control. The robust-
ness for the control depends on the extent of the attractor and the basin of each
possible linear mode.

In the following, an example for the sinusoidal modulation control to the in-
jection current in semiconductor lasers with optical feedback is given. Figure
22.9 is the plot of mode distribution calculated from the linear stability analysis
for the system [32, 33]. Under the operating condition, the laser shows chaotic
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oscillations. All the calculated modes within this region have negative real val-
ues; therefore, the calculated modes are candidates for unstable periodic solu-
tions. But, the stability of the modes and the robustness for the control are dif-
ferent from one mode to the others and must be investigated by using bifurca-
tion diagrams for the control parameters. We focus on the mode indicated by
the arrow in the figure and use this mode as the sinusoidal modulation control.

Figure 22.10 (a) shows an example of chaos control using a sinusoidal modu-
lation to the injection current in a semiconductor laser with optical feedback.
The sinusoidal modulation control is performed by modulating the injection
current with the modulation frequency of f0 � 1�251 GHz and the modulation
index of m � 0�021 of the bias injection current. The modulation index is suffi-
ciently small for satisfying the assumption of little effect for the original chaotic
state to the system. A chaotic waveform in Fig. 22.10 (a) is controlled to a peri-
od-1 oscillation by the modulation of one of the mode frequencies as shown in
Fig. 22.10 (b). Figures 22.10 (c) and (d) are the attractors for Fig. 22.10 (a) and
(b), respectively, in the phase space of the laser output power and the carrier
density. The chaotic attractor in Fig. 22.10 (c) is controlled to the periodic state
in Fig. 22.10 (d). The robustness of the method with respect to parameter varia-
tions is an important issue. In this method, there is a finite modulation range
of the parameters for effective control; for example, successful control is
achieved within the range of several tens to a hundred MHz centered at the ex-
act mode frequency. However, the extent of the attractor after the control is
slightly deformed by the modulation. One important issue of chaos control is
the response time after the control signal is switched on. The time required for
successful control using sinusoidal modulation has been studied by Uchida et
al. [34]. According to their results, the time required for reaching the stabiliza-
tion has statistical distributions for each trial, but the characteristic time is
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Fig. 22.9 Mode distributions calculated from linear
stability analysis.



roughly ten times of the laser relaxation oscillation time of the laser (equiva-
lently ten times of the typical timescale of chaotic oscillations).

The main noise source in free-running semiconductor lasers is the sponta-
neous emission of photons in laser mediums. Noises in semiconductor lasers
are greatly enhanced by optical feedback. The detailed definition and descrip-
tions for the noise characteristics in semiconductor lasers can be found in the
book by Pertermann [35]. In relation to the noise of the optical power �S to the
mean power �S�, the relative intensity noise (RIN) in semiconductor lasers is
defined by

RIN � ��S2�
�S�2 � �22�12�

where the optical output power from the laser is defined by S t� � � �S� � �S t� �.
Actually, the feedback induced irregular intensity fluctuation is not a noise but
a chaotic fluctuation. However, the effects of the phenomena are similar to
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Fig. 22.10 Sinusoidal modulation control in semiconductor
lasers with optical feedback. (a) Chaotic oscillation before
control. (b) Controlled period-1 oscillation by a targeted
mode modulation. (c) and (d) Attractors corresponding to
(a) and (b).



noises in free-running semiconductor lasers. Therefore, we use the same nota-
tion for the feedback-induced irregular fluctuations.

The RIN induced by optical feedback form an external reflector is strongly de-
pendent on the feedback level. At external reflectivity around 0.001% in inten-
sity, the RIN has almost the same level as the solitary oscillation. Above this lev-
el, the RIN abruptly increases and reaches the maximum value at the external
reflectivity of 0.1 to 0.01%. Without optical feedback, RIN for ordinary edge-
emitting semiconductor lasers under solitary oscillations is less than 	140 dB/
Hz. However, in the presence of optical feedback, the RIN increases much high-
er than 	125 dB/Hz in the feedback regions of chaotic and coherence collapse
regimes. In the regions, we can observe the broadening of the oscillation line-
width, chaotic behaviors of the laser output, and the coherence collapse state of
the laser [2]. A laser with a RIN above 	125 dB/Hz cannot be used as a light
source for optical data storage systems because of the increase of bit-rate errors.
Even though the feedback level in this regime is very small, it affects much of
the performance of the laser operation. To know the dynamics in this, feedback
regions is also very important from a viewpoint of practical applications, such
as the use for optical data storage systems, since the returned light from the
disk surface in those systems is almost the same order. On the other hand, the
RIN decreases with further increase in the feedback level. The noise characteris-
tics are dependent not only on the reflectivity of the external mirror, but also on
other system parameters such as the bias injection current and the external mir-
ror position.

Unstable oscillation of semiconductor lasers subjected to optical feedback was
stabilized by the introduction of a sinusoidal modulation to the injection current
as shown in the previous section. Figure 22.11 shows the numerical result of
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Fig. 22.11 RIN for sinusoidal modulation control. Solid line:
RIN of solitary oscillation. Broken line: RIN for optical feed-
back without control. Dotted line: RIN for sinusoidal control.



the noise suppression by the sinusoidal modulation method [33]. The RIN of
the solitary laser is � 	140 dB/Hz in the lower frequency region (solid line). A
frequency peak at about 3 GHz is the relaxation oscillation component. In the
presence of optical feedback, the noise is extremely enhanced and it is about
	120 dB/Hz in the lower frequency region as shown as the broken line in the
figure. The noise level exceeds the allowed criterion for a light source of optical
data storage systems. The dotted line shows the result of the control. One of
the mode frequencies (in this case, it is 2.38 GHz) is chosen as a control fre-
quency and the laser is modulated by this frequency through the injection cur-
rent modulation. By the modulation, the laser shows synchronous oscillation
(period-1) and the RIN in the lower frequency region is reduced to 	130 dB/
Hz. The modulation amplitude is small, m � 0�15. The noise level attained by
the control is enough for the requirement of a light source for the optical data
storage system.

The modulation index of m � 0�15 used in Fig. 22.11 may be still larger from
the viewpoint of chaos control. The modulation more or less affects the laser os-
cillation and closer investigation shows deviations of the chaos attractor from
the original one. The modulation index must be less than about 0.01 for the
ideal chaos control. Nevertheless, the laser is stabilized by rather a small signal
compared with ordinary forced sinusoidal control without optimized frequency.
In optical data storage systems, the suppression of optical feedback noise is the
important issue. The light is reflected from a disk surface and is returned into
the laser active layer. The feedback light induces much noise in the laser and
causes serious problems for the performance of the data readout. In actual opti-
cal data storage systems, a high-frequency injection current modulation on the
order of several hundreds MHz to one GHz has been employed to suppress
feedback-induced noises [36, 37]. In such optical data storage systems, the mod-
ulation index over m � 1�0 was frequently used. The modulation depth is much
larger than that of the chaos control and a laser is sometimes brought below
the threshold by the modulation.

It was known on an empirical basis that there is a best modulation frequency
for each optical data storage system. From the viewpoint of chaos control in
semiconductor laser systems, the high-frequency modulation technique is close-
ly related to the sinusoidal modulation control in chaos control in which the
chaotic orbit is stabilized to a periodic oscillation, though the modulation depth
is much larger than the expected chaos control. Strong modulation technique
used for optical compact disk systems is considered as a forced oscillation to
the light source. But, the method does not always work for every selected modu-
lation frequency. Strong modulation to a semiconductor laser sometimes gives
rise to unstable chaotic oscillations. Therefore, the optimized modulation fre-
quency has some relation to the sinusoidal modulation control of chaos, even
though the modulation frequency is selected on the empirical basis. Recently, a
self-pulsating laser has been used for light sources of DVD in optical data stor-
age systems. The chaos control algorithm introduced here may give us impor-
tant information for the design of such devices and systems. The essence of

22 Chaos and Control in Semiconductor Lasers492



chaos control is that the control does not change the original dynamics of the
nonlinear system. However, the original dynamics may be changed due to a
very small but a nonnegligible modulation amplitude. In that case, the idea of
chaos control is still effective for the control of an existing unstable periodic or-
bit as long as the modulation is small.

To decide the optimum frequency in the sinusoidal modulation control, we
must establish a model for a real system and estimate the frequency. However,
it is not easy to obtain all the parameter values of the system in advance. Never-
theless, we can guess the frequencies. The relaxation oscillation frequency of
the laser is one of the candidates for the optimum frequency. Another one is
the external cavity frequency and its higher harmonics. From the linear stability
analysis, the mode frequencies of the optical feedback system are not always
equal to the exact external cavity frequencies, but there exist mode frequencies
close to the external cavity frequencies. As already discussed, there is a certain
extent for the tolerance of the modulation frequency for a successful chaos con-
trol. In reality, which frequency is best for the control and suppression of
noises, must be examined and tested by using each possible frequency. Noise
induced by optical feedback is much suppressed by the best selection of the
modulation frequency and, thus, the laser is stabilized with a small modulation
power.

As an alternative modulation method for chaos control, we here show an ex-
ample of the introduction of an extra mirror in the feedback loop to control
chaotic oscillations in a semiconductor laser [38, 39]. Figure 22.12 shows the op-
tical chaos control system using double external mirrors. One of the mirrors is
the external mirror which gives rise to chaotic oscillations in the semiconductor
laser and the second mirror is used for the control. In this system, a beat signal
induced by the mixing of lights from the two mirrors plays the same role for a
sinusoidal modulation as the bias injection current modulation. In the same
manner as for the single mirror case with the bias injection current modulation,
the linear stability analysis is applied to the rate equations with double external
mirrors. However, the system is usually affected much by the second feedback
mirror and the system might not fall into a nearby unstable periodic orbit by

22.3 Chaos Control in Semiconductor Lasers 493

Fig. 22.12 Schematic diagram of optical chaos control system.



the control, but it is pulled apart from an accompanying antimode by the inter-
ference and is forced to another periodic or fixed state far from the original
state. The system after the control may have a different attractor than the origi-
nal one and, therefore, such a control is not categorized into chaos control with
a small perturbation in the sense of OGY control. But, the technique is some-
times effective for stabilizing chaotic irregular oscillations. Rogister et al. experi-
mentally controlled irregular oscillations of low-frequency fluctuations (LFFs) in
semiconductor lasers induced by an external mirror using the second control
mirror [40]. Without the second mirror in Fig. 22.10, the laser shows LFF oscil-
lations within a certain range of the feedback of the external mirror. At this
state, the laser is controlled to periodic or fixed state by appropriately choosing
the feedback strength of the second mirror. The feedback level of the second
mirror is estimated by the linear stability analysis as mentioned.

22.4
Control in Newly Developed Semiconductor Lasers

A semiconductor laser is essentially a stable class B laser; however, it is only
true for edge-emitting lasers without any external perturbations which are de-
scribed by simple rate equations with time development. Newly developed semi-
conductor lasers have additional degree-of-freedom compared with ordinary
edge-emitting semiconductor lasers and they are no longer stable lasers. They
show unstable chaotic oscillations without any external perturbations as dis-
cussed in Section 22.3. Therefore, the control of unstable oscillations in those
lasers is an important issue in practical applications. Those lasers are either sta-
bilized by external control or by installation of some control structures inside
the device. To reduce unstable oscillations, the idea of chaos control is still effec-
tive for controls of those lasers.

In VCSELs, unstable oscillations such as polarization-mode switching, higher
spatial mode excitations, and mode competitions have been reduced by intro-
ducing physical distortions to the laser materials. The polarization mode of
VCSEL is also stabilized to a single mode by embedding quantum dots into the
active layer. However, it is difficult to settle the problems only by such tech-
niques. As an alternative method of VCSEL controls, optical injection from a
different laser and optical feedback are used to stabilize the laser oscillations
[41]. As a third technique, the excitation of higher spatial modes is suppressed
and the laser is forced to stay to a single mode by a photonic structure installed
at the top of the exit surface of the laser cavity [42, 43]. Here we briefly discuss
the spatial mode stabilization of VCSELs by a photonic structure. Figure 22.13
shows an example of photonic structures and the controlled beam to the funda-
mental spatial mode [42]. A photonic structure in Fig. 22.13 (a) is installed at
the top of the DBR reflector of the VCSEL cavity. Then only the fundamental
spatial mode is excitable due to the limited band of the laser modes for a wide
range of the bias injection current.
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In BALs, filamentation discussed in Section 22.3 is one of the main instabil-
ities to deteriorate strongly the performance of the laser oscillations. The quan-
tum-dot structure is also effective to reduce filamentations of broad area laser
oscillations. Quantum dots at an appropriate density are embedded into the ac-
tive region of the laser cavity. In the presence of quantum dots, the dynamic
motions of filaments are greatly suppressed and the laser can emit fairly stable
beam compared with such as quantum-well semiconductor lasers. Figure 22.14
shows the comparisons of the beam qualities between quantum-dot and quan-
tum-well lasers obtained by numerical simulations and experiments [19, 44].
The laser is a InGaAs quantum-dot laser (dot density 1011 cm	2) of the strip
width of 10 �m at the wavelength of 1.1 �m. As easily seen from Fig. 22.14 (a),
the quantum-well laser has strong filamentations, while the quantum-dot laser
is well-stabilized enough after the switch-on relaxation oscillation. The averaged
beam profiles both for the simulations and the experiments are shown in Fig.
22.14 (b) and (c). The averaged beam profiles for quantum-well laser contain
irregular peaks in their envelopes, which is the effect of filamentations on the
order of picosecond. On the other hand, the good quality beam profiles are
obtained for the quantum-dot lasers. The beam quality factor M2 (M2 � D�d� �2:
D and d being the observed and ideal Gaussian beam diameters), which is the
measure of the beam quality compared to the ideal Gaussian beam, is much
reduced in comparison with that of quantum-well lasers.

Another method of suppressing filamentations in BALs has been developed
based on external control techniques. In the same manner as those in VCSELs,
BAL can be stabilized by optical injection from a different laser or optical feed-
back. Here we discuss the control method based on optical feedback effects.
Figure 22.15 is an experimental example of chaos control of BAL by optical
feedback [45, 46]. The laser is a BAL with a stripe width of 100 �m and the out-
put power of 1 W operating at pulse mode. The output power is once spatially
filtered and is fed back to the active region by an external mirror with a spatial
filter. Depending on the shape of the spatial filter, the filamentation can be con-
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Fig. 22.13 VCSEL control by a photonic structure on the top
of the exit facet. (a) Top view of photonic VCSEL. (b) Magni-
fied top view and (c) its cross-section. (d) Near field pattern
and (e) far field pattern of the VCSEL emission (©2004 AIP).



trolled and even eliminated under a certain condition of the filter configuration.
The length of the external mirror is 10 mm and the reflectivity of the mirror is
about 50% in intensity. The figure is a plot of near-field patterns at the laser exit
face observed by a streak camera. The horizontal axis is the position of the laser
exit face and the vertical axis is the time development for the laser oscillation.
The optical feedback is switched on at time t � 0 ns. Figure 22.15 (a) is a plot of
filamentation for a lower bias injection current at I�1�75Ith, while Fig. 22.15 (b)
is for a higher injection at I � 3�0Ith. For the lower bias injection current, filamen-
tation is greatly suppressed by the feedback after a certain time lapse from the
switch-on (around 8 ns) and the averaged spatial beam profile becomes almost sin-
gle. For higher bias injection current, the filamentation is not completely elimi-
nated; however, it is still strongly suppressed compared to filamentations under
no control in Fig. 22.15. Usually, thermal lensing due to the high carrier density
concentration in the active layer may increasingly affect the beam characteristics
at high pump current, thus leading the degradation of the beam quality. Neverthe-
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Fig. 22.14 Filamentation control by quantum-dot structure
in BAL. Left: quantum-well laser. Right: quantum-dot laser.
(a) Time resolved dynamic behaviors after laser switch-on
(numerical simulation). Averaged near-field patterns for
(b) theory and (c) experiments (©2004 AIP).



less, stabilization of the emission dynamics is still achieved by the scheme even at
high operation currents. Fujita and Ohtsubo demonstrated chaos control in BALs
based on the fact of coexistent states of chaos with optical feedback [47]. In their
method, the laser is under chaotic oscillations by optical feedback at the initial
state and the laser is controlled to another coexistent periodic or fixed state without
changing the essential condition of the nonlinear system. By the control, the laser
shows completely single states both for the transverse and longitudinal modes.

22.5
Conclusions

This chapter provided chaotic characteristics and controls in semiconductor la-
sers. Semiconductor lasers are categorized into stable class-B lasers, while they
are very sensitive to the external perturbations such as optical feedback and opti-
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Fig. 22.15 Experimentally controlled filamentations in BAL
by spatially filtered optical feedback. Near field patterns ob-
served by a streak camera at the bias injection currents of
(a) I � 1�75Ith and (b) I � 3�0Ith (©2003 OSA).



cal injection. A rich variety of dynamics are observed in the laser output powers.
Newly developed semiconductor lasers, which have different device structures
than ordinary edge-emitting semiconductor lasers, originally have extra degrees-
of-freedom and they are essentially unstable chaotic lasers even in their solitary
oscillations. The dynamic is not only important from the basic studies in non-
linear optical systems, but it is also very important in terms of applications. The
control of instabilities in semiconductor lasers, such as noise suppressions (ac-
tually suppressing chaotic irregular oscillations), are still important issues. Also
unstable oscillations of newly developed semiconductor lasers are reduced or
even stably controlled by introducing additional device structures. The essence
of chaos control is that the control does not change the original dynamics of
the nonlinear system. The discussions introduced here may not be necessarily
based on the methods of chaos control in strict sense. However, the idea of
chaos controls in this chapter may give us useful indications for the designs of
such devices.
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Björn Gütlich and Cornelia Denz

Historically interest in the control of nonlinear optical systems dates back to the
discovery of the laser. The laser itself may be considered as a prototype of a
nonlinear optical system. It consists of a nonlinear optical material placed into
an optical cavity, which provides a feedback mechanism. The nonlinear nature
of the laser, e.g., reveals itself in the transcritical bifurcation of the laser emis-
sion. Most often however, the nonlinear dynamics occurring in lasers are re-
stricted to longitudinal modes in order to meet the demands of applications –
namely high output power and uniform beam profiles. The whole range of
complex nonlinear dynamics resulting in temporal and spatial instabilities,
which come into play, if the laser dimensions are extended allowing for trans-
verse modes, are generally considered as unacceptable for application. The sup-
pression of nonlinear characteristics to create a well-defined laser output is no
longer feasible in a spatially extended device such as vertical cavity surface emit-
ting lasers (VCSELs). Therefore, control methods for such nonlinear spatial op-
tical systems are required. Meanwhile, it is widely discussed not only to consid-
er optical nonlinearity as harmful, but to use it for the implementation of all
optical concepts for information processing. Suggestions for potential applica-
tions range from all optical routing and switching of optical information to opti-
cal data storage, methods of image recognition, and data encryption. For these
applications, the control of nonlinear optical system and their spatiotemporal
complex dynamics becomes even more obviously indispensable for it will not be
sufficient to only suppress unwanted temporal or spatial complexity, but to real-
ize control schemes, which allow us to address and select a certain target state,
are required. Thus, the output needs not only be predictable, but control more-
over must define the system output at a given input to the nonlinear system in
a reliable manner according to the intention of the user.

Differently from time-dependent one-dimensional systems or coupled net-
works of one-dimensional constituents, the evolution of spatially extended con-
tinuous systems is often dominated by nonlocal effects such as diffraction or
diffusion, which cause a continuous nonlocal spatial coupling. At the same time
these nonlocal effects create the richness of the observed transverse structures
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as well as they make the categorizing of the observed spatiotemporal dynamics
and in consequence also its control more complicated. Therefore, in spatially ex-
tended and continuous systems often the simultaneous control of the complete
transverse space is necessary for the implementation of control. Thus, optical
experiments posses several fundamental advantages for implementing spatio-
temporal control. Differently from other physical systems the dominant system
parameter – the optical field – is directly observable in its amplitude and phase
and both quantities can easily be manipulated. Therefore, a direct control of the
complete optical field is feasible. Furthermore, optical fields have the inherent
advantage that transverse control operations can be processed in parallel as op-
posed to sequentially. In particular the Fourier transformation is performed all
optically and in parallel at the speed of light by a simple lens. Consequently,
the realization of different operations such as convolutions or calculations of
correlations can also be accomplished with plain all-optical schemes. Therefore,
the demand for simultaneous control of the complete transverse space can easi-
ly be met in an optical system.

23.1
Control Methods for Spatiotemporal Systems

At this point, we will refrain form categorizing potential control schemes for
spatiotemporal optical systems, which likely are as diverse as the rich spatiotem-
poral phenomena observed in these systems, instead we refer the reader to Part II
on the control of space time chaos, which gives a more general description.
Nonetheless we will here define some basic concepts on control, which will be
used in context of this contribution. Spatiotemporal control can be open loop or
closed loop. Concepts using open-loop schemes work without a feedback mecha-
nism of the control and the control consist of a predefined signal, which is im-
posed onto the nonlinear system. In closed-loop schemes a feedback of the con-
trol signal to the actual system state exists. The control signal is derived from a
comparison of the actual system state with the intended target state.

In the control schemes, either an approach of positive or negative control can
be taken. In a positive control scheme the control signal, which often will be the
target state, is added to the system; thus, the target state is amplified in the sys-
tem. In a negative control scheme, the control signal is subtracted from the un-
controlled signal; thus, the deviations from the target state must be subtracted
from the system to reach a target state.

An important difference between the persistent control (open-loop) and nega-
tive closed-loop control schemes is the vanishing of the control signals, when
the target state is reached, for the latter case. If the control signal vanishes at
the target state, the control can also be called noninvasive. This term reflects the
fact that application of control in principle does not change the nonlinear sys-
tem itself. The control only serves to select a certain solution from the manifold
of system attractors and stabilizes the system at one specific target attractor. As
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the selected solution already is a stationary solution of the system further con-
trol in principle will not be necessary, when the target state is reached. A rema-
nent level of control however will always be present in real experimental situa-
tions due to the presence of noise.

Other control methods such as positive closed-loop control, persistent control
and methods, which manipulate the potential system states, e.g., in restricting
the possible system modes, in consequence must be called invasive methods as
the control signal cannot vanish. Persistent external control will additionally
modify the properties of the uncontrolled system in any case. In order to em-
phasize this conceptual difference between the closed-loop method of positive
feedback and the open-loop method of persistent control, we will also refer to
persistent external control as forcing in the following. Due to the fact that forc-
ing is an open-loop method in this case not only the system inherent ‘natural’
solutions of the system can be studied, but also other external states can be
applied as forcing. It can be expected that the system follows the forcing input,
if it is a solution of the unforced system, while it remains open how the system
responds to other forcing inputs.

A completely different approach to controlling spatiotemporal complexity is
the fascinating phenomenon of synchronization. The term synchronization de-
rives from the locking of the temporal behavior of two coupled pendulum
clocks. Meanwhile the term has also been extended to the spatiotemporal do-
main. Therefore, one defines spatiotemporal synchronization as the locking of
the spatiotemporal dynamics of coupled (nonlinear) spatiotemporal systems. In-
duced by the coupling, which can be small in comparison to the amplitude of
the synchronized systems, the nonlinear spatiotemporal dynamics thus becomes
completely or partially entrained by the spatiotemporal dynamics of another sys-
tem. Therefore the complex dynamics of spatiotemporal chaos can control an-
other complex spatiotemporal chaotic system enabling the implementation of
encryption schemes in data communication via synchronized spatiotemporal
chaos.

23.2
Optical Single-Feedback Systems

Here we will report on the progress, which has been made in controlling spa-
tially extended nonlinear optical systems. At this, we will restrict ourselves to a
model system of nonlinear optics the so-called class of single-feedback systems
[1–22]. A single-feedback system consists of a nonlinear optical material and a
single mirror, instead of two mirrors needed for the construction of a resonant
cavity. Therefore, one can casually denote a single-feedback system as a semicav-
ity. While these systems allow for a simplified theoretical and experimental
treatment, they show at the same time a rich variety of self-organized and spon-
taneous formation of spatiotemporal complex structures ranging from well or-
dered pattern, solitary solutions to turbulent chaotic states [16–22]. The model
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character of single-feedback systems stems from this combination of rich non-
linear effects and simplicity of numerical simulations. Since the nonlinear be-
havior is well known for many single-feedback systems [5, 12–15], they are also
ideal for investigations on the control of spontaneous optical pattern and spatio-
temporal complexity. The methods presented here are generic for many spatial
optical systems and therefore can be adopted to other nonlinear optical systems,
if system specifics are disregarded. Particularly, we will treat the control of spa-
tiotemporal structures at two experimental model configurations here. In the
first configuration, which uses a photorefractive nonlinearity, the feedback acts
coherently at the nonlinear medium. The single-feedback scheme of the second
model system, which uses a liquid crystal light valve (LCLV) as nonlinearity, is
based on an incoherent mechanism. Both systems exhibit high nonlinear sensi-
tivities, and thus investigation of spontaneous pattern formation and its control
can be investigated at comparatively moderate laser powers. At the model sys-
tem with the photorefractive nonlinearity, we will study invasive and noninva-
sive control methods, which operate in the Fourier space. At the second exam-
ple of incoherent feedback, we will introduce an invasive control method acting
in real space. Furthermore, we will demonstrate that this invasive control meth-
od can be interpreted as the spatial counterpart of synchronization, and we will
then lead on to discuss first evidence of spatiotemporal synchronization of an
optically turbulent state.

23.2.1
A Simplified Single-Feedback Model System

If we consider the self-organized formation of spatiotemporal structures [23],
single-feedback systems can be regarded as the most basic nonlinear optical
configuration which supports such spontaneously formed structures. First theo-
retical evidence on spontaneous pattern formation in optical single-feedback sys-
tems has been obtained by Firth et al. in the nineties [1].

In an idealization we will consider a single-feedback configuration with the
simplest nonlinearity – a Kerr nonlinearity:

n � n1 � n2I� �23�1�

where the refractive index of the nonlinear optical material depends linearly on
the intensity of the light field. The main ingredients for constructing a single-
feedback system are a nonlinear optical medium, a feedback mirror and diffrac-
tion which is induced by a distance L�2 of free-space propagation between a
mirror and a nonlinear medium (a schematic setup is depicted in Fig. 23.1).

A spatially extended planar electromagnetic wave Ein propagates in the for-
ward direction through the nonlinear optical material in the setup. According to
the refractive index of the nonlinear optical medium, the optical wave is modu-
lated in its phase profile. The modulated wave reflects at the feedback mirror
and passes the nonlinear medium again in the backward direction. After inter-
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action with the nonlinear medium, the waves leave the system. Thus, the opti-
cal beam interacts with the system once only and does not pass the system mul-
tiple times like in a resonant optical cavity. From this the expression single feed-
back is derived.

On its path from a nonlinear medium back to the nonlinear medium the op-
tical wave experiences diffraction, while it propagates freely over the distance L.
Mathematically diffraction is taken into account by the propagation operator

8�EF� � exp
	iL
2k�

)2
9

 �
EF � �23�2�

which can be derived from the optical wave equation applying the slowly vary-
ing envelope (SVE) approximation. The propagation distance L is scaled to the
wavenumber k� of the light field. The transverse Laplacian )2

9 of the propaga-
tion operator acts at the modulated forward propagating wave EF and trans-
forms the induced phase profile into an amplitude modulation of the backward-
propagating field EB. The occurrence of this amplitude modulation can also be
explained in terms of the so-called Talbot effect. Talbot discovered that a phase
profile with a given spatial wavenumber transforms itself into the identical am-
plitude modulation, if the light wave propagates freely over a characteristic
length, the Talbot length [24, 25].

Forward and backward-propagating light fields superimpose within the non-
linear medium. The resulting light field interacts with the nonlinear medium
and changes its refractive index depending on the intensity distribution of the
light field. If we assume the nonlinear medium to be optically thin, the non-
linear optical response and diffraction occur spatially well separated, and there-
fore both effects can also be treated separately in the experimental setup and
the theoretical model. The evolution of the transverse optical field is observed
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Fig. 23.1 Scheme of optical single feedback:
A planar light wave Ein is modulated in its
phase by a nonlinear optical medium EF .
EF diffracts (8) and is reflected at a mirror.
After propagation the intensity of the field
EB is modulated. Interaction with the non-

linear medium modifies the initial phase
modulation of Ein. The feedback results in
spontaneous formation of spatial optical
structures, which are also observed in the
optical field Eout.



by extracting a fraction of the feedback wave Eout at the feedback mirror. Com-
monly the equivalent of light field’s intensity distribution at the reentrance face
of the nonlinear medium (near field), which propagates in the backward direc-
tion, or its spatial Fourier transform (far field) is observed.

Increasing the control parameter of the system, which is the light intensity in
our introductory example, up to a threshold, the primarily stable homogeneous
planar wave solution becomes modulationally unstable against spatial noise at a
critical spatial wavenumber kc [1]. Typically the critical wavenumber kc is the
same which appears in the Talbot effect-related self-imaging [4]. In the Fourier
space, the critical wavenumber kc represents a ring structure centered around
the zero-order plane wave solution. Generally, distinct spatial modes start to
grow from noise at the critical kc ring and thus not the whole kc ring becomes
exited at the threshold. As a consequence, different spatial pattern and struc-
tures evolve spontaneously in the transverse plane of the light field. Most com-
monly hexagonal patterns are observed just above the threshold.

Inspired by Firth’s pioneer work the spontaneous formation of transverse pat-
tern has been studied experimentally and theoretically in many different config-
urations in the following decade [1–22]. Among the nonlinear materials investi-
gated are atomic vapors [9, 12], organic materials [26], liquid crystals [4, 27],
photorefractive crystals [13, 15], and so-called LCLVs [5, 8]. Meanwhile, these
systems are well studied, models for the systems exist and the patterns which
evolve in certain parameter regimes are quite well known. Here, we will restrict
ourselves to the discussion of two distinct model systems at which we will ex-
emplary demonstrate different control methods for spatially extended systems.
The first model system uses a photorefractive crystal and the second a LCLV as
nonlinearity. Besides the high nonlinearities observed in both systems, the
photorefractive system has been chosen as an example for a nonlinearity which
is based on a coherent mechanism and because of the high diversity of ob-
served periodic patterns. The photorefractive effect is a bulk effect and thus
propagation must be included in the theoretical description. The LCLV nonlin-
earity of the second model system can in contrast be considered as optically
thin and its nonlinearity is based on an incoherent mechanism. The advantages
of the LCLV model system are the high aspect ratios of the observed patterns,
which also allow for the observation of disordered pattern domains and defects.
In LCLV systems thus optical turbulence can easily be induced and furthermore
a bistability allows for the observation of solitary structures.

23.2.2
The Photorefractive Single-Feedback System – Coherent Nonlinearity

Spontaneous formation of optical pattern in a single-feedback experiment with
the coherent photorefractive nonlinearity has been first reported by Honda in
1993 [13]. In contrast to the Kerr-slice medium considered in Section 23.2.1, a
photorefractive crystal cannot be assumed to be optically thin, but must be
treated as a bulk medium. Therefore, nonlinear wave propagation within the
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nonlinear medium has to be taken into account in our consideration, which
causes additional nonlocal effects and likely contributes to the richness of opti-
cal structures observed in this system [15]. In experiment iron-doped KNbO3,
crystals are used most commonly as photorefractive material, but spontaneous
pattern formation in single-feedback configuration has also been observed in
BaTiO3 and LiNbO3 [28, 29].

The experimental setup of the photorefractive single-feedback system, which
is depicted in Fig. 23.2, follows along the line of the principle described in the
previous section. The iron-doped photorefractive crystal is illuminated by a fo-
cused laser beam. After the crystal, a feedback assembly with a moveable mirror
(M2) follows. Between the feedback mirror and photorefractive crystal, an opti-
cal 4f -configuration consisting of the lenses (L4) and (L5), which all-optically
performs a spatial Fourier transformation and its reverse operation at the speed
of light, is inserted. Besides providing a Fourier plane (F) at the focal point be-
tween both the lenses allowing for operations in the Fourier space, this config-
uration creates a virtual feedback mirror. Thus the configuration allows to posi-
tion the image of the feedback mirror inside the crystal, which would be impos-
sible if the mirror (M2) was placed directly behind the crystal. A frequency-
doubled Nd :YAG laser operating at 532 nm cw (output power: 100 mW) is used
as a light source. A half-wave-retardation plate in combination with a polarizing
beam splitter allows the variation of the input intensity, while an optical diode
(OD) prevents back reflections into the laser. The optical beam is spatially high
pass filtered between the lenses (L1 and L2), thus creating a uniform Gaussian
beam profile. The lens L3 focuses the Gaussian beam into the photorefractive
crystal which is tilted by approximately 5: to avoid parasitic reflections at the
crystal faces. After passage of the feedback system, the evolution of the trans-
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Fig. 23.2 Experimental setup of the photorefractive single-
feedback system. The 4f -feedback arm projects a virtual mir-
ror (M2) in a distance d�2 of the crystal exit face. Additionally
the Fourier plane is accessible in the feedback arm (F).
OD: optical diode; M: mirrors; L: lenses; BS: beam splitter;
��2: half-wave plate.



verse intensity distribution is analyzed using a fraction of the beam, which is re-
flected at BS1. For the purpose of beam analysis, the near field (beam profile at
the exit face of the crystal) and the far field (Fourier transform) can be imaged
to a CCD camera. The intensity of the backward-propagating light field can be
measured with a photodiode.

23.2.3
Theoretical Description of the Photorefractive Single-Feedback System

Within the photorefractive crystal, the forward- and backward-propagating light
fields interfere coherently. The resulting spatially inhomogeneous intensity dis-
tribution induces the excitation of charge carriers into the conduction band of
the photorefractive crystal. These charge carriers are internally redistributed by
different mechanisms such as drift and diffusion. The redistribution in turn re-
sults in the creation of a space charge electrical field, which is transformed into
a modulation of the refractive index via the linear electrooptic effect [30]. Thus,
the interference of the light fields results in a modulated refractive index due to
the photorefractive effect, which actually behaves like a saturable Kerr nonlinear-
ity. The intensity dependence of the refractive index modulation derives itself
from the light-induced excitation of charge carriers, while the saturability of the
nonlinearity is caused by the restricted number of excitable charge carriers. The
action of the photorefractive effect can be interpreted in terms of a wave mixing
process, which allows for energy exchange between the incident beams
mediated by the refractive index grating due to a phase shift between the inter-
ference and the refractive index grating. This wave-mixing process can be de-
scribed by two differential equations for the light fields A1�A2 in SVE approxi-
mation. A third equation describing the temporal evolution of the complex am-
plitude of the refractive index grating Q completes the model of the photore-
fractive system [31, 32].

�zA1 � if;9A1 � 	QA2�

�zA2 � if;9A2 � Q�A1�

��I��tQ �Q � 	
A1A�2

�A1�2 � �A2�2
� �23�3�

In these equations, the propagation coordinate z is scaled by the crystal length
l, and the transverse Laplacian ;9 is scaled by the beam waist w0. � accounts
for the intensity-dependent relaxation time of the photorefractive effect. 	 is the
photorefractive coupling constant, which takes the role of the control parameter
in the system. Experimentally, the coupling 	 is modified by rotating the angle
of the linear polarization of the incident beam. Therefore, the projection of the
light field onto the c-axis of the photorefractive crystal and, i.e., the effective lin-
ear electrooptic coefficient is modified. According to the effective electrooptic

23 Pattern Control to Synchronization: Control Techniques in Nonlinear Optical Feedback Systems508



coefficient, the coupling between light field and refractive index modulation
changes.

23.2.4
Linear Stability Analysis

A linear stability analysis of the system, which was performed by Honda and
Banerjee [14] and extended by Schwab [15], yields the threshold condition for
the spatial modulational instability:

cos�wl� cos�kdl� � kdl
wl

sin�wl� sin�kdl� � 	l
2wl

sin�wl� cos�kdl�1� 2d�� � 0� �23�4�

with the normalized wavenumber kd � k2
x��2k0n0�, and the normalized position

of the virtual mirror d � n0l�l and wl �
�����������������������������
�kdl�2 	 �12 	l�2

�
, respectively. The ex-

perimental determination of the curve of marginal instability for a fixed propa-
gation distance d and the scaling of the critical wavenumber under variation of
d are discussed in Section 23.3.1. In Fig. 23.6 of this section, the theoretical
curve can also be found.

The most dominant pattern, which spontaneously evolves in experiment due to
the spatial modulational instability, is a hexagonal pattern. However, more com-
plex patterns can also be observed, if the virtual image plane is moved inside
the crystal (	0�8 � d � 	0�3). Typical near and far field images of the experimen-
tally observed patterns are shown in Fig. 23.3. From the viewpoint of application it
would now be interesting to access the whole range of system inherent pattern so-
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Fig. 23.3 Pictures of spontaneous patterns
in the photorefractive single-feedback sys-
tem: (a) hexagonal pattern, (b) square pat-
tern, (c) squeezed hexagonal pattern, and
(d) dodecagonal pattern. The upper row

shows the far field and the lower row shows
the near field of the patterns. Images (b)–(d)
are taken in the multiple pattern region
(	0�8 � d � 	0�3). Pictures courtesy of
M. Schwab.



lutions. Thus, suppressing the predominant pattern solutions in favor of stabiliz-
ing other unstable system inherent pattern solution is of interest. In a more fun-
damental approach control can also serve to investigate the nonlinear process re-
sponsible for self-organized pattern formation in experiment. But before we go on
to discuss application of such control methods at spatially periodic pattern by
using Fourier techniques, we will first introduce the second model system.

23.2.5
The LCLV Single-Feedback System – Incoherent Nonlinearity

The second single-feedback model system, at which we will study spatiotempo-
ral optical control techniques, uses a so-called LCLV as nonlinearity [5–8]. In
contrast to the previously discussed system, the feedback mechanism in this
system acts incoherently. A LCLV is a hybrid device and functions as an opti-
cally-addressable spatial light modulator (OASLM). It consists of two functional
layers – namely a readout and a writing side – and provides a saturable Kerr
nonlinearity. The LCLV transforms an intensity distribution Iw�x� y� incident
onto its writing side, which consists of a photoconductive layer, into a modula-
tion of the extraordinary polarization of the refractive index n�x� y� of the read-
out side, which consists of a liquid crystal layer [33]. Both functional layers of
the device are separated by a dielectric mirror. Thus, a planar wave incident
onto the readout side of the LCLV is reflected at the internal mirror and leaves
the LCLV in the backward direction, while its phase distribution ��x� y� is
modulated in dependence on the writing intensity Iw according to

��t�	 l2)2
9�� � � �max 1	 tanh2 S�Iw�Uext�� �) *

S�Iw�Uext� � S0
�1Iw � 1
�2Iw � 1

Uext 	Uth

U0
� �23�5�

This model equation for the nonlinear response of the LCLV reproduces the
Kerr like behavior of the nonlinearity [5, 34]. A restricted spatial resolution of
the device has been taken into account as an effective diffusion length l, while
the dynamic behavior of the nonlinearity is included in the first temporal deri-
vative of the phase as an effective response time �. Uext is an AC bias voltage,
which is applied at the LCLV over transparent electrodes. �max, S0, �1, �2, Uth

and U0 are device-specific fit parameters.
Due to the internal reflection of the planar readout wave, the experimental

realization of the LCLV single-feedback scheme, which is depicted in Fig. 23.4,
is not as straightforward as in the previously discussed experiment.

A planar input wave (Ep) from a cw Nd :YAG laser (output power 100 W) is
expanded. It enters the LCLV, where it experiences a phase modulation ��x� y�
according to Eq. (23.6) and leaves the device after reflection at the internal mir-
ror in the backward direction. A fraction of the phase-modulated pump wave is
then reflected into the feedback loop by beam splitter (BS1), where the optical
wave propagates freely over a distance L and i.e. experiences diffraction. Similar
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to the description in Section 23.2 the free-space propagation can be modeled ac-
cording to

Iw � exp
	iL
2k�

)2
9

 �
Be	i� � C
� �

Ep

���� ����2� �23�6�

In addition to the propagation operator (exp 	iL
2k�
)2
9

� �
) modulations of the polari-

zation state of the feedback wave induced by the birefringent liquid crystal layer
and a polarizer (P) in the feedback loop B�C� � as well as the nonlinear phase
modulation e�	i�� must also be included [5]. B and C are amplitude factors,
which account for the polarization effects and are derived from a Jones formal-
ism [5]. The intensity distribution Iw�x� y� resulting from free-space propagation
is imaged to the photoconductive writing layer of the LCLV by different optical
components like lenses (L), mirrors (M), a dove prism (D), and a penta prism
(PP). In rotating the dove prism (D) a rotation of the intensity distribution
Iw�x� y� with respect to the phase modulation ��x� y� induced by misaligned
mirrors can be balanced. The penta prism serves to create an even number of
reflections. At the photoconductive writing layer of the LCLV the intensity distri-
bution incoherently induces the modulation of the liquid crystal’s refractive in-
dex, thus closing the feedback loop. A fraction of the feedback beam is extracted
at a beam splitter (BS2) for the detection of near and far field.

23.2.6
Phase-Only Mode

Like in the example of the Kerr nonlinearity in Section 23.2.1, the control param-
eter of the LCLV system is the input intensity. Analytic solutions for the system do
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Fig. 23.4 (a) Schematic setup of the LCLV single-feedback sys-
tem. Please refer to the text for a detailed description. (b) In
polarization mode (C �� 0) a bistability between a dark uni-
form and a pattern bright solution is observed, which enables
the formation of solitary structures.



not exist. The linear stability analysis for phase-only modulation (i.e., if C � 0 and
B � 1 in Eq. (23.6)) however yields for the curve of marginal instability:

 sin
L

2k�
k2

 �
	 l2k2 	 1 � 0� �23�7�

with k being the spatial wavenumber of the noise, and  the sign of the nonlin-
earity. A positive sign of  indicates that the nonlinearity acts self-focusing,
while a negative sign indicates a self-defocusing nonlinearity. A symmetry in
the model equation allows us to switch the character of the nonlinearity by
using either positive or negative propagation lengths L. Similarly to the photore-
fractive experiment, a negative propagation L can experimentally be realized by
projecting a virtual image plane to the writing side of the LCLV. At threshold of
the modulational instability, hexagonal patterns are generally observed in phase-
only (C � 0) mode (Fig. 23.5 (a)). Even though numerical analysis also predicts
the presence of other pattern solutions like squares and stripes, these solutions
are experimentally less stable in comparison to hexagons and thus are typically
not observed [5, 7]. If the pump intensity is raised, the patterns become increas-
ingly disordered (Fig. 23.5 (b)), as the whole critical kc wave vector ring becomes
excited instead of the distinct angular modes of a single hexagon orientation.
Consequently, higher order wavenumbers k�n�c become modulationally unstable.
Finally, if the laser intensity is increased further additionally a dynamic instabili-

23 Pattern Control to Synchronization: Control Techniques in Nonlinear Optical Feedback Systems512

Fig. 23.5 Spontaneous pattern in the LCLV
system: (a) hexagonal pattern
(Iin � 2 Ithr � 200 �W�cm2�, (b) disordered
static hexagonal pattern(Iin � 4 Ithr�, (c) spa-
tiotemporally chaotic state (Iin � 6 Ithr�, and
(d) interacting solitary structures. Images in
the upper row depict the near field; the low-
er row shows the far field). Images (a)–(c)

have been taken in the pure phase modula-
tion mode (C � 0) and with defocusing non-
linearity (L � 30 cm). Image (d) is taken in
polarization mode (C �� 0) with a focusing
nonlinearity (L � 	10 cm) (images (a)–(c)
printed with kind permission of E. Benkler, R
Neubecker, © Tectum Verlag [7]).



ty of the structures sets in, which results in spatiotemporally complex patterns
(Fig. 23.5 (c)). Even though yet no rigid theoretical definition for spatiotemporal
chaos exists to our knowledge, in the literature these system states have been
denoted as spatiotemporal chaos or optical turbulence [35–37].

23.2.7
Polarization Mode

If C �� 0, a modulation of the polarization state is induced on top of the modu-
lation resulting from the nonlinear phase shift �. In combination with a polar-
izer in the feedback loop, the modulation of polarization state results in an
additional modulation of the feedback intensity Iw. In a space-independent nota-
tion, Eq. (23.6) can be rewritten as

Iw � � 1� 
 cos�0�Ip
� �

�0 � �max 1	 tanh2 S�Iw�Uext�� �) *
� �23�8�

where � � B2 � C2 and 
 � 2B2

�
. Induced by the cos-term in Eq. (23.9), which de-

pends on the external bias voltage, a bistability of the writing intensity Iw�Ip�
can be observed in the system (see Fig. 23.4 (b)). Spontaneous formation of
localized structures is observed [5, 6] at parameters where the system shows
bistability. An example of these spontaneously forming bright localized struc-
tures is depicted in Fig. 23.5 (d). Commonly these spatially localized objects are
also referred to as solitary structures or dissipative feedback solitons [38].

23.2.8
Dissipative Solitons in the LCLV Feedback System

In the most rigid definition a soliton is the solution of an integrable nonlinear
wave equation. Due to the fact that these analytic solutions can interpreted as
nonlinear objects, which obey to a law of conservation, the shape of these ob-
jects is preserved during propagation and even when they interact. However,
the two-dimensional nonlinear optical wave equation is not integrable and thus
analytic solutions do not exist. None the less spatial optical solitary solutions
are observed, which form due to a balance between diffraction and nonlinear
self-focusing. Thus their shape is preserved during propagation. Due to the non-
integrability of the wave equation generally spatial optical solitons can interact
with each other and do not obey to a law of conservation. These so-called spatial
optical solitons either form, when light propagates in single pass configuration
through a saturable nonlinear optical bulk medium [15, 39–41], or alternatively
they can form in nonlinear optical resonators [42, 43] or single-feedback systems
[5, 44–46], which is the case in the LCLV system discussed here. The single-
feedback solitons and cavity solitons [38] possess similar features, because be-
sides of the balance between nonlinear self-focusing and diffraction also a bist-
ability is commonly necessary for their formation. Bright solitary structures in
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cavities or single-feedback configuration are solutions of the systems, which es-
tablish an interconnection between a uniform dark stationary solution and a
modulationally unstable bright solution. Due to their binary features and their
robustness against perturbations solitary structures are often viewed as the natu-
ral information bit of nonlinear optical systems.

Without control, however, these localized states experience mutual interac-
tions, drift spontaneously and due to the lack of a law of number conservation,
they also can spontaneously merge and disappear. The mutual interactions of
neighboring solitary structures induce a locking of the spots at characteristic in-
teraction distances [45] and instead of formation at random positions in the
transverse plane trapping of solitary structures to favorite pinning positions in-
duced by system inhomogeneities has been reported [47]. These spontaneous ef-
fects can be explained by phase gradients of the feedback wave, as theory pre-
dicts a movement of localized states toward local extrema of these phase gradi-
ents [38]. In any case these interactions are hindering for the application of lo-
calized states in application and thus demand for methods of control. Since the
main ideas, important for understanding the spontaneous formation of spatio-
temporal structures in the model systems, have been treated we now turn to
the discussion of control schemes for spatiotemporal structures.

As we have pointed out in the introduction the motivation for implementing
control ranges from suppression of spatiotemporal dynamics to the addressing
of a predefined target state, while ideas for potential applications have been the
driving force for research. Without the intention of completeness we will in the
following discuss the use of several exemplary control methods at the model
single-feedback system with the photorefractive and the LCLV nonlinearity,
which we have introduced above.

23.3
Spatial Fourier Control

Starting point for our discussion of controlling spatiotemporal pattern will be
the application of invasive and noninvasive Fourier control methods, which have
been obtained at the photorefractive model system. Fourier control will be used
in the photorefractive experiment to experimentally analyze general properties
of the nonlinear system behavior such as the curve of marginal instability and
to stabilize other unstable periodic pattern solutions. Then we will introduce a
persistent invasive forcing method applied in real space, which was used at the
LCLV model system to control solitary solutions and periodic pattern. Finally
controlling spatiotemporal chaotic states in terms of spatiotemporal synchroni-
zation will be introduced.

Pioneer work in controlling nonlinear spatially-extended optical systems has
been accomplished by Fourier control methods [7, 15, 48–63]. In particular, the
application of Fourier methods is excellently suited for controlling periodic pat-
tern, because periodic patterns consist of specific spatial modes in the Fourier
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space. A hexagonal pattern for example may consist of only six excited angular
modes located at the critical kc-ring. As Fourier control can be considered as the
simplest method for controlling spatially periodic pattern and thus will be our
starting point for discussing different control methods. The basic idea of spatial
Fourier filtering has been proposed first in theoretical paper by Martin et al.
[48, 49]. A control arm is added to the single-feedback scheme for the imple-
mentation of the suggested control. A fraction of the signal of the feedback
experiment is coupled into the control arm, where a 4f -configuration performs
a Fourier transformation +7 and its reverse operation +7 	1. A filter mask,
which defines a target state, is placed at the Fourier plane between the two
lenses. The resulting control signal is superposed to the undisturbed single-
feedback wave. Depending on the phase relation between the control wave and
the feedback wave the superposition acts additive or subtractive. Both in-phase
(positive) superposition, which induces an invasive control, and out-of-phase
(negative) superposition, which acts as a noninvasive control, create a control,
which suppresses solutions deviating from the target state and thus enhances
the wanted spectral components of the target geometry. Mathematically the ac-
tion of the Fourier control can be written in terms of the backward-propagating
light field EB as

E�B � �1! s+7 	1<+7 �EB� �23�9�

where < represents the spatial Fourier control mask and s the strength of con-
trol. Most often the Fourier masks are amplitude masks, which block or trans-
mit certain spectral components in space, depending on the realization of either
positive or negative control. If the control scheme is switched from positive to
negative control also the design of the Fourier filters must be inverted in order
to address identical target states. Experimentally the absolute value of the con-
trol strength s can experimentally defined as the intensity of the control signal
Ic divided by the intensity in the feedback arm If (�s� � Ic

If
).

In selecting certain target states Fourier control can now serve to stabilize
otherwise unstable or noisy pattern solutions. By addressing otherwise not ac-
cessible system states Fourier control can also contribute to a more detailed un-
derstanding for general processes involved in the spontaneous formation of spa-
tial pattern. By this means Fourier control helps in gaining information about
otherwise inaccessible or noisy system states. At the model system of the photo-
refractive single-feedback experiment we will now discuss at the experimental
measurement of the curve of marginal instability and at the stabilization of un-
stable pattern solution how these aims can be achieved by means of such Four-
ier methods.
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23.3.1
Experimental Determination of Marginal Instability

The determination of the curve of marginal instability by application of a Four-
ier control method has first been suggested by Pesch et al. for a sodium vapor
single-feedback experiment [62], and a similar method was then realized in the
photorefractive system [63]. The prediction for the onset of modulational insta-
bility of the photorefractive system, which has been derived from a linear stabil-
ity analysis (see Eq. (23.5)) can thus be experimentally verified [63]. For this
purpose, a Fourier filter was inserted in the feedback arm at the Fourier plane
(F) (see Fig. 23.1). The control scheme thus modifies the backward-propagating
light field EB according to

E�B � �+7 	1<+7 �EB� �23�10�

with the Fourier mask < depicted in the insertion of Fig. 23.6 (b). Thus, the
control invasively restricts the feedback signal to the modes transmitted by the
Fourier mask and the control strength s is fixed to unity.

The Fourier filter fulfils two tasks: Firstly, the slit mask filter confines the sys-
tem to one dimension. Secondly, a specific wavenumber, at which the threshold
of marginal instability is to be measured, is selected by a second filter. The se-
lected wavenumber can be altered by laterally shifting both filters in respect to
each other. The intensity of the selected sideband can now be monitored by a
photodiode, while the stress parameter of the system, the photorefractive cou-
pling parameter 	l, is gradually increased. As soon as the coupling parameter
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Fig. 23.6 (a) Experimental measurements of
the threshold of modulational instability
superposed to analytical values in the photo-
refractive system. The mirror position at the
back face of the crystal (outside multiple
pattern region). Theoretical prediction and
experimental shape of the LSA curve qualita-
tively agree (for a detailed discussion see

the text). (b) Wavenumbers of the threshold
minima plotted over the mirror distance d.
Disagreements between theory and experi-
ment are found mainly in the multiple pat-
tern region (	1�5 � d � 0) [63]. Reprinted
with permission from O. Kamps, P. Jander,
C. Denz, Phys Rev. E, 72, 016215 (2005).
© 2005 by the American Physical Society.



reaches the threshold of modulation instability the intensity of the particular
side band will start to grow. In order to track the whole curve of marginal insta-
bility, the procedure must be repeated at all available wavenumbers. An example
of the obtained thresholds in dependence of the normalized transverse wave-
number at a distance of the virtual feedback mirror of d � 0 is shown in Fig.
23.6 (a). The horizontal line in the plot denotes the maximum coupling strength
	l, which was provided by the photorefractive crystal. As the absolute value of
	l0 cannot be determined, the experimental data are calibrated to the absolute
minimum of the numerical data, to allow comparison between numerical and
experimental results. Qualitatively the shape of the LSA curve is confirmed in
the experiment. However, compared to the maximum photorefractive coupling
strength many detected modes should not have been excitable. The reason for
this observation is not yet clear.

To clarify the influence of the virtual mirror position, also the first two wave-
number minima of the threshold have been plotted against the mirror position
d (see Fig. 23.6 (b)). The black squares indicate the measured values while the
lines represent the theoretical curves derived from Eq. (23.5). This plot also re-
veals that the symmetry of the curves in respect to the center of the crystal is
broken in the experimental data. While the analytical threshold decreases from
the crystal center toward the back face, the measured values increase. Wave-
numbers larger than kdl � 13 were experimentally not accessible. The measured
values near the lower curve for d � 	0�6 belong to a new minimum that ap-
pears in this parameter region. At growing distance from the crystal, the experi-
mental data approach the theoretical curves. In these regions, the observed pat-
tern sizes match the predictions from the linear stability analysis. Thus the
method enables to compare theoretical prediction to the actual experimental be-
havior. Deviations between theory and experiment, e.g., the asymmetric behav-
ior near the crystal center, are topics for ongoing research and are investigated
in respect of their consequences for the formation of nonhexagonal patterns in
this system [63]. The use of Fourier methods not only allows for the measure-
ment of the onset of modulation instability, which we have shown here, but also
the bifurcation diagram of unstable solutions such as square and roll solution
has been tracked experimentally by monitoring the amplitude of the evolving
pattern versus the increased control parameter pump intensity by using a non-
invasive control scheme [59].

23.3.2
Stabilization of Unstable Pattern

Control in the Fourier space cannot only be used to track the curve of marginal
instability but also enables the stabilization of otherwise unstable pattern solu-
tions [7, 15, 53–61]. Fourier control, in intention of stabilizing optical pattern,
can easily be implemented with a scheme similar to the method for determin-
ing the curve of marginal instability.
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23.3.3
Direct Fourier Filtering

Instead of the Fourier filter shown in Fig. 23.5 different Fourier masks, which
select target geometries like a hexagon, a square or a stripe pattern, are directly
placed into the feedback loop at the position of the Fourier plane (F) for this
purpose. Examples of the filter design are shown in Fig. 23.7. As before the
nonlinear system thus is restricted to the modes defined by the target state and
therefore the control method acts invasively. The blocking of deviations from
the target state can be rewritten in terms of a control strength of s � 1, and
thus must be considered as a comparatively rigorous approach. Applying control
directly in the feedback arm, it was possible to stabilize the hexagon, the square,
and the stripe solution in the system [53, 54].

23.3.4
Positive Fourier Control

However, the stabilization of such unstable pattern geometries can also be
achieved, if the proposed scheme [48, 49] with separate control and feedback arms
(Eq. (23.9)) is implemented. Experimentally this can be realized, if a control arm is
added to the feedback arm (see Fig. 23.7). In combination the control arm and the
feedback arm form a Michelson interferometer. Depending on the path difference
between both arms the phase difference between both optical waves varies from
in-phase superposition to out-of-phase subtraction and thus also the character of
the control method changes from positive invasive closed-loop control (Fourier
control) (s � 0) for in-phase superposition to negative noninvasive closed-loop con-
trol (s � 0) for out-of-phase superposition. The separation of control from the sin-
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Fig. 23.7 Setup of the photorefractive sys-
tem with Fourier control. To the single-feed-
back arm a control arm is added (M3). At
the Fourier plane (F) Fourier filters are
placed. The design of filters is depicted in
the insertion. The Fourier filter define a tar-
get state. Control arm and feedback arm in

combination form an optical Michelson in-
terferometer. Depending on the phase rela-
tion between both arms positive (s � 0) or
negative control (s � 0) can be realized.
Thus, the Fourier modes transmitted by the
Fourier filter are either amplified or sup-
pressed in the feedback system [15].



gle-feedback system in this setup also allows us to monitor strength and spatial
distribution of the activated control independently from the feedback.

The positive Fourier control scheme (s � 0) was implemented at a system
state where only hexagonal pattern was observed in the uncontrolled system to
stabilize unstable pattern solutions. Like in the control method applied directly
in the control arm, patterns with otherwise unstable square and stripe geometry
have successfully been stabilized with positive Fourier control [15, 60], even
though positive control does not restrict the system to the target modes, but
only amplifies the modes of the target modes in respect to other possible
modes. Experimental results are shown in Fig. 23.8 (a). In the case of the con-
trol of a hexagonal pattern, the action of control can be observed in the rotation
of the hexagonal pattern with respect to the uncontrolled hexagons. If one uses
the Fourier masks used for positive control (see insertion in Fig. 23.7) in the
noninvasive negative control scheme (s � 0), it will not be possible to modify
the stable pattern symmetry.

23.3.5
Noninvasive Fourier Control

The hexagonal mask used before for positive control has however been imple-
mented in a negative control scheme. The application of the control results in
the suppression of the hexagon modes in the white areas of the mask. The
spontaneously forming hexagonal pattern was oriented at 30�. Application of
noninvasive Fourier control reorients the orientation of the hexagons and thus a
hexagon pattern at an azimuthal orientation of 0� evolve (see Fig. 23.8 (b)).
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Fig. 23.8 Experimental results of Fourier
control in the Michelson scheme. (a) Posi-
tive control (s � 0); right: near and far field
of a hexagonal pattern without control; cen-
ter: a slit mask establishes a pattern with
stripe geometry; left: control stabilizes a
square pattern. (b) Negative control (s � 0);
selection of the azimuthal orientation of the

hexagon. Originally the uncontrolled hexagon
was rotated by 30:. The control destabilizes
the modes at 30� and the hexagon reorients
in accordance with the orientation preferred
by the control. (Reprinted from Fig. 10.15 in
[15]). © 2003 Springer, Heidelberg, with
kind permission of Springer Science and
Business Media.)



The Michelson-type control scheme constitutes a smaller intrusion into the
single-feedback system compared to the direct Fourier control method described
above, because control strengths (�s� � 1) can be chosen. If the Fourier filters
used for positive control are inverted, i.e., if the black areas, which block the
light, are made transparent and vice versa, the same result in stabilizing un-
stable pattern can also be obtained with the noninvasive Michelson-type control
experiment. This has, e.g., been successfully demonstrated in the LCLV experi-
ment [7, 56–59]. The noninvasive character of the control scheme has been
proven by monitoring the amplitude of the control signal, while different un-
stable pattern solutions were stabilized [57]. The experiments show the pre-
dicted vanishing of the control signal on reaching the target state, if one ne-
glects a remanent noise level control signal. The remanent noise level was de-
pending on the controlled pattern symmetry between 1� and 8� of the original
level of the control signal. Remarkably, the control strength needs to be in the
order of s � 0�4 only [57]. The negative control can be used to annihilate defects
in the spontaneous pattern geometry and even spatiotemporal chaos can be
eliminated [58]. Fourier methods even allow for the control of the interactions
between solitary structures [47, 64]. Therefore, Fourier control demonstrates to
be a powerful tool that enables addressing and experimental analysis of other-
wise not accessible states of a nonlinear optical system.

23.4
Real-Space Control

Another possibility for controlling spatial structures is the implementation of
real-space control schemes. Real-space control is particularly useful, if a simple
representation of the target state in the Fourier space is not available. If the tar-
get state thus does not consist of a few characteristic modes in the Fourier
space or if the exact transverse position of the target state is of importance, real-
space control will be more advisable. In principle, real-space control can be im-
plemented easily in the same way as described above for Fourier control, if the
appropriate plane in real space is chosen for the position of a control mask and
if the design of the masks is suitably altered [65].

23.4.1
Invasive Forcing

For implementing control in real space, we will however take another approach
to control. For this purpose, we will realize a persistent external control. Yet,
such an external forcing has been mainly investigated in nonoptical context
such as convection pattern and in chemical reaction diffusion systems [66–74].
One and two dimensional as well as static and dynamic forcing schemes have
been applied to these systems. The real-space forcing here will be applied to the
LCLV system. This system is particularly well suited for the application of real-
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space forcing, because solutions, such as solitary structures and periodic pat-
terns with defects, which demand for absolute position control and which can-
not represented in simple Fourier modes, exist in these systems. In the LCLV
single-feedback experiment such a forcing scheme can be either realized by add-
ing an offset intensity distribution to the feedback or by inducing a prephase
modulation in the pump beam [75–77]. In more detail, we will here refer to re-
sults obtained with the amplitude method.

The forcing scheme used in the LCLV experiment is shown in Fig. 23.9. As
the nonlinearity LCLV responds to an incoherent intensity distribution, plain
white light can simply be used for this purpose. The spatial distribution of forc-
ing is designed at a computer and a LCD-data projector (DP) accordingly gener-
ates the white light intensity distribution Iforcing�x� y� t�. At the beam splitter
(BS2) the forcing intensity distribution is incoherently added to the signal of
the single-feedback system. The projecting system, which images the intensity
distribution to the photoconductive layer of the LCLV, consists of the lenses L3
and L4. At the LCLV’s writing side the forcing signal acts as an offset of the
writing intensity Iw . To model the forcing Iw in Eq. (23.6) thus simply must be
replaced by the total intensity

Itot�x� y� t� � Iw�x� y� t� � Iforcing�x� y� t�� �23�11�

The effect of the forcing onto the feedback system is twofold. Firstly the offset
intensity acts similarly to the external bias voltage (Uext in Eq. (23.6)) and i.e.
the operation point of the nonlinearity is shifted locally [5]. Secondly, the addi-
tional intensity distribution Iforcing induces an offset in the nonlinearly induced
phase distribution � of the feedback wave. Thus, a similar effect like a phase
modulation of the pump beam can be achieved [77]. Different spatial intensity
distributions of the forcing have been used in the LCLV experiment. In more
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Fig. 23.9 Scheme of the experimental setup with forcing.
A forcing input is created with a data projector (DP) as an
incoherent white light intensity distribution. The forcing input
is added to the feedback signal by projecting it to the photo-
conductive side of the LCLV with a lens (L4).



detail, we will now discuss how the forcing can control the interaction and spa-
tial position of localized structures.

23.4.2
Positioning of Localized States

As we have pointed out in Section 23.2.5, the behavior of dissipative solitons is
determined by mutual interactions. For potential application of these binary
nonlinear states a control must be implemented, which allows for the address-
ing and positioning of these solitary states. The control i.e. must be able to con-
trol the particular position of the solitary structures and at the same time both
writing and erasure of individual solitary states must be feasible. Since the abso-
lute position of a solitary structure needs to be controllable for application a
real-space method is necessary. Using incoherent amplitude forcing promising
results have recently been achieved [76].

An image of uncontrolled localized structures can be seen on the right-hand
side of Fig. 23.10.

23.4.3
System Homogenization

In a first step toward controlling localized states the forcing with incoherent in-
tensity distributions has been used to balance experimental imperfections in the
spatial homogeneity of the LCLV’s nonlinear response. For this purpose, the
spatial distribution of the LCLV’s nonlinear sensitivity has been determined by
locally measuring the switching point of the bistability hysteresis. From this
measurement, a normalized spatial function of the sensitivity has been calcu-
lated. The inverted sensitivity function has been used as forcing. Thus, the bias
of the LCLV shifts the operation point of the nonlinearity in areas, which are
less sensitive, toward a higher sensitivity, such a homogenized spatial sensitivity
function of the nonlinear response is achieved. As a consequence, it has been
observed that at otherwise constant parameters (i.e., Iin�Uext constant), larger

23 Pattern Control to Synchronization: Control Techniques in Nonlinear Optical Feedback Systems522

Fig. 23.10 Static forcing acting at localized
states. Left: system without forcing; the lo-
calized structures interact and form at arbi-
trary favorite pinning positions; center: inten-
sity distribution of the forcing input; right:

the solitary structures are positioned by the
persistent external control (reprinted from
Fig. 8 in [76]). © 2005 Springer, Heidelberg,
with kind permission of Springer Science
and Business Media.



areas of the LCLV show bistability. Thus the formation of bistable localized
states was observed in a larger area than in the uncontrolled case [76].

23.4.4
Static Positioning

The aim however not only is to homogenize the spatial sensitivity function of
the nonlinearity but to achieve a control of the absolute position of localized
structures, of their interaction behavior and their movements. Also a robust
method for writing and erasing individual solitary structure is needed. Thus the
forcing method was extended in order to achieve a control of the absolute posi-
tioning of localized structures by introducing a periodic structure into the forc-
ing. For this purpose, a chessboard pattern, which varies from zero in black
areas to one in its bright fields, was multiplied used as forcing input. The ex-
perimental image (see right-hand side of Fig. 23.10) shows that the localized
structures now form in accordance with the chessboard matrix defined by the
forcing input. Remaining inhomogeneities reveal themselves for example in
two closely neighboring solitary structures in an area near the lower left hand
corner of the image. The solitary structures also do not perfectly align to the
grid, because the individual chessboard compartments leave some degree of
freedom for the position of solitary structures due to their size. Note that the
strength of the forcing in the image remains below the switching threshold for
the ignition of the solitary structures. The existence of localized states thus is
enabled, but they do not ignite spontaneously, instead they have been addressed
by shining a broad addressing light pulse onto the photoconductive writing side
of the LCLV. Thus, the action of persistent control can be interpreted as an arti-
ficial selection of favorite trapping positions for the formation of the spatial soli-
tary structures, while in the uncontrolled system trapping spontaneous pinning
positions has been observed [47].

23.4.5
Addressing and Dynamic Positioning

If the pump intensity level from the laser is chosen just below the parameter re-
gion of bistability, in contrast to the previous experiment localized states cannot
exist due to the lack of bistability. The addition of the spatial forcing distribution
at an appropriate strength can in this case shift the system’s local operation
point into the bistability region, while still localized states cannot form sponta-
neously. If another local or nonlocal intensity distribution is added, we only ob-
serve ignition of solitary spots at positions where the forcing input and addi-
tional switching intensity add up. Solitary states do not form at the dark areas
of the forcing input and at positions not illuminated by the additional address-
ing intensity distribution. Thus, this situation can be interpreted as the realiza-
tion of an all optical logical and operation. Furthermore, if we locally decrease
the intensity in the bright regions of the forcing input, we observe that individ-
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ual localized structures can also be switched off. In the LCLV setup yet erasing
of localized structures has only been demonstrated by superposing an coherent
addressing beam, which was � out of phase with the feedback [78, 79]. There-
fore, in the specific setup a previously not accessible incoherent erasure method
has been demonstrated. A complete addressing scheme using incoherent
beams, which allow for writing and deletion of solitary structures in a robust
manner, can be implemented with this method. In the same setup also a movie,
which shows a moving chessboard pattern, has been used as a dynamic forcing
signal.

The dynamic persistent control results in the movement of the solitary struc-
tures in the direction according to movement of the chessboard. The phase gra-
dient of the chessboard domain walls thus pushes the solitary structures into
the direction defined by the forcing movie [76]. The forcing method described
above thus allows for the static and dynamic control of absolute positions of so-
litary structures as well as for the implementation of a robust and complete ad-
dressing scheme for localized states. The invasive forcing scheme is a very gen-
eral method, which in principle also can be extended for the control of dissipa-
tive solitons in other nonlinear optical systems as for example optical cavities.

23.5
Spatiotemporal Synchronization

The fascinating phenomenon of synchronization is a completely different
approach of controlling spatiotemporal complexity [80]. The investigations on
chaos synchronization are also motivated in terms of potential applications be-
cause chaos synchronization can be used for chaos encrypted transmission of
data. A detailed introduction to the field and how synchronization can be uti-
lized for encrypted data communication can be found in Part IV on chaos syn-
chronization. While the synchronization of one-dimensional chaotic oscillators
[81] or networks of such oscillators [80] has been an emphasis of research activ-
ities, investigations on synchronization of spatially extended systems are still
comparatively rare. In optical system, however, the synchronization of spatio-
temporal chaos and the possibility for encrypted data transmission, besides one-
dimensional chaotic laser oscillators [82–84], has also been demonstrated in a
spatially extended ring cavity [85]. Also in LCLV systems first experimental in-
vestigations on synchronization of spatiotemporal chaos have been successfully
performed [75, 86–88].

23.5.1
Spatial Synchronization of Periodic Pattern

In the first approach to synchronization static spatial hexagonal pattern has
been used as forcing input to the LCLV single-feedback in the manner described
in the previous section. While the system was operated in phase-only mode at
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parameters where hexagonal patterns form spontaneously the wavelength of a
hexagonal forcing input was altered. The nonlinear system response to the hex-
agonal forcing was either a locking in orientation and symmetry or the creation
of a spatiotemporally turbulent state [75]. This behavior was interpreted as the
spatial counterpart of temporal synchronization, since the locking appeared only
at distinct resonant modes of the spatial wavenumber, such as kc� kc�

���
7

"
� kc�

���
3

"
and or higher order critical wavenumbers k�n�c . Also, when the stress parameter
and forcing strength were varied, the formation of Arnold tongues typical for
synchronization to external forcing signals in temporal nonlinear systems has
been reported [75]. As a measure of synchronization the temporal autocorrela-
tion of the optical and the symmetry of the hexagonal pattern have been taken.
Both measures are well suited to determine the degree of spatial synchroniza-
tion in the system.

23.5.2
Unidirectional Synchronization of Two LCLV Systems

Encouraged by the findings on static forcing, in the following also synchroniza-
tion of the full spatiotemporal dynamical systems has been investigated in pio-
neering experiments [86]. The single-feedback system is split into two separate
systems, (A) and (B), by introducing a mask with two apertures into the single-
feedback for this purpose. The scheme of the synchronization setup is depicted
in Fig. 23.11. Both systems run independently from each other, which has been
demonstrated in calculating their mutual correlation. Now the system A was
unidirectionally coupled to the system B. A fraction of the system A is imaged
into the system B using beamsplitters and a mirror. A combination of ��2-phase
retarder and a polarizing filter enables the modulation of the coupling strength
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Fig. 23.11 Experimental scheme for spatio-
temporal synchronization of separate LCLV
systems. Two aperture splits the single-feed-
back system into two independent systems:
(A) and Bob (B). A is unidirectionally
coupled to B by two beam splitters (BS) and

a mirror. The coupling strength can be ad-
justed by a combination of a ��2-plate and a
polarizer. The orientation of the polarizer en-
sures incoherent coupling. A uniform bias
intensity is added to A to operate A and B at
equal system states.



	 between the systems. The polarizer transmits the polarization which is per-
pendicular to the polarization state of the feedback wave in the system B. Thus
the coupling superposes incoherently to system B (IB� � IB � 	IA). To operate
the system at equal system states a uniform bias intensity, which had an inten-
sity equivalent to the intensity level of the coupling (IA� � IA � IBias,
IBias � 	�IA�x), has been incoherently added to system A. In experiment, the
coupling strength has been increased at different input intensities, which were
fixed during the increase of coupling.

The degrees of synchronization has been measured by calculating the spatial
correlation function �CAB� and the mutual information MAB of both system
states.

CAB��x��t� t� � �
�IA�x� t�� � ��IB�x 	 �x� t	 �t������������������������������������������

��I2
A�x� t��x��I2

B�x� t��x
� � �23�12�

MAB � HA �HAB with H �
�

p log2 p� �23�13�

where the entropies H depend on the (joint) probability distributions p of the
intensities IA and IB.

23.5.3
Synchronization of Spatiotemporal Complexity

The uncoupled systems do not show indications of synchronization. When the
coupling is increased, a significant rise in correlation (Fig. 23.12 (a)) and mutual
information (Fig. 23.12 (b)) functions are observed.

Due to experimental imperfections and remaining differences between sys-
tems A and B, the correlation coefficient does not reach unity. Later on at high-
er coupling strength the correlation on the mutual information even drops. We
assume the bias intensity for system A to be the reason for the drop, because it
likely does not perfectly balance the unidirectional coupling. The experiments
have been performed at pump intensities of Iin � 1�5Ithr ���, Iin � 3Ithr ���
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Fig. 23.12 Degree of spatiotemporal synchronization.
(a) Time averaged correlation coefficient �CAB�; (b) mutual
information MAB. For details see the text. Reprinted with per-
mission from R. Neubecker, B. Gütlich, Phys. Rev. Lett., 82,
154101-3. © 2004 by the American Physical society [86].



with a low-pass filter cutting wavenumbers just above kc and at Iin � 1�5Ithr �;�
with an open low-pass filter. The complexity of the system states in these mea-
surements increases from hexagons with disorder at Iin � 1�5Ithr (low-pass fil-
tered) over strongly disorder hexagons at Iin � 3Ithr (low-pass filtered) to optical
turbulence at Iin � 1�5Ithr (open low pass). In the same order also the maxi-
mum value of the correlation function and mutual information decrease. How-
ever, in every case a rise in correlation and mutual information indicating syn-
chronization are observable. Thus, even though experimental imperfections are
reported, nevertheless it can be concluded that to our knowledge first evidence
for spatiotemporal synchronization of spatiotemporally complex system states in
a nonlinear optical system has been found. After the achievement of the first ex-
perimental evidence on spatiotemporal synchronization, the current efforts aim
at improvement of the experimental conditions to reach higher degrees of spa-
tiotemporal synchronization. Particularly, the encryption method described in
[85] yet cannot be implemented due to the comparatively small level of synchro-
nization reported in the first experiment [86]. Since the primary results reported
here are only a starting point for investigations on spatiotemporal synchroniza-
tion rising levels of the synchronization degree needed for data encryption can
be excepted for the near future.

23.6
Conclusions and Outlook

In conclusion, we have demonstrated how different control techniques allow for
the control of the rich spatiotemporal structures observed in nonlinear optical
experiments. In detail we have shown the experimental analysis of a spatially
extended nonlinear system by means of Fourier control. Invasive and noninva-
sive control schemes have been presented, which enable the stabilization and
addressing of otherwise unstable pattern solutions, such even stabilization of
spatiotemporal chaos has been possible. Furthermore, we have shown a real-
space forcing method, which enables the position control as well as an complete
and robust addressing scheme for solitary structures, which allows for writing
and deleting of individual localized states. Applied to static periodic patterns,
the results on real-space forcing can be interpreted as spatial counterpart of syn-
chronization. In an extension of this method, we have also presented the first
experimental evidence on spatiotemporal synchronization of spatiotemporal
chaos in an optical system. The methods presented here surely contribute
greatly to the realization of the conceptual dream of “light guiding light”. Cur-
rently, this conceptual dream is also actively pursued in context of investigations
on periodically structured optical materials and in the field of photonic crystals.
At present, first investigations on the control of nonlinear optical systems by
using such periodically structured optical materials are under way and will in
the near future explicitly extend the capabilities of the already excellent control
methods presented here. However, the examples throughout this chapter show
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impressively how spatially extended systems have become a fascinating field of
nonlinear science with an overwhelming richness of phenomena, especially ex-
tended spatiotemporal patterns and localized states. In order to understand and
to influence these states, we have shown that a number of powerful novel tools
exists which pushes this area actively forward.
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Part VI
Applications to Electronic Systems





Eckehard Schöll

24.1
Introduction

In this chapter, we apply chaos control to modern semiconductor structures
whose structural and electronic properties vary on a nanometer scale. They pro-
vide an abundance of examples for nonlinear and chaotic dynamics and self-or-
ganized spatiotemporal patterns [1–3]. In these nanostructures nonlinear charge
transport mechanisms are given, for instance, by quantum-mechanical tunnel-
ing through potential barriers, or by thermionic emission of hot electrons which
have enough kinetic energy to overcome the barrier. A further important feature
connected with potential barriers and quantum wells in such semiconductor
structures is the ubiquitous presence of space charges. This, according to Pois-
son’s equation, induces a further feedback between the charge carrier distribu-
tion and the electric potential distribution governing the transport. This mutual
nonlinear interdependence is particularly pronounced in the cases of semicon-
ductor heterostructures (consisting of layers of different materials) and low-di-
mensional nanostructures where abrupt junctions between different materials
on an atomic length scale cause conduction band discontinuities resulting in
potential barriers and wells. The local charge accumulation in these potential
wells, together with nonlinear transport processes across the barriers have been
found to provide a number of nonlinearities and instabilities in the current–
voltage characteristics.

In particular, instabilities are very likely to occur in the case of negative differ-
ential conductance, i.e., if the current I decreases with increasing voltage U,
and vice versa. The actual electric response depends upon the attached circuit
which in general contains – even in the absence of external load resistors – un-
avoidable resistive and reactive components such as lead resistances, lead induc-
tances, package inductances, and package capacitances. These reactive compo-
nents give rise to additional degrees of freedom which are described by Kirch-
hoff’s equations of the circuit. If, for instance, a circuit is considered which con-
tains a capacitance C parallel to the semiconductor device, and a load resistance
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RL and a bias voltage U0 in series with the device (Fig. 24.1), then Kirchhoff’s
laws lead to

U0 � RLI0�t� �U�t� � �24�1�

I0�t� � I�t� � C
dU
dt

� �24�2�

Hence the temporal behavior of the voltage is determined by the circuit equa-
tion

dU�t�
dt

� 1
C

U0 	U
RL

	 I

 �
� �24�3�

If a semiconductor element with negative differential conductance is operated
in a reactive circuit, oscillatory instabilities may be induced by these reactive
components, even if the relaxation time of the semiconductor is much smaller
than that of the external circuit so that the semiconductor can be described by
its stationary I�U� characteristic and simply acts as a nonlinear resistor. Self-
sustained semiconductor oscillations, where the semiconductor itself introduces
an internal unstable temporal degree of freedom, must be distinguished from
those circuit-induced oscillations. The self-sustained oscillations under time-in-
dependent external bias will be discussed in the following. Examples for inter-
nal degrees of freedom are the charge carrier density, or the electron tempera-
ture, or a junction capacitance within the device. Equation (24.3) is then supple-
mented by a dynamic equation for this internal variable. It should be noted that
the same class of models is also applicable to describe neural dynamics in the
framework of the Hodgkin-Huxley equations [4].

The global I�U� characteristic must be distinguished from the local current
density j versus electric field F. Two important cases of negative differential con-
ductivity (NDC) are described by an N-shaped or an S-shaped j�F� characteris-
tic, and denoted by NNDC and SNDC, respectively. However, more complicated
forms like Z-shaped, loop-shaped, or disconnected characteristics are also possi-
ble [3]. NNDC and SNDC are associated with voltage- or current-controlled in-
stabilities, respectively. In the NNDC case the current density is a single-valued
function of the field, but the field is multivalued: the F�j� relation has three
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Fig. 24.1 A semiconductor device operated in a circuit with
load resistor R and capacitor C, and applied bias voltage U0.



branches in a certain range of j. The SNDC case is complementary in the sense
that F and j are interchanged. In the case of NNDC, the NDC branch is often
but not always – depending upon external circuit and boundary conditions –
unstable against the formation of nonuniform field profiles along the charge
transport direction (electric field domains), while in the SNDC case current fila-
mentation generally occurs, i.e., the current density becomes nonuniform over
the cross-section of the current flow and forms a conducting channel, a current
filament. The elementary structures which make up these self-organized pat-
terns are stationary or moving fronts representing the boundaries of the high-
field domain or high-current filament.

These primary self-organized spatial patterns may themselves become un-
stable in secondary bifurcation leading to periodically or chaotically breathing,
rocking, moving, or spiking filaments or domains, or even solid-state turbulence
and spatiotemporal chaos [1–3, 5–7].

Chaotic oscillations should be avoided for a reliable operation of semiconduc-
tor devices. Therefore, there is need for control of those. The important aspect
of chaos control is the emphasis of noninvasive control methods together with
the observation that chaos supplies a huge number of unstable states that can
be stabilized with tiny control power [8]. A particularly simple and efficient
scheme uses time delayed signals to generate control forces for stabilizing time
periodic states [9] (time delay autosynchronization, TDAS, or Pyragas control), see
Chapter 3. Within this approach, an intrinsically unstable periodic orbit is stabi-
lized using a feedback loop which couples back the difference of an output vari-
able at the actual time t and the same variable at a delayed time t	 �. This
scheme is simple to implement, quite robust, and has been applied successfully
in real experiments, e.g., [10–20], see Chapters 19, 21, 25–31, 36. An extension
to multiple time delays (extended time delay autosynchronization, ETDAS) has
been proposed by Socolar et al. [21], and analytical insight into those schemes
has been gained by several theoretical studies, e.g., [22–30], see Chapters 2–5, as
well as by numerical bifurcation analysis, e.g. [31, 32]. Such self-stabilizing feed-
back control schemes (time delay autosynchronization) with different couplings
of the control force have also been applied to spatiotemporal patterns resulting
from various models of semiconductor oscillators [33–41]. This is the topic of
the present chapter. We restrict ourselves to the stabilization of deterministic
chaotic spatiotemporal patterns. It should, however, be noted that time delayed
feedback control can also be applied to purely noise-induced oscillations and
patterns in a regime where the deterministic system rests in a steady state, and
in this way both the coherence and the mean frequency of the oscillations can
be controlled in various nonlinear systems [42–49], including semiconductor na-
nostructures [50, 51], see Chapter 11 of this book.

In the following, we use two paradigmatic models of state-of-the-art semicon-
ductor nanostructures (Fig. 24.2) where time delayed feedback control should be
easy to implement experimentally by a feedback loop in the electronic circuit:
(i) Electron transport in semiconductor superlattices shows strongly nonlinear

spatiotemporal dynamics. Complex scenarios including chaotic motion of
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multiple fronts and domains have been found under time-independent bias
conditions [52], showing signs of universal front dynamics [53, 54]. Un-
stable periodic orbits corresponding to traveling field domain modes can be
stabilized by time delayed feedback control. A novel control scheme using
low-pass filtering and allowing for control loop latency has been developed
[41].

(ii) Charge accumulation in the quantum-well of a double-barrier resonant-tun-
neling diode (DBRT) may result in lateral spatiotemporal patterns of the
current density and chaos [55]. Unstable current density patterns, e.g., peri-
odic breathing or spiking modes, can be stabilized in a wide parameter
range by a delayed feedback loop. The control domains of different control
schemes and the related Floquet spectrum are compared [40].

24.2
Control of Chaotic Domain and Front Patterns in Superlattices

Semiconductor superlattices [56] have been demonstrated to give rise to self-sus-
tained current oscillations ranging from several hundred MHz [57, 58] to 150
GHz at room temperature [59]. In any case, a superlattice constitutes a highly
nonlinear system [3, 60–62], and instabilities are likely to occur. Indeed, chaotic
scenarios have been found experimentally [63–65] and described theoretically in
periodically driven [66] as well as in undriven systems [52]. For a reliable operation
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Fig. 24.2 Schematic energy profiles of two
nanostructures. (a) Superlattice exhibiting
domain formation. The associated current
density (j) versus field (F) characteristic
shows negative differential conductivity
(NDC). The low-field domain corresponds
to sequential tunneling between equivalent
levels of adjacent quantum wells (low-field
peak of the j�F� characteristic), while the

high-field domain corresponds to resonant
tunneling between different levels of adja-
cent wells (high-field peak). (b) Schematic
potential profile of the double barrier reso-
nant tunneling structure (DBRT). EF and Ew

denote the Fermi level in the emitter, and
the energy level in the quantum well, respec-
tively. U is the voltage applied across the
structure.



of a superlattice as an ultrahigh frequency oscillator such unpredictable and irreg-
ular conditions should be avoided, which might not be easy in practice.

Here we focus on simulations of dynamic scenarios for superlattices under
fixed time-independent external voltage in the regime where self-sustained di-
pole waves are spontaneously generated at the emitter. The dipole waves are as-
sociated with traveling field domains, and consist of electron accumulation and
depletion fronts which in general travel at different velocities and may merge
and annihilate. Depending on the applied voltage and the contact conductivity,
this gives rise to various oscillations modes as well as different routes to chaotic
behavior [52, 54].

We use a model of a superlattice based on sequential tunneling of electrons.
In the framework of this model, electrons are assumed to be localized at one
particular well and only weakly coupled to the neighboring wells. The tunneling
rate to the next well is lower than the typical relaxation rate between the differ-
ent energy levels within one well. The electrons within one well are then in
quasiequilibrium and transport through the barrier is incoherent. The resulting
tunneling current density Jm�m�1�Fm� nm� nm�1� from well m to well m � 1 de-
pends only on the electric field Fm between both wells and the electron densi-
ties nm and nm�1 in the wells (in units of cm	2). A detailed microscopic deriva-
tion of the model has been given elsewhere [60]. A typical result for the current
density versus electric field characteristic is depicted in Fig. 24.2 (a) in the spa-
tially homogeneous case, i.e., nm � nm�1 � ND, with donor density ND.

In the following, we will adopt the total number of electrons in each well as
the dynamic variables of the system. The dynamic equations are then given by
the continuity equation

e
dnm

dt
� Jm	1�m 	 Jm�m�1� for m � 1� � � � �N � �24�4�

where N is the number of wells in the superlattice, and e � 0 is the electron
charge.

The electron densities and the electric fields are coupled by the following dis-
crete version of Gauss’s law:

�r�0�Fm 	 Fm	1� � e�nm 	ND�� for m � 1� � � � �N � �24�5�

where �r and �0 are the relative and absolute permittivities, and F0 and FN are
the fields at the emitter and collector barrier, respectively.

The applied voltage between emitter and collector gives rise to a global con-
straint

U � 	
�N

m�0

Fmd � �24�6�

where d is the superlattice period.
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The current densities at the contacts are chosen such that dipole waves are
generated at the emitter. For this purpose it is sufficient to choose Ohmic
boundary conditions:

J0�1 � F0 � �24�7�

JN�N�1 � FN
nN

ND
� �24�8�

where  is the Ohmic contact conductivity, and the factor nN�ND is introduced
in order to avoid negative electron densities at the collector. Here we make the
physical assumption that the current from the last well to the collector is pro-
portional to the electron density in the last well. It is in principle possible to
use a more realistic exponential emitter characteristic [67] or calculate the
boundary conditions using microscopic considerations, but the qualitative be-
havior is not changed.

In our computer simulations we use a superlattice with N � 100 periods,
Al0�3 Ga0�7As barriers of width b � 5 nm and GaAs quantum wells of width
w � 8 nm, doping density ND � 1�0� 1011 cm	2 and scattering induced broad-
ening � � 8 meV at T � 20 K. If the contact conductivity  is chosen such that
the intersection point with the homogeneous N-shaped current density versus
field characteristic is at a sufficiently low current value, accumulation and deple-
tion fronts are generated at the emitter. Those fronts form a traveling high-field
domain, with leading electron depletion front and trailing accumulation front.
For fixed voltage U Eq. (24.6) imposes constraints on the lengths of the high-
field domains and thus on the front velocities. If Na accumulations fronts and
Nd depletion fronts are present, the respective front velocities va and vd must
obey vd�va � Na�Nd. Since the front velocities are monotonic functions of the
current density [68], this also fixes the current. If the accumulation and
depletion fronts have different velocities, they may collide in pairs and an-
nihilate. With decreasing contact conductivity, or increasing voltage, chaotic sce-
narios arise, where the annihilation of fronts of opposite polarity occurs at irreg-
ular positions within the superlattice [52], leading to complex bifurcation dia-
grams.

In Fig. 24.3 (a) a density plot of the positions (well numbers) at which two
fronts annihilate is shown as a function of the voltage. We see that for low volt-
age the annihilation takes place at a definite position in the superlattice with a
variation of only a few wells. This distribution broadens for increasing voltage
in characteristic bifurcation scenarios reminiscent of period doubling, leading to
chaotic regimes. We note that in the chaotic regime periodic windows exist. A
one-parameter bifurcation diagram is given in Fig. 24.3 (b), obtained by plotting
the time difference �t between two consecutive maxima of the electron density
in a specific well. Chaotic bands and periodic windows can be clearly seen.

The transition from periodic to chaotic oscillations is enlightened by consider-
ing the space–time plot for the evolution of the electron densities (Fig. 24.4 (a)).
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At U � 1�15 V chaotic front patterns with irregular sequences of annihilation of
front pairs occur.

We shall now introduce a time delayed feedback loop to control the chaotic
front motion and stabilize a periodic oscillation mode which is inherent in
the chaotic attractor [41, 69]. As a global output signal which is coupled back
in the feedback loop, it is natural to use the total current density
J � 1

N�1

$N
m�0 Jm�m�1. For the uncontrolled chaotic oscillations, J versus time

(gray trace in Fig. 24.4 (a)) shows irregular spikes at those times when two
fronts annihilate. Note that the gray current time trace is modulated by fast
small-amplitude oscillations (due to well-to-well hopping of depletion and accu-
mulation fronts in our discrete model) which are not resolved temporally in the
plot. They can be averaged out by considering an exponentially weighted current
density (black curve in Fig. 24.4 (b)), which corresponds to a low-pass filter:

J�t� � �

3 t

0
J�t��e	��t	t��dt� �24�9�

with a cut-off frequency �.
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Fig. 24.3 (a) Positions where accumulation
and depletion fronts annihilate vs. voltage at
 � 0�5 �	1m	1. The grayscale indicates
high (black) and low (white) numbers of
annihilations at a given well. (b) Time differ-

ences between consecutive maxima of the
electron density in well no. 20 vs. voltage.
Time series of length 600 ns have been used
for each value of the voltage [52].



The information contained in the low-frequency part of the current (Fig. 24.4 (a),
black curve) is then used as input in the extended multiple-time autosynchroni-
zation scheme. The voltage U across the superlattice is modulated by multiple
differences of the filtered signal at time t and at delayed times t	 �

U�t� � U0 �Uc�t� � �24�10�

Uc�t� � 	K J�t� 	 J�t	 ��� �� RUc�t	 ��

� 	K
��
��0

R� J�t	 ��� 	 J�t	 ��� 1���� �
� 	K J�t� 	 �1	 R�

��
k�1

Rk	1J�t	 k��
� �

� �24�11�

where U0 is a time-independent external bias, and Uc is the control voltage. K
is the amplitude of the control force, � is the delay time, and R is a memory
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Fig. 24.4 Control of chaotic front dynamics
by extended time-delay autosynchronization.
(a) Space-time plot of the uncontrolled
charge density, and current density J vs.
time. (b) Same with global voltage control

with exponentially weighted current density
(denoted by the black curve). Parameters as
in Fig. 24.3, U � 1�15 V, � � 2�29 ns,
K � 3� 10	6 V mm2�A, R � 0�2,
� � 109 s	1 [41].



parameter. A sketch of the whole control circuit is displayed in Fig. 24.5 (a).
Such a global control scheme is easy to implement experimentally. It is nonin-
vasive in the sense that the control force vanishes when the target state of peri-
od � has been reached. This target state is an unstable periodic orbit of the un-
controlled system. The period � can be determined a priori by observing the res-
onance-like behavior of the mean control force versus �. The result of the con-
trol is shown in Fig. 24.4 (b). The front dynamics exhibits annihilation of front
pairs at fixed positions in the superlattice, and stable periodic oscillations of the
current are obtained.

In Fig. 24.5 (b) the control domain is depicted in the parameter plane of R
and K . A typical horn-like control domain similar to those known from other
coupling schemes [37] is found. Control is achieved in a range of values of the
control amplitude K, which is widened and shifted to larger K with increasing
memory parameter R. Typically, the left-hand control boundary corresponds to a
period-doubling bifurcation leading to chaos for smaller K, while the right-hand
boundary is associated with a Hopf bifurcation. The shape of our control do-
main and its size resemble the results obtained analytically for diagonal control
schemes where observables are measured and controlled locally. In particular,
we do not observe the influence of other branches of the Floquet eigenvalue
problem, which might reduce the size of the control domain severely [70]. Thus
our control scheme is of similar control performance as local control.

In order to investigate the effect of the low-pass filtering on the frequency
spectrum of the system, it is helpful to consider the transfer function formalism
in the frequency domain for the ETDAS control scheme both with and without
an additional low-pass filter [71].

In the frequency domain Eq. (24.11) reads

Uc��� � 	KT���J��� � �24�12�
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Fig. 24.5 (a) Control circuit including the low-pass filter with
cut-off frequency � and the time-delayed feedback loop (K) and
its extension to multiple time delays (R). (b) Control domain for
global voltage control. Full circles denote successful control,
small dots denote no control. Parameters as in Fig. 24.4 [41].



where T��� denotes the transfer function which can be calculated as

T��� � TETDAS���Tlow-pass��� � �24�13�

TETDAS��� is the transfer function of the ETDAS control scheme [13] given by

TETDAS��� � 1	 e	i��

1	 Re	i��
�24�14�

and Tlow-pass��� is the transfer function of the low-pass filter:

Tlow-pass��� � 1
1� i �

�

� �24�15�

The shape of �TETDAS���� is displayed in Fig. 24.6 (a) for different values of R.
As discussed by Sukow et al. [13], the transfer function drops to zero at multi-
ples of the frequency of the unstable periodic orbit (UPO), i.e., �	1. The notches
at these frequencies become narrower for larger R. Due to the notches, the fre-
quency of the UPO does not contribute to the control signal, so that the control
force vanishes if stabilization is successful. The steeper notches for larger R in-
dicate that the ETDAS feedback is more sensitive to frequencies different from
the one to be controlled, so that more feedback is produced for these unwanted
frequencies, which makes the control scheme more efficient.
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Fig. 24.6 (a) Absolute value of the ETDAS transfer function for
different values of R �0 (TDAS), 0.2, 0.4, 0.6, 0.8. (b) absolute
value of the ETDAS transfer function including a low-pass filter
with fixed �� � 1 for the same values of R as in (a) [71].



The maximum value of �TETDAS���� approaches unity for R close to 1 and the
plateaus become flatter. Therefore, intermediate frequencies generate a smaller
response for larger R and thus are less likely to destabilize the system.

The combined transfer function �T���� for ETDAS and low-pass filtering is
displayed in Fig. 24.6 (b). As in Fig. 24.6 (a), there are notches at multiples of
the frequency of the UPO, which become narrower for increasing R. The ampli-
tudes of frequencies larger than the cut-off frequency � are reduced and thus
are only minor contributions to the feedback response. This is important to no-
tice in order to understand how the low-pass filter improves the controllability
of the system.

Consider a control signal that inhibits frequency components above the fre-
quency of the unstable periodic orbit, �0 � 2���. As discussed above, the ET-
DAS transfer function becomes zero at multiples of �0 so that these frequen-
cies are stabilized since no feedback is generated. The harmonics of a small de-
viation from �0 are given by m��0 � �� � m�0 �m� with an integer number m.
It is likely that special harmonics of the deviation coincide with one of the
notches. In this case, ETDAS would generate a control force that stabilizes
�0 � � and not only the desired frequency of the UPO �0. Inserting a low-pass
filter overcomes this effect because higher frequency components are sup-
pressed in the control signal.

Another way to understand the influence of the low-pass filter is to take a
look at frequencies which should be destabilized, i.e., suppressed by the control
scheme. For this discussion see Fig. 24.7, which depicts the transfer function of
the ETDAS method for R � 0�2 with and without a low-pass filter (�� � 1) as
the dashed and solid line, respectively. The circles and dots indicate an un-
wanted frequency �1 and its first three harmonics. Let us discuss first the case
without a low-pass filter (solid line and black dots). Here we find that the third

24.2 Control of Chaotic Domain and Front Patterns in Superlattices 543

Fig. 24.7 Absolute value of the transfer
function of the ETDAS method with and
without low-pass filtering for R � 0�2: The
solid line and black dots correspond to the
case without a low-pass filter, the dashed

line and the circles to the case with a low-
pass filter (�� � 1). The leftmost dot and
circle depict an unwanted frequency �1, the
three rightmost dots and circles at 2�1,
3�1, and 4�1 the first three harmonics [71].



harmonic (4�1) is almost located in the middle of a notch of the transfer func-
tion. Thus it will enter the generation of the control force with a high spectral
weight so that the control scheme accidentally stabilizes its fundamental fre-
quency �1. This effect can be overcome by an additional low-pass filter as
shown by the dashed curve and the circles. Again the third harmonic is located
near a minimum of the transfer function, but since the notch is not so steep
due to the low-pass filter, the spectral weight of the harmonic is smaller. There-
fore, the component of the control force that supports the fundamental fre-
quency �1 is reduced.

In conclusion, time delay autosynchronization represents a convenient and
simple scheme for the self-stabilization of high-frequency current oscillations
due to moving domains in superlattices under dc bias. This approach lacks the
drawback of synchronization by an external ultrahigh-frequency forcing, since it
requires nothing but delaying of the global electrical system output by the speci-
fied time lag.

24.3
Control of Chaotic Spatiotemporal Oscillations in Resonant Tunneling Diodes

Next we consider a double-barrier resonant tunneling diode (DBRT), which ex-
hibits a Z-shaped (bistable) current–voltage characteristic [3]. We include the lat-
eral redistribution of electrons in the quantum well plane (coordinates x� y) giv-
ing rise to filamentary current flow [72, 73]. Complex chaotic scenarios includ-
ing spatiotemporal breathing and spiking oscillations have been found in a sim-
ple deterministic reaction-diffusion model with one lateral dimension x [55] as
well as with two lateral dimensions x� y [74]. We extend this model (in the one-
dimensional case) to include control terms, and obtain the following equations
[40] where we use dimensionless variables throughout:

�a
�t
� f �a� u� � �

�x
D�a� �a

�x

 �
	 KFa�x� t� � �24�16�

du
dt
� 1

�
U0 	 u	 rJ� � 	 KFu�t� � �24�17�

Here u�t� is the inhibitor and a�x� t� is the activator variable. In the semiconduc-
tor context u�t� denotes the voltage drop across the device and a�x� t� is the elec-
tron density in the quantum well. The nonlinear, nonmonotonic function
f �a� u� describes the balance of the incoming and outgoing current densities of
the quantum well and is given explicitly in [40], and D�a� is an effective, elec-
tron density dependent transverse diffusion coefficient [73]. The local current
density in the device is j�a� u� � 1

2 �f �a� u� � 2a�, and J � 1
L

# L
0 jdx is associated

with the global current. Eq. (24.17) represents Kirchhoff’s law of the circuit
(24.3) in which the device is operated. The external bias voltage U0, the dimen-
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sionless load resistance r � RL, and the time-scale ratio � � RLC��a (where C is
the capacitance of the circuit and �a is the tunneling time) act as control param-
eters. The one-dimensional spatial coordinate x corresponds to the direction
transverse to the current flow. We consider a system of width L � 30 with Neu-
mann boundary conditions �xa � 0 at x � 0� L corresponding to no charge
transfer through the lateral boundaries.

Equations (24.16) and (24.17) contain control forces Fa and Fu for stabilizing
time periodic patterns. The strength of the control terms is proportional to the
control amplitude K , which gives one important parameter of each control
scheme. In the semiconductor context these forces can be implemented by ap-
propriate electronic feedback circuits [36].

Without control, K � 0, one can calculate the null isoclines of the system.
These are plotted in Fig. 24.8 using the current-voltage projection of the origi-
nally infinite-dimensional phase space. There are three curves, the null isocline
�u � 0 (i.e., the load line, dash-dotted) and two null isoclines �a � 0, one for a re-
duced system, including only spatially homogeneous states (solid), and one for
the full system (dotted). We call the system spatially homogeneous if the space-de-
pendent variable a�x� t� is uniformly distributed over the whole width of the de-
vice, i.e., a�x� t� � a�t� for all x � 0� L� otherwise it is called spatially inhomoge-
neous. Figure 24.8 shows the Z-shaped homogeneous current-voltage characteris-
tic of the DBRT (solid curve), and the branch of inhomogeneous, filamentary
states (dotted). The inset represents our special regime of interest for the following
investigations. With increasing �, a supercritical Hopf bifurcation of the inhomo-
geneous steady state occurs at �Hopf � 6�469 (cf. Fig. 24.9). Below this we have a
stable, spatially inhomogeneous fixed point marked ’I’ in Fig. 24.8, which is deter-
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Fig. 24.8 Current-voltage characteristic of
the DBRT model. The null isoclines for the
dynamical variables u (which is the load
line, dash-dotted) and a in the case of a
homogeneous a�x� (solid) and in the case
of inhomogeneous a�x� (dotted) are shown.

The inset shows an enlargement, where I
and H mark the inhomogeneous and the
homogeneous fixed points of the system,
respectively. U0 � 	84�2895, r � 	35.
Other parameters as in [40, 51, 75].



mined by the intersection of the load line with the nullcline �a � 0 for inhomoge-
neous a�x� t�. The neighboring intersection of the load line with the homogeneous
nullcline (marked ’H’) defines another, spatially homogeneous fixed point which
is a saddle-point. It is stable with respect to completely homogeneous perturba-
tions but generally unstable against spatially inhomogenous fluctuations.

The dynamics of the free system, i.e., K � 0 develops temporally chaotic and
spatially nonuniform states (spatiotemporal breathing or spiking) in appropriate
parameter regimes [55], which can be corroborated by calculating the Lyapunov
exponents [40]. A characteristic bifurcation diagram exhibiting a period-doubling
route to chaos is shown in Fig. 24.9. Figure 24.10 shows two examples of peri-
odically (a) and chaotically (b) breathing current filaments. Note that the current
density distribution is qualitatively similar to the electron density distribution in
the quantum well. For any value of L the system, due to the global coupling, al-
lows only monotonic spatial profiles, i.e., current filaments located at the
boundary of the spatial domain [76]. In the semiconductor context the time and
length scales of our dimensionless variables are typically given by 3.3 ps (tun-
neling time) and 100 nm (diffusion length), respectively. Typical units of the
electron density, the current density, and the voltage are 1010cm	2, 500 A�cm2,
and 0�35 mV, respectively.

We are concerned with controlling unstable time periodic patterns
up�t� � up�t� ��, ap�x� t� � ap�x� t� �� which are embedded in a chaotic attrac-
tor. For that purpose we apply control forces Fa and Fu which are derived from
time delayed differences of the voltage and the charge density. For example, we
may choose Fu � Fvf with the voltage feedback force

Fvf �t� � u�t� 	 u�t	 �� � RFvf �t	 �� �24�18�

(extended time delay autosynchronization).
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Fig. 24.9 Chaotic bifurcation diagram of the resonant tunnel-
ing diode. The maxima and minima of the voltage oscillations
are plotted versus the time-scale parameter � (r � 	35,
U0 � 	84�2895, K � 0).



Here we concentrate on the question how the coupling of the control forces
to the internal degrees of freedom influences the performance of the control.
For our model we consider five different choices for the control force Fa. On
the one hand, we use a force which is based on the local charge density accord-
ing to

Floc�x� t� � a�x� t� 	 a�x� t	 �� � RFloc�x� t	 �� � �24�19�

whereas on the other hand we propose a construction which is only based on
its spatial average
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Fig. 24.10 Spatiotemporal breathing patterns
of the DBRT: electron density evolution
a�x� t�, phase portrait J vs. u, and voltage
evolution u�t� for (a) � � 7�0: periodic
breathing, (b) � � 9�1: chaotic breathing

(r � 	35, U0 � 	84�2895, K � 0). Time t
and space x are measured in units of the
tunneling time �a and the diffusion length la,
respectively. Typical values at 4 K are
�a � 3�3 ps and la � 100 nm [40].



Fglo�t� � 1
L

3 L

0
a�x� t� 	 a�x� t	 �� �dx � RFglo�t	 �� � �24�20�

We call the choice Fa � Floc a local control scheme in contrast to the global con-
trol scheme Fa � Fglo which requires only the global average and does not de-
pend explicitly on the spatial variable. The second option has considerable ex-
perimental advantages since the spatial average is related to the total charge in
the quantum well and does not require a spatially resolved measurement.

In general, the analysis of the control performance of time delayed feedback
methods results in differential-difference equations which are hard to tackle.
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Fig. 24.11 Diagonal control in the DBRT,
where the control force is switched on
at t � 5000. (a) Voltage u vs. time,
(b) supremum of the control force vs. time,
(b) phase portrait (global current vs. volt-

age) showing the chaotic breathing attractor
and the embedded stabilized periodic orbit
(black cycle). Parameters: r � 	35, � � 9�1,
� � 7�389, K � 0�137, R � 0 [40].



Stability of the orbit is governed by eigenmodes and the corresponding complex
valued growth rates (Floquet exponents). There exists a simple case (which we
call diagonal control) where analytical results are available [23, 77], namely for
Fa � Floc and Fu � Fvf . It is a straightforward extension to a spatially extended
system of an identity matrix for the control of discrete systems of ordinary dif-
ferential equations (cf. [22]). Figure 24.11 shows successful control of a chaotic
breathing oscillation after the control force is switched on.

In Fig. 24.12, the regime of successful control in the �K�R� parameter plane
and the real part of the Floquet spectrum ��K� for R � 0 is depicted. The con-
trol domain has a typical triangular shape bounded by a flip instability (period-
doubling, � � 0, Imaginary part � � ���) to its left and by a Hopf (Neimark–
Sacker) bifurcation to its right. Inclusion of the memory parameter R increases
the range of K over which control is achieved. We observe that the numerical
result fits very well with the analytical prediction.
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Fig. 24.12 Top: control domains in the
�K�R� parameter plane for diagonal control
of the unstable periodic orbit with period
� � 7�389. Large dots: successful control in
the numerical simulation, small gray dots:

no control, dotted lines: analytical result for
the boundary of the control domain accord-
ing to [77]. Bottom: leading real parts � of
the Floquet spectrum for diagonal control in
dependence on K (R � 0) [40].



To confirm the bifurcations at the boundaries we consider the real part of the
Floquet spectrum of the orbit subjected to control. Complex conjugate Floquet
exponents show up as doubly degenerate pairs. The largest nontrivial exponent
decreases with increasing K and collides at negative values with a branch com-
ing from negative infinity. As a result a complex-conjugate pair develops and
the real parts increase again. The real part of the exponent finally crosses the
zero axis giving rise to a Hopf bifurcation. Our numerical simulations are in
agreement with the analytical result.

Let us now replace the local control force Fa � Floc by the global control
Fa � Fglo. Figure 24.13 shows the corresponding control regime and Floquet
spectrum. The control domain looks similar in shape as for diagonal control,
although the domain for the global scheme is drastically reduced. The shift in
the control boundaries is due to different branches of the Floquet spectrum
crossing the �� � 0�-axis.

It is now interesting to note that if we keep Fa � Fglo as before but remove
the voltage feedback completely, the control domain is shifted to higher K
values and at the same time is dramatically increased (Fig. 24.14 (a)). From the
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Fig. 24.13 Same as Fig. 24.12 for global control with voltage
feedback (Bottom: R � 0�7) [40].



Floquet spectrum we see that after the flip bifurcation the largest Floquet expo-
nent does not immediately hybridize into a complex-conjugate pair, but the
Hopf bifurcation is caused by another complex-conjugate pair which is not con-
nected to the largest Floquet exponent. Thereby the Hopf bifurcation is sup-
pressed and the control regime is increased. This behavior is very similar to that
observed in a different reaction-diffusion model (modeling a heterostructure hot
electron diode, HHED) [37], where it was found that additional control of the
global variable u may gradually reduce the control regime to zero.

From the practical point of view the most relevant control scheme is the pure
voltage control, i.e., Fu � Fvf , Fa � 0, since the voltage variable may be conveni-
ently measured and manipulated by an external electronic device. The corre-
sponding control domain and Floquet exponents are shown in Fig. 24.15. Here
the control regime is even somewhat smaller than in the case of global control
with voltage feedback but the shape of the control regime and the Floquet spec-
trum are qualitatively very similar. This opens up the opportunity to conveni-
ently study chaos control in a real world device.
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Fig. 24.14 The same as Fig. 24.12 for global control without
voltage feedback ((b): R � 0�1). Note that the scale of the
K-axis is changed [40].



We finally consider the case of local control without voltage feedback
(Fig. 24.16). Here the control regime is, surprisingly, even larger than for diago-
nal control. The shape of the control regime is not triangular any more as be-
fore, but has an additional edge at low K and R values. The reason for this edge
can be explained from the Floquet diagram. Here a Floquet exponent from be-
low collides with the largest Floquet exponent at positive real values before the
flip bifurcation occurs. This complex-conjugate pair then crosses the zero axes
from above and undergoes an inverse Hopf bifurcation. For larger values of K
another complex-conjugate pair performs a second Hopf bifurcation seemingly
unrelated to the first one.

Finally, we note that the period-one orbit can be stabilized by our control
scheme throughout the whole bifurcation diagram including chaotic bands and
windows of higher periodicity, as marked by two solid lines in Fig. 24.9 for diag-
onal control. Thus our method represents a way of obtaining stable self-sus-
tained voltage oscillations in a whole range of operating conditions, indepen-
dently of parameter fluctuations.
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Fig. 24.15 The same as Fig. 24.12 for pure voltage control
((b): R � 0�6) [40].



24.4
Conclusions

We have investigated the complex spatiotemporal behavior of two semiconduc-
tor nanostructures, viz. a superlattice and a double barrier resonant tunneling
diode (DBRT). The first exhibits nonlinear dynamics of interacting fronts, while
the second demonstrates breathing and spiking of filamentary current density
patterns characteristic of globally coupled reaction-diffusion systems. Applying
time delayed feedback control of the Pyragas type, we have been able to sup-
press deterministic chaos and stabilize periodic current oscillations correspond-
ing to regular space-time patterns.

We have seen that delayed feedback can be an efficient method for manipula-
tion of essential characteristics of chaotic spatiotemporal dynamics in a spatially
discrete front system and in a continuous reaction-diffusion system. By varia-
tion of the time delay one can stabilize particular unstable periodic orbits asso-
ciated with space–time patterns through a wide range of parameters, and thus
adjust and stabilize the frequency of the electronic device.
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Fig. 24.16 The same as Fig. 24.12 for local control without
voltage feedback ((b): R � 	0�55) [40].



The effects of the delayed feedback can be explained in terms of a Floquet
mode analysis of the periodic orbits.

While these investigations have enlightened our basic understanding of non-
linear, spatially extended systems under the influence of time delayed feedback,
they may also open up relevant applications as nanoelectronic devices like tun-
able oscillators and sensors.
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Hiroyuki Shirahama, and Wolfram Just

25.1
Introduction

Control of complex and chaotic behavior has been one of the most rapidly devel-
oping topics in applied nonlinear science for more than one decade (cf. [1] and
references therein). Contrary to traditional control schemes which have been de-
veloped by engineers and applied mathematicians for more than half a century,
the emphasis of noninvasive methods has lead to new concepts such as time
delayed feedback techniques [2]. Such a method has proven to be very useful in
applications, in experimental TDF particular in experiments in physics, chemis-
try, or bioscience. Meanwhile the control mechanism has been understood from
the theoretical point of view, as far as linear aspects of the control scheme are
concerned (cf. e.g. [3]). But there is still considerable lack of knowledge from
the global point of view, e.g., with respect to stability of the control scheme un-
der external perturbations or the structure of basins of attraction of the con-
trolled state. Such basins are of utmost importance in experimental realizations
since their size determines the accessibility of the target state. Unfortunately,
time delayed feedback control turns the dynamical system of interest into a dif-
ferential-difference system and thus changes the structure of the underlying
phase space considerably. Even if the original system has a quite simple struc-
ture, e.g., a low-dimensional phase space where only a few degrees of freedom
are relevant, the phase space becomes infinite-dimensional by the application of
time delayed feedback since the whole history of the state enters the dynamics
as well [4]. Such a feature makes the investigation of global phase-space proper-
ties a difficult task even if one just wants to visualize high-dimensional basins
of attraction, not to mention a systematic theoretical study.

Here we are going to study global features of time delayed feedback control
for two different setups using electronic circuit experiments. In Section 25.2, ex-
tended time delayed feedback control is investigated [5]. We focus in particular
on the reduction of basins of attraction which is related to discontinuous transi-

559

25
Observing Global Properties of Time Delayed Feedback
Control in Electronic Circuits



tions at the control boundaries, a phenomenon which is already predicted by
general bifurcation theory. Consequences of such a phenomenon for experi-
ments is illustrated. Section 25.3 deals with an extension of time delayed feed-
back control employing an unstable control loop to improve the control perfor-
mance of time delayed feedback control [6]. We investigate how different types
of coupling of the control force affects the basins of attraction and thus may im-
prove the control performance from a global perspective.

25.2
Discontinuous Transitions for Extended Time Delayed Feedback Control

Time delayed feedback methods are based on the measurement of a signal s�t�.
The control force is generated from a time delayed difference s�t� 	 s�t	 ��. In
order to keep such a scheme noninvasive the delay time � is typically chosen to
be the period of the target state. In order to improve the control performance
filtering techniques in the frequency domain may be applied [5] so that the ac-
tual generation of the control force F reads

F�t� � Ks�t� 	 s�t	 ��� � RF�t	 ��� �25�1�

For filter parameter R � 0 the original Pyragas scheme is recovered where the
control amplitude K yields one control parameter. The additional filter parame-
ter R improves the control performance, in particular, when systems with fast
time scales are considered. The control force is used to modulate an accessible
parameter of the system. By adjustment of the two control parameters, K and
R, successful stabilization of the target state may be achieved. Of particular in-
terest for our purpose will be the set of initial conditions for which control
works successfully.

25.2.1
Theoretical Considerations

Control performance of the extended scheme, Eq. (25.1), can be evaluated for
quite general systems based on a linear stability analysis (cf. e.g. [7]). In particu-
lar, the control domain, i.e., the set of parameter values in the K–R control pa-
rameter plane for which control works successfully, shows generically a charac-
teristic V-shape (cf. Fig. 25.1) when target states with an unstable negative Flo-
quet multiplier are considered, e.g., unstable periodic orbits that have been gen-
erated via a period doubling cascade. The left-hand border of the control
domain, the so-called lower control threshold, is connected with a period dou-
bling bifurcation while the right-hand border of the domain is usually caused
by a Hopf instability. While details of the control domain may depend on the
particular system the overall picture coincides with the scenario just sketched
(cf. e.g. [8–10] for further details).
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The upper control threshold, i.e., the right-hand border of the control domain
will be of interest for our purpose as Hopf bifurcations yield a generic mecha-
nism to determine basin boundaries [11]. If the transition at the control bound-
ary is continuous then a stable oscillating, quasiperiodic solution is generated
beyond the upper control threshold. But for discontinuous transitions a com-
pletely different dynamical state is reached when leaving the control domain.
Furthermore, the Hopf bifurcation is caused in such a case by a collision with a
formerly unstable limit cycle (cf. insets in Fig. 25.1) which exists throughout
the control domain. Within the control domain, this unstable object gives rise
to a finite basin of attraction. Furthermore, bistability and hysteresis are
hysteresis observed. In particular, the basin of attraction becomes small when
the control boundary is approached. Thus a discontinuous transition is an indi-
cator for small basins of attraction and the character of the instability is crucial
for the global properties of the control system.

25.2.2
Experimental Setup

We are going to demonstrate the relevance of such a mechanism by an electron-
ic circuit experiment which has been performed recently [12]. A simple nonau-
tonomous system is the nonlinear diode resonator sketched in Fig. 25.2. The
circuit, which consists of an inductor (470 �H), a resistor (51 �), and three par-
allel diodes (1N4006) acting together as a nonlinear capacitor, is sinusoidally dri-
ven at fixed frequency (340 kHz), U�t� � Ua sin�2��t�. Without control the sys-
tem undergoes a period doubling cascade to chaos on variation of the driving
amplitude Ua. This scenario ensures for unstable periodic orbits with finite tor-
sion so that these states are accessible to time delayed feedback control [3]. We
performed our experiments at Ua � 4�5 V and choose the unstable period-one
orbit as our target state. We measured the voltage at the resistor R and gener-

25.2 Discontinuous Transitions for Extended Time Delayed Feedback Control 561

Fig. 25.1 Diagrammatic view of the control
domain (dark and light gray-shaded) for ex-
tended time delayed feedback control. Lower
control threshold (solid line), upper control
threshold (broken line), saddle node bifurca-
tion of the delay-induced orbit (dotted line).

The dot indicates a transition from continu-
ous to discontinuous bifurcation (cf. insets
for the bifurcation diagram). The corre-
sponding region of bistability between the
controlled orbit and the delay-induced mo-
tion is light gray-shaded.



ated from this signal s�t� our control force. The control loop employs multiple
delay terms which exactly emulate the recursive form of Eq. (25.1). Finally the
output of the control device was fed back to the driving voltage U�t�.

Having fixed the filter parameter R there exists a lower and an upper control
threshold for successful control. At the lower threshold the unstable orbit be-
comes stable through an inverse period doubling cascade and the output signal
s�t� becomes finally periodic. At the upper control threshold the power spec-
trum develops side-bands. A Hopf bifurcation takes place which leads to a qua-
siperiodic state. Thus the scenario is in full accordance with the general theoret-
ical considerations of the previous section.

25.2.3
Observation of Bistability

Experimentally the Hopf bifurcation shows up most clearly in the frequency
spectrum of the signal s�t�. Inside the control domain we observe one sharp
line indicating the frequency of the controlled orbit. On increasing K a side-
band frequency together with its harmonics occurs directly at the Hopf bifurca-
tion (cf. Fig. 25.3). But this change happens discontinuously. When decreasing
K this spectrum is maintained for a larger range until the system finally jumps
back to the controlled state. This kind of hysteresis indicates that the observed
Hopf bifurcation is subcritical and that a region of bistability between the con-
trolled periodic orbit and a delay-induced quasiperiodic state occurs.

For the quantitative evaluation of the bistability we took the amplitude of the
first side-band peak at about 290 kHz. Figure 25.4 shows the dependence on
the control amplitude when K is adiabatically increased, respectively decreased.
Hysteresis and bistability is clearly visible with extremely sharp thresholds in K.
At the right-hand threshold a subcritical Hopf instability takes place, i.e., a qua-
siperiodic peak with finite amplitude occurs in the spectrum. The left-hand
threshold, i.e., the discontinuous breakdown of the quasiperiodic state, is caused
by a saddle node bifurcation (cf. e.g. [11]).
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Fig. 25.2 Experimental setup of the nonlinear diode resonator
with extended time delayed feedback control device.



Since the control domain and the just mentioned threshold values strongly
depend on the filter parameter R we have probed the hysteresis for an accessi-
ble range 	0�25 � R � 0�25. Figure 25.5 shows the corresponding thresholds in
the K–R parameter plane. The lower threshold where control sets in and which
is caused by the inverse flip period doubling yields a straight line, in accordance
with the theoretical prediction. No hysteresis was observed at this lower thresh-
old. Thus the bifurcation is supercritical. At the upper control threshold we ob-
serve a subcritical Hopf bifurcation for all R values. The region of bistability
which is bounded by the saddle node instability of the delay-induced quasi-
periodic state accounts for about 30% of the whole control domain. Within the
whole range of investigated parameter values the Hopf bifurcation at the upper
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Fig. 25.3 Fourier spectrum of the measured
signal at K � 9�76 and R � 0�12 for two dif-
ferent initial conditions: (a) controlled peri-
odic orbit (adiabatic increase of the control

amplitude), (b) delay-induced quasiperiodic
state (adiabatic decrease of the control am-
plitude).

Fig. 25.4 Amplitude of the first side-band at 290 kHz vs. con-
trol amplitude K for R � 0�12. Triangles: increasing K, circles:
decreasing K (cf. Fig. 25.3 for corresponding Fourier spectra).



boundary remained subcritical. No transition to supercritical behavior was ob-
served. Apart from this feature the results are in full accordance with the theo-
retical expectation described above (cf. Fig. 25.1).

25.2.4
Basin of Attraction

As stated previously subcritical bifurcations pose severe constraints on the basin
of attraction. We have analyzed such a property by probing the corresponding
basin of attraction directly in our experiment. Our setup was modified in a way
that a short pulse could be added to the driving voltage causing a perturbation
to the stabilized orbit. A very short but strong pulse was applied at a fixed phase
of the external periodic drive. Starting from the controlled state inside the bi-
stable regime, we observed whether the system returned back to the controlled
orbit or escaped to the quasiperiodic state. We made repeated experiments by
varying systematically the control parameters as well as the width and the am-
plitude of the voltage pulse. As long as the strength of the pulse, i.e., the prod-
uct of amplitude and width of the pulse does not exceed a critical value we find
relaxation toward the periodic orbit. This critical strength gives a measure for
the size of the basin of attraction. Results are shown in Fig. 25.6.

First, we find that the critical pulse strength does not depend on the precise
form of the pulse. On variation of the pulse width (2.5%, 3.3%, and 5% of the
period) the critical voltage amplitudes indicating the boundary of the basin of
attraction scaled in the reciprocal way. Thus we obtained a nice data collapse
and our experiment really probes for the basin of attraction. The size of the ba-
sin may be read off from the data displayed in Fig. 25.6.
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Fig. 25.5 Experimental results for the control thresholds in
the K–R parameter plane. Diamonds: lower control threshold
(supercritical flip bifurcation), triangles: upper control thresh-
old (subcritical Hopf bifurcation), circles: collapse of the de-
lay-induced quasiperiodic state (saddle node bifurcation).



Second, the critical pulse strength tends toward zero when the upper control
threshold is approached. That property is in full accordance with the scenario of
the subcritical Hopf bifurcation since the basin of attraction becomes small as
well in that limit. Furthermore, the dependence of the pulse strength on K
shows an S-shape characteristics which is expected for the size of the basin ac-
cording to the theoretical prediction (cf. the upper inset in Fig. 25.1 and the cor-
responding normal form analysis, e.g. [13]). Thus we have striking experimental
evidence that subcritical behavior is a universal mechanism which determines
global features of time delayed feedback control. Last but not least the data dis-
played in Fig. 25.6 indicate the sensitivity of the controlled system with respect
to external perturbations and thus quantifies the degree of structural stability of
the control scheme.

25.3
Controlling Torsion-Free Unstable Orbits

The second experimental example we are going to present refers to a control
concept which is less straightforward than that in the previous case. It has been
shown [3, 14] that only a certain class of periodic orbits characterized by a finite
torsion can be stabilized by time delayed feedback control. Such a topological
constraint means that any unstable periodic orbit with an odd number of real
Floquet multipliers larger than unity can never be stabilized by this method 1�.
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Fig. 25.6 Critical pulse strength in depen-
dence on the control amplitude for different
width of pulses at R � 0�12. Note that the

modification of the experimental setup has
slightly changed the system increasing the
control thresholds by about 15�.

1) In a recent reprint (arXiv:nlin.CD/0609056)
Fiedler et al. have pointed out that such a
constraint does not apply for limit cycles in
autonomous systems because time translation
invariance allows for the occurrence of trans-

critical bifurcations. Actually, the proofs of the
odd number limitation implicitly use the as-
sumption that the underlying dynamics is sub-
jected to a periodic drive.



Different strategies have been suggested to overcome this constraint. For in-
stance, the so-called rhythmic control [15] is based on the periodic modulation
of the control signal with a period different from that of the orbit. This way the
effect of torsion will be introduced artificially. Another way suggested recently
[6] is based on the counter-intuitive concept to introduce an unstable degree of
freedom into the control device. The key idea is to provide an even number of
real Floquet multipliers by including an additional unstable degree of freedom
in the feedback loop to overcome the limitation mentioned above. Bifurcation
theory tells us that an even number of real unstable Floquet multipliers offer
the possibility that, on variation of some bifurcation parameter, the correspond-
ing Floquet branches may collide and undergo a Hopf bifurcation. This results
in a complex conjugate pair of Floquet exponents (see Fig. 25.7). This way the
missing torsion can be introduced via the additional unstable degree of freedom
offered by the controller, and then the system becomes accessible again to time
delayed feedback control. A detailed discussion of this idea can be found in a
previous chapter of the handbook. Both methods were successfully applied to
control torsion-free unstable periodic orbits in numerical simulations, but real
experimental applications have been missing so far.

A prominent paradigmatic system showing such torsion-free unstable orbits
is the unstable van der Pol oscillator which is described by the following equa-
tions of motion

�x�t� � 	y�t� � �x�t� � x3�t��3� �25�2 a�
�y�t� � x�t�� �25�2 b�

Here, � is the bifurcation parameter of system, and the time scale is normalized
to the inverse oscillator frequency. Equation (25.2) differs from that for the con-
ventional van der Pol oscillator merely by the sign of the nonlinear coefficient.
For � � 0, this equation has two coexisting solutions, a stable fixed point at the
origin x � y � 0, and an unstable limit cycle with the period � � 2��(���, am-
plitude 2

������	�" �(���, and a real positive Floquet exponent � � 	��(��3�2�.
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Fig. 25.7 Mechanism of time delayed feedback control by
means of an unstable controller. � and � are the real and
imaginary parts of the Floquet exponent of the controlled
system. The real Floquet exponents of the unstable system,
�, and of the unstable controller, �c, collide under the in-
fluence of the control force, and a Hopf bifurcation occurs.



For � � 0 the limit cycle disappears, and the fixed point at the origin becomes
unstable. Thus at � � 0 we have a subcritical Hopf bifurcation. The real positive
Floquet exponent indicates that the limit cycle is unstable and shows no tor-
sion.

25.3.1
Applying the Concept of an Unstable Controller

We assume that x is an observable accessible in experiment. To stabilize the un-
stable periodic orbit appearing for � � 0 we consider the following control algo-
rithm:

�x�t� � 	y�t� � �x�t� � x3�t��3� w�t�f �x�t�� �25�3 a�
�y�t� � x�t� �25�3 b�
�w�t� � �cw�t� 	 K�x�t� 	 x�t	 ���f �x�t��� �25�3 c�

The term wf �x� in Eq. (25.3 a) is the control signal perturbing the x-variable.
The specific form of this coupling is given by the function f �x� and will be spe-
cified later. Equation (25.3c) describes an unstable delayed feedback controller
with �c � 0. Here w is the dynamical variable of the controller and K deter-
mines the feedback strength. Note that the control scheme does not change the
solution of the free system corresponding to the unstable orbit of period �, since
for x�t� � x�t	 �� Eq. (25.3c) is satisfied by w � 0 and the control signal
w�t�f �x�t�� in Eq. (25.3 a) vanishes.

We just mention that in a recent article [16] Eq. (25.3) has been considered as
a paradigm of a subcritical Hopf bifurcation showing an unstable torsion-free
limit cycle. The possibility of stabilizing such an orbit was explored both analyti-
cally and by means of numerical simulations, and successful control was
achieved.

25.3.2
Experimental Design of an Unstable van der Pol Oscillator

In order to probe the concept of an unstable controller in experiment we de-
signed autonomous electronic circuits which could be mapped to Eq. (25.3). We
first considered a serial LC oscillator with a cubic nonlinearity as had been sug-
gested in [16]. The obvious idea to approximate the nonlinearity by a conven-
tional Chua diode failed, because in such a circuit current and voltage were just
interchanged with respect to the diode characteristics. However, a circuit with
inductance, capacity, and nonlinearity in parallel connection (cf. Fig. 25.8)
should overcome this problem and seemed to give a proper realization of our
model Eq. (25.2). By means of a so-called negative resistor the unstable control-
ler was designed in a straightforward way choosing for the coupling function
f �x� a simple linear one, f �x� � x. Nevertheless, our attempts to control such
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an electronic realization of the unstable van der Pol oscillator were not success-
ful. Failure was obviously caused by parasitic properties of the components. For
instance, we found that the internal resistance of the inductor L gave rise to a
rather strong symmetry-breaking term which spoiled the model properties.
Moreover, this type of setup did not yet allow us to define the initial conditions
of the system with sufficient accuracy.

In order to overcome these problems we finally decided to construct our mod-
el circuit merely from active components. So, Eq. (25.3) was designed step by
step using operational amplifiers and integrated circuits. A block diagram of
this setup is presented in Fig. 25.9. It includes the unstable controller as well as
elements for defining the experimental initial conditions. The components at
the top of Fig. 25.9 maps the relation �y � x. Then, by integrating x the variable
y is obtained. The adder comprehends all terms contributing to �x, and x is
again obtained by integration. The controller variable w is coupled to the x-com-
ponent, so the product of w and f �x� is also included in the adder inputs, while
the delay term and the intrinsic instability of w are generated by the loops at
the bottom. The bifurcation parameter �, the control amplitude K , and the posi-
tive exponent �c are simply determined by the gain of electronic amplifiers. For
defining the initial conditions, we introduced switches parallel to each of the in-
tegrator outputs which generate the variables x�t�� y�t�, and w�t�. These switches
allowed us to apply adjustable constant voltages x0� y0, and w0, respectively.
Thus, when switching on the system at t � 0, the variables x�t� and y�t� started
from a well-defined state. At about one cycle later the feedback loop generating
the control signal was switched on, simultaneously with the controller variable
w�t�. Such a time-lag was necessary to obtain an appropriate delayed signal re-

25 Observing Global Properties of Time-Delayed Feedback Control in Electronic Circuits568

Fig. 25.8 Top: experimental implementation of unstable van
der Pol oscillator by means of a parallel CLN resonator. The
nonlinearity N is provided by a Chua diode. Bottom: design
of the unstable controller described by Eq. (25.3).



flecting the dynamics of the uncontrolled system close to the initial state. Note
that the control generally failed when the feedback is switched on earlier than
one cycle or later than seven or eight cycles. This is understandable since in the
former case a proper delay signal has not yet developed while in the latter case
the unstable system has already escaped too far away from the target state.

25.3.3
Control Coupling and Basin of Attraction

An essential result of our investigations was that the success of the unstable
controller concept depends sensitively on the specific form of the coupling func-
tion f �x�. Our first choice for f �x� followed the coupling suggested in [16]. The
unstable degree of freedom, w, was coupled to the x-variable and, in turn, the
delay term was coupled to the unstable controller w via a linear coupling
f �x� � x (cf. Eq. (25.3 c)). In numerical simulations such a coupling had turned
out to be essential for the control performance [16]. When applying this cou-
pling scheme to our experiment, however, it failed for a large range of initial
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Fig. 25.9 Block diagram of the van der Pol oscillator with control
loop (setup built from active components).



conditions. Figure 25.10 reflects a typical experimental situation. We chose the
bifurcation parameter � � 	0�1, the control amplitude K � 0�3, and y�0� and
w�0� were set to zero, while x�0� was set to 0�2 V. We repeated the control ex-
periment several times with the same set of parameters. In most cases the con-
troller variable w�t� immediately escaped to infinity while x�t�, after some irreg-
ular transients, settled either in the stable fixed point (cf. Fig. 25.10, l.h.s. col-
umn) or ended up in a high amplitude oscillatory state which meets the satura-
tion limits of the operational amplifiers. In some cases, however, for the very
same set of parameters we also achieved successful control (cf. Fig. 25.10, r.h.s.
column), which, in fact, represents the first experimental evidence approving
the concept of an unstable controller. The low success rate indicated that the
method is rather sensitive to perturbations introduced by noise and by the irreg-
ular motion of the uncontrolled system during the starting phase. Such missing
robustness is generally considered a serious drawback for practical applications.

However, it turned out that the low success rate could be improved consider-
ably by changing the control function. When replacing the linear coupling
f �x� � x by a sigmoidal one, e.g., f �x� � sign�x� or f �x� � tanh�
x�, 
 0 1, the
situation changed dramatically. Technically such a modification of the coupling
could be easily implemented by means of an operational amplifier acting as a
comparator. After such an implementation successful control could be achieved
for a larger range of initial conditions with a success rate of almost 100% (cf.
Fig. 25.11).

A quantitative estimate of the success of control was obtained by varying both
control amplitude and initial conditions. For the case of linear coupling optimal
control performance (for � � 	0�1) was obtained at K � 0�4. We set x�0� and
w�0� to zero and increased y�0� from 0 to 1 V in steps of 0.01 V. For each set of
initial values we repeated the control experiment about 100 times. The part of
successful attempts is shown in a histogram (cf. Fig. 25.12). For linear coupling
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Fig. 25.10 Two attempts to control a tor-
sion-free unstable orbit with linear coupling
f �x� � x. Time series of x�t� and w�t� for the
same set of initial conditions: � � 	0�1,
K � 0�3, x�0� � 0�2 V, y�0� � w�0� � 0 V.

Left: relaxation toward the trivial fixed point
with divergent control variable w�t�. Right:
successful noninvasive stabilization of the
unstable periodic orbit.



successful control was only achieved for y�0� values from the neighborhood of
the unstable orbit which is indicated by the dashed line at 0�63 V. For the case
of a sigmoidal coupling optimal control was observed at K � 0�15, and the con-
trol regime was much larger than in the linear case. Accordingly we also ob-
tained a much larger “basin of attraction” for the controlled orbit which now
covers the full y�0� range from 0 to 0�8 V yielding a success rate of almost
100%. At present we may only speculate about the mechanism for such a
strong improvement. It is probably related to the limitation of the control force
for strongly fluctuating x-transients during the onset of control. Without such a
limitation large x-fluctuations might destroy the control by “overshooting.”
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Fig. 25.11 Successful control of torsion-free unstable orbits with
f �x� � sign�x�, � � 	0�1, K � 0�3 and y�0� � w�0� � 0 V for
different initial conditions: x�0� � 0�2 V (left) and x�0� � 0 V (right).

Fig. 25.12 “Basins of attraction” for different control couplings.
L.h.s.: linear coupling f �x� � x, K � 0�35 (while � � 	0�1,
x�0� � w�0� � 0 V). R.h.s.: sigmoidal coupling f �x� � sign�x�,
K � 0�15. Location of the unstable orbit is indicated by dashed line.



25.4
Conclusions

Time delayed feedback control has been investigated for two different setups
with regards to the global control performance. In particular, basins of attraction
have been probed in electronic circuit experiments. Extended time delayed feed-
back control schemes were investigated in Section 25.2. Reduced basins of at-
traction and reduced structural stability have been measured which were caused
by discontinuous transitions at control thresholds. Thus, a universal mecha-
nism, well known in bifurcation theory, has shown its relevance in electronic
circuit experiments. Section 25.3 dealt with the implementation of an unstable
controller to stabilize torsion-free unstable periodic orbits that were generated
in a subcritical Hopf bifurcation. The improvement of the control performance
by changing the coupling scheme of the control force was demonstrated and a
considerable enlargement of basins of attraction has been observed.

Some caution should be in place when using the term “basin of attraction”.
Since we were dealing with delay systems their dynamics is determined by pre-
vious states as well. Accordingly, the proper basin of attraction does not only de-
pend on the actual values of the degrees of freedom, e.g., on initial conditions
when the control is switched on, but also on the recorded delay states which de-
termine the control force. When probing the basin of attraction in our experiment
on the diode resonator in Section 25.2.4 the initial state was just the controlled or-
bit. The stability of this state in some neighborhood was probed by application of
small perturbations which had even been synchronized with the phase of the ex-
ternal drive. Thus, all perturbations started from a state with a common history.
Such a procedure may be considered as a finite-dimensional cross section in
the infinite-dimensional phase space of the delay system. In practical applications,
however, one is often less interested in the stability of the controlled state against
perturbations once the system has settled on it. The problem how to reach the con-
trolled state in the most efficient way is usually of more interest. Therefore, we
have chosen in Section 25.3.3 a different type of approach to probe the global con-
trol performance. Here, control was switched on skipping a transient and the his-
tory of the dynamics was taken from the uncontrolled motion. Tiny fluctuations
may amplify during the transient and we ended up with a probability distribution
for successful control. Thus, the distributions reflect implicitly the size of the ba-
sin in a rather intricate way. Above all, such an approach seems to have a more
direct relevance for real control experiments, although a direct link to theoretical
considerations is more difficult to establish.

The experimental study is still in progress, and further systematic investiga-
tions on global properties are necessary. In particular, the effect of the specific
form of control coupling on the control performance will be of major impor-
tance from the viewpoint of practical applications. Even now it is already clear
that in systems without torsion the idea of the unstable controller does work
and – for an appropriate type of coupling – results in robust time delayed feed-
back control suitable for practical applications.
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Achim Kittel and Martin Popp

26.1
Introduction

In this chapter a strategy of a user-friendly chaos controller for general purpose
applications is discussed. The basic idea is to use the knowledge gained in re-
cent years from nonlinear dynamics to set up a black box which can be used as
easily as the well-known proportional-integral-differential controller (PID con-
troller) in many problems [1–6].

Earlier in the field of chaos control the system under consideration had to be
investigated in advance [7–11] to design a control strategy. But today different
methods are developed to treat certain classes with the same strategy. This gives
the opportunity to set up a controller able to stabilize different unstable non-
linear systems. In the following a possible realization of such a controller is in-
troduced, the possibilities for the control of nonlinear chaotic systems are dem-
onstrated, and are illustrated as a tool to investigate unknown nonlinear chaotic
systems.

26.2
The Model Systems

In order to demonstrate the capabilities and the features of the controller it is
applied to very different systems from the mathematical point of view. One of
them is an oscillator obeying a set of ordinary differential equations (ODE) and
the other is an oscillator which has to be described by delay-differential equa-
tions (DDE). The first oscillator is called the Shinriki oscillator and the second a
Mackey-Glass oscillator.
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26.2.1
Shinriki Oscillator

This type of nonlinear oscillator was introduced by the Japanese engineer Shin-
riki in 1981 [12]. The oscillator is a model system for a three-dimensional chaot-
ic system. It serves here as a representative of autonomous systems which can
be described by a system of ordinary differential equations and which exhibit a
period-doubling sequence as a route to chaos [13].

The schematic of the circuit is shown in Fig. 26.1. The three system variables
are the two voltages across the capacitors C1 and C2 and the current I3 through
the inductor L1. The capacitor C2 together with the inductor L1 represent a par-
allel oscillator which is excited by the negative impedance converter (NIC) via
the nonlinear element. The nonlinear element is formed by the two oppositely
directed zener diodes D1 and D2 and the potentiometer P2 in parallel. The NIC
(marked in Fig. 26.1 by a dashed box) is compound of the operational amplifier
(OPA) TL071 and three resistors. It has a feature that the characteristics of the
resistor R4 is inverted, i.e., if a positive voltage is applied to the NIC a negative
current INIC � 	V�R4 is delivered by the NIC. This effect drives the capacitor
C1 and the parallel oscillator formed by C2 and L1 via the nonlinear element D1

and D2. The potentiometer P1 reduces the effective current from the NIC and
serves, therefore, as a handle to adjust the degree of excitation of the system.
The system dynamics can be modeled by the three phase space variables: the
voltage V1 across the capacitor C1, the voltage V2 across the capacitor C2, and
the current I3 through the inductor L1 which is measured as the voltage drop
across the resistor R1.

The system of differential equations can be easily derived by means of the
Kirchhoffs laws. They read
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Fig. 26.1 The Shinriki oscillator. The oscillator generates
chaotic oscillations similar to the one generated by the Röss-
ler system and can be described well with a three-dimensional
system of ordinary differential equations. For further details
see the text.



C1
dV1

dt
� 	V1

1
RNIC

� 1
R1

 �
f �V1 	 V2� �26�1�

C2
dV2

dt
� f �V1 	 V2� 	 I3 �26�2�

L1
dI3

dt
� 	I3R3 � V2 �26�3�

with RNIC � 	R4. f �V1	V2� denotes the I	V characteristics of the nonlinear
element and can be approximated by a polynomial. The dominant frequency of
the oscillator is f0 � 1��2� ��������

LC2
" �. For the given values of the devices1) the fre-

quency is about 900 Hz which is very convenient to investigate the system. On
one hand the frequency is fast enough that one can observe long time series
spanning over many periods of the characteristic frequency without having
problems with drifting parameters. On the other hand the frequency is not too
high to be digitized with a high over-sampling rate to grasp higher harmonics.

26.2.2
Mackey-Glass Type Oscillator

The second oscillator we will use as a model system represents a different class
of systems. Mathematically, these systems are described by a system of DDE.
We will restrict ourself to the one-dimensional system which was introduced by
Mackey and Glass [14]. They modeled the concentration of the red blood cells
for certain blood diseases by a delay-differential equation (DDE). This type of
differential equation is a lot more complicated than a ODE because it is not
necessary to know just one initial value but an interval of values.

Mackey and Glass used the following equation to describe the concentration
of red blood cells:

dx
dt
� ax�t	 ��

1� xn�t	 �� 	 cx �26�4�

The first term on the right-hand side is the nonlinear term which represents the
production rate of red blood cells. Because the production takes several days the
system reacts to a certain concentration of red blood cells with this delay. It starts
at zero at the concentration x of zero (clearly, x has to be positive), has a maximum
at finite values of the concentration x and falls off to zero for larger concentrations.
The second term of the right-hand side represents the decay rate of dying red
blood cells.

The system was realized with an analog delay line a buckle brigade delay line
(BBD), which shifts charge representing a certain voltage through a chain of ca-
pacitors. At the end of the chain the charge is converted back to a voltage. The
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1) R1 � 99�4 �; R2 � 4�7 k�; R3 � 4�7 k�; R4 � 6�8 k�;
C1 � 10 nF; C2 � 101 nF; L1 � 323 mH; D1 � D2 � ZPD3.7.



delay is determined by the number of capacitors and by the clock signal which
clocks shifting of the charge from one capacitor to another. It can be varied by
varying this clock frequency. A block diagram of the oscillator is shown in
Fig. 26.2. The schematic of the used nonlinear element is shown in Fig. 26.3. It
represents a single humped function at positive values. The capacitor C1 and
the resistor R1 define the rate of change in the oscillator and the product C1R1

emerges in Eq. (26.4) as a factor on the left-hand side in front of the time deri-
vative. Resistor R1 and capacitor determine an upper cutoff frequency of the
system. To characterize the electronic circuit it is helpful to use the dimension-
less, reduced delay time which corresponds to the delay time in the Mackey-
Glass system � � �BBD�C1R1.

The measured characteristics are depicted in Fig. 26.4. In the figure the solid
squares represent the measured characteristics from the electronic circuit and
the open circles represent a curve fit of the equation:

dx
dt
� ax�t	 ��

1� x10�t	 �� �26�5�
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Fig. 26.2 Block diagram of the Mackey-Glass oscillator. The
product of the resistance R1 and the capacitance C1 define
the rate of change in the differential equation (26.4), i.e.,
a factor on the left-hand side (R1 � 11 k� and C1 � 220 nF;
R1C1 � 2�4 ms). (b) Schematic of the nonlinear element used
in the Mackey-Glass oscillator.

Fig. 26.3 Schematic of the nonlinear element used in the
Mackey-Glass oscillator.



we achieve a �2 � 0�014. With the appropriate parameters we are able to nu-
merically integrate the system to compare it to the results from the electronic
circuit.

Examples of a measured and a simulated time series are plotted in Fig. 26.5.
It can be seen that the agreement is acceptable, i.e., tolerances of the devices,
noise in the system, and parasitic inductances, and capacitances are small en-
ough to be neglected.
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Fig. 26.4 Comparison of the experimental characteristics of
the nonlinear element used in the Mackey-Glass oscillator
and the fitted curve to these data.

Fig. 26.5 (a) Phase portrait of a measured time series with
� � 4�06. (b) Numerically simulated phase portrait. (c) Time
series of the measured data depicted in (a). (d) Time series
of the simulated data.



One special feature of the delay-differential equations is depicted by the fol-
lowing. If we search for a solution for a system of ordinary differential equa-
tions we need to specify the initial values. To characterize a certain system state
we have to know the same number of values as the number of first-order equa-
tions we have. In the case of a DDE the situation is completely different. Even
if we are able to describe the dynamics by only one single equation, like in the
case of the Mackey-Glass system, it is nevertheless necessary to know the values
on the interval 	�� 0�. In principle this means an infinite number of values. As
a consequence the complexity of the system increases with increasing delay
time � even if the system is described by a single equation. This feature can
also be observed in the case of our Mackey-Glass oscillator. To characterize the
complexity of the signals delivered by the oscillator we calculated the correlation
dimension of the signals. The dependence of the correlation dimension on the
reduced delay time is plotted in Fig. 26.6. It can be seen that the dimension of
the system increases monotonously with increasing delay time as it is usual for
this type of system. For these time delay systems it is often not possible to find
unstable periodic orbits and, therefore, they do not allow for an analysis to find
a tailored control strategy. The oscillator represents a second class of autono-
mous systems which will serve here as model system.

26.3
The Controller

The controller discussed here is based on the control strategy of the delayed-
feedback control with self-adapted delay time [15]. To demonstrate that the con-
trol of chaotic systems does not need complex algorithms and electronics, the
controller electronics is constructed mainly by means of transistor logic (TTL),
i.e., a fixed wired circuit and not a fancy program which is running on a power-
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Fig. 26.6 Dependence of the correlation dimension on the re-
duced delay time �. The line in the graph is only a guide for
the eye and does not represent a fit.



ful computer. The controller is applied to the two oscillators introduced above to
analyze, e.g., detection of periodic orbits, and control these onto different peri-
odic orbits.

A block diagram with different components of the controller is shown in
Fig. 26.7. The left-hand side of the diagram, marked by the dashed box, repre-
sents the signal condition part of the circuit, which measures the time lag be-
tween different maxima. The part on the right-hand side is the delay line, which
delays the signal by a certain amount of time and feeds it back into the system
under control.

After the amplification of the signal at the input at the upper right corner it
becomes electronically differentiated on the left side. A Schmitt trigger forms a
square-wave signal out of the differentiated signal which switches at each maxi-
mum and then back at each minimum. The square-wave signal clocks a reverse
counter (counter 1) which counts from a preselected value back to zero. By
means of this preselected value it is possible to adjust the delay time of the lag
between two, three, etc. maxima, i.e., different orders of periodic orbits can be
stabilized. The counter starts and stops another counter (counter 2) which acts
as a stop watch by using the clock signal generated by a quartz oscillator. The
counter reading is transferred to the interface after the stop signal has arrived.

The delay line operates as a ring storage for the input signal. The delay time
of the line is given by an increment between the current storage address and
the current reading address. The time lag between the maxima is taken from
the interface and stored in a latch. A free running counter (counter 3) is used
to generate the addresses of the random access memory (RAM) which stores
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Fig. 26.7 Block diagram of the controller. The controller con-
sists mainly of two parts. On the left-hand side marked by a
dashed box the part which determines the current length of
the period. The part on the right-hand side represents a delay
line made of a ring memory of 128 thousand words length.
For a detailed explanation see the text.



the digital values of the input signal. The signal applied to the input is ampli-
fied and then digitized by a 12-bit A/D-converter at a rate of 500 kSamples/s.
The digital value is stored in the RAM at an address calculated by adding the
current counter reading of counter 3 and the value stored in the latch. During
the second half of a clock cycle the digital value at the address of the counter
reading of counter 3 is converted in the D/A-converter and provided at the out-
put. The signal which is fed back into the system under control is calculated by
the difference between the delayed signal and the current signal of the system
D � V�t� 	 V�t	 ��. The coupling constant K of the control signal can be ad-
justed by the amplification or attenuation of this difference.

26.4
Results of the Application of the Controller to the Shinriki Oscillator

First, we will discuss the results when the controller is connected to the Shinri-
ki oscillator. As already mentioned the oscillator serves as a model system for
systems which can be described by an ordinary differential equation. The con-
troller can serve two different purposes. Firstly, the control of the system by sta-
bilizing periodic orbits and, secondly, the investigation of an unknown system
by delay-time spectroscopy. In the latter case the control signal, i.e., the time aver-
aged square of the current delivered by the output buffer is recorded in depen-
dence of the delay time. If the delay time of the controller corresponds to a inte-
ger multiple of an unstable periodic orbit of the system, the control signal de-
creases by several orders of magnitude.

The controller is connected to the system in the following way. The input of
the controller is coupled directly to the point in the circuit diagram which is
labeled by V1. The output of the controller is realized by means of a buffer to
ensure that it is only a one-way coupling. The output of the buffer is coupled
via a resistor Rc to the same point. By selecting different values of the preselect
of the controller we are able to control the Shinriki oscillator to periodic orbits
of different orders.

Figure 26.8 gives a good overview of the system under control. Bifurcation
diagrams are recorded for different situations and plotted together in one dia-
gram to be able to compare the changes. To follow different bifurcation dia-
grams they are increasingly shifted against each other by a successive offset of
0.2. The resistor R1 was varied as the bifurcation parameter and the resistor R2

was kept constant at a value of 12.68 k�.
The diagram for the uncontrolled situation (marked with tiny filled squares)

is plotted for the original values of the voltage oscillations. The results mea-
sured with a preselect of one, i.e., a period-1 orbit is stabilized, are represented
by the hollow squares. It can be seen that the bifurcation diagram follows the
same behavior as that of the unperturbed system until the branching of to the
period-2 occurs. From this point the bifurcation diagram follows the unstable
period-1 orbit until it becomes chaotic at high values of the bifurcation parame-
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ter (R1 � 30 k�). If the preselect is changed to the value of two, the bifurcation
changes as shown in Fig. 26.8 marked by hollow circles. The oscillator behavior
is not changed until the bifurcation to the period-4 occurs. Here the period-2 or-
bit is stable until a value of the bifurcation parameter R1 � 27 k� is reached.
Here again, a chaotic oscillation starts. The situation for a preselect of four is
depicted in Fig. 26.8 marked by hollow triangles. Here the period-4 orbit is sta-
bilized until R1 � 26 k�. From these findings we can conclude that higher peri-
odic orbits are more sensitive to noise than the shorter ones.

In the following the influence of the control resistor Rc is discussed. It is not
at all the case that a small control resistor which corresponds to a strong cou-
pling will lead to stabilization of the system. In contrast depending on the lim-
itation of the controller it is possible that the control resistor has to be of a val-
ue within a certain interval. This behavior is depicted exemplarily in Fig. 26.9.
The involved parameter has been chosen as follows: R1 � 26�2 k� and
R2 � 12�68 k� for the Shinriki oscillator and T1 � 1�41 ms, T2 � 2�79 ms, and
T4 � 5�59 ms for the delay times of the controller for the period-1, period-2,
and period-4 orbit, respectively. It is not surprising that the larger interval of a
possible stabilization is observed for the period-1 orbit. The interval for the peri-
od-2 orbit is drastically reduced and is located in the upper half of the interval
for the period-1 interval. The situation is not simple as this can be seen from
the fact that the interval for the period-4 orbit is shifted to higher control resis-
tor values, i.e., reduced control coupling strength.
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Fig. 26.8 Bifurcation diagram of the Shinriki oscillator. The
tiny black squares represent the unperturbed system and the
light squares, light circles, and light triangles result from the
influence of the control to the period-1, period-2, and the per-
iod-4 orbit, respectively. For clarity the curves of the period-1,
period-2, and period-4 are shifted by 0.2 V increasing offset
against the unperturbed case and against each other.



26.4.1
Spectroscopy of Unstable Periodic Orbits

At the end of the presentation of the results gained from the Shinriki oscillator
the periodic orbit spectroscopy (POS) is discussed. Here a fixed control resistor is
chosen by which the controller is coupled to the system. The delay-time adaptor
is switched off and the delay time is systematically varied over a range of differ-
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Fig. 26.9 The dependence of the averaged control signal on the control
resistor for different values of the preselect and, therefore, different
orders of the periodic orbits. The different periodic orbits are stabilized
at different intervals of control resistor values.

Fig. 26.10 Spectroscopy of periodic orbits of the Shinriki oscillator.
Here the time delay of the controller is varied from 0 to 8 ms in steps
of 4 �s. Period-1 orbits can be stabilized at 1.40 ms and 4.19 ms.
At a value of 5.54 ms a period-4 orbit is stabilized as it can be seen
in the upper part of the figure.



ent values. The averaged value of the resulting control signal �D2� is measured
at each individual value of the delay time. �D2� is reaching a local minimum if
the system under control is stabilized to periodic orbit of the length of the delay
time of the controller. This can be utilized to find periodic orbits and, therefore,
analyze an unknown system.

The results depicted in Fig. 26.10 show that the Shinriki oscillator possess a
period-1 orbit at 1.40 ms and 4.19 ms and a period-4 orbit at 5.54 ms in the
case R1 � 2�59 k� and R2 � 12�68 k�. The control resistor was chosen to be
Rc � 160 k�. The control signal �D2� drops about three orders of magnitude
which is a little less compared to the theoretical expectable maximum value in
the case of a 12-bit converter.

26.5
Results of the Application of the Controller to the Mackey-Glass Oscillator

In this section the results will be discussed in a similar way as in the previous
section. The difference is the type of oscillator which represents another class of
systems. The Mackey-Glass system is described by integro-differential equations.
This makes the analysis of the system more complicated. The fractal dimension
of the attractor of such a system increases by changing a system parameter to a
very high dimension. An analysis of such a high-dimensional system is compli-
cated and it is not possible to distinguish the system from a noisy, i.e., stochas-
tic system. There is no algorithm to determine the unstable periodic orbits from
time series as is the case for systems described by ODEs.

In Fig. 26.11, a phase portrait of a chaotic and a stabilized unstable orbit of
the Mackey-Glass oscillator is plotted. The parameters of the system are the in-
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Fig. 26.11 Two-dimensional phase portrait of a chaotic oscillation
of the Mackey-Glass oscillator (thin line) and the stabilized period-1
orbit applying the delayed-feedback controller (thick line).



ternal delay time of the Mackey-Glass oscillator 11.056 ms and Rc � 15 k�. The
resulting delay time of the controller is T � 25�2 ms. The orbit which was origi-
nally an unstable periodic is embedded within the chaotic attractor but cannot
be determined from the time series.

It is essential for the success of the control of an unstable periodic orbit that
it does not disturb the system very much. During the transition (see Fig. 26.12)
from the chaotic to the stable state it is crucial to not disturb too heavily. There-
fore, it is necessary to use a limiter as described in Section 26.3. A too large
feedback signal will change the system and can result in a new dynamic of the
system under control and the controller itself. This kind of new dynamic is of-
ten undesired and the control signal �D2� is not vanishing even if the periodic
state is reached, but this state is not a solution of the dynamic system alone.

The bifurcation for the chaotic system is depicted in Fig. 26.13 (a). For a prop-
er determination of the bifurcation diagram it was necessary to use a linear
combination of the voltages V�t� and V�t� �� because both voltages exhibit
more than one maximum even in the case of the period-1 orbit. This can be
seen in Figs. 26.11 and 26.12. In the diagram V�t� 	 V�t	 �� is plotted over the
bifurcation parameter �. Up to � � 8�26 the system possess a stable fixed point.
A period doubling scenario can be seen which ends in a chaotic state above a
� � 9�51 ms.

If the controller is applied to the Mackey-Glass oscillator and the preselect is
set to one (Rc � 20 k�) the bifurcation changes as shown in Fig. 26.13 (b). The
bifurcation diagram exhibits a hysteresis. If the bifurcation parameter is in-
creased continuously the system exhibits a period-1 orbit which corresponds to
the unstable period-1 orbit after the bifurcation to the period-2 state at
� � 9�05 ms has taken place. The bifurcation as well as the chaotic state are
completely suppressed over a large interval of the bifurcation parameter
(marked in Fig. 26.13 (b) by an arrow pointing to the right). Above a value
� � 11�55 ms the orbit changes drastically as depicted in Fig. 26.13 (c) without
changes to the controller (marked in Fig. 26.13 (b) by an arrow pointing down).
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Fig. 26.12 Above: Transient of voltage drop across the control
resistor V�t� 	 V�t	 ���; below: of the voltage across the
capacitor C1 of the Mackey-Glass oscillator after the controller
was switched on (step in the dashed line in the upper part).



The large orbit is now changed to a smaller one corresponding to an oscillation
with a smaller amplitude. This transition is not reversible nor intermittent. Only
if � is lowered to 8�5 ms the system changes back to the larger orbit (marked in
Fig. 26. 13 (b) by an arrow pointing up). For larger values of � � 11�6 ms the small
orbit cannot be stabilized any more. The small orbit changes continuously if
parameter � is decreased until an unstable fixed point is stabilized below
� � 9�6 ms (marked by a vertical line in Fig. 26.13 (b)). Below � � 8�25 ms the fixed
point is the stable one of the original Mackey-Glass oscillator.

Although the Mackey-Glass system is a lot more complicated than a low-di-
mensional ODE system the dependence on the coupling strength, i.e., the con-
trol resistor Rc in the present case, is simpler than in the case of the Shinriki
oscillator. Figure 26.14 shows the dependence of the averaged control signal on
the control resistor. In contrast to the Shinriki oscillator we observe only a mini-
mal coupling strength as a condition for control for a stable periodic orbit.

26.5.1
Spectroscopy of Unstable Periodic Orbits

As already mentioned it is not possible to determine the unstable periodic orbits
from measured time series, therefore, one has to rely on a control algorithm which
is able to find the periodic orbits itself. To determine the unstable periodic orbits
one can make use of the POS to perform a spectroscopy on these unstable orbits.
Figure 26.15 shows the result of such a spectroscopy. The control signal shows six

26.5 Results of the Application of the Controller to the Mackey-Glass Oscillator 587

Fig. 26.13 (a) The bifurcation diagram of the Mackey-Glass oscillator
without a control. (b) The bifurcation diagram with active control
of the system. (c) The hysteretic behavior can be observed if the
bifurcation parameter � is firstly increased above a certain value
and then decreased. The two branches of the hysteresis correspond
to two limit cycles of different sizes.



pronounced minima. If one examines the phase portrait it turns out that in all
cases the same periodic orbit is stabilized even in cases if the delay time of the
control is equivalent to multiples of the periodic time of the period orbit. This
seems to be caused by the fact that control remained switched on during the scan-
ning procedure. Under the influence of the control the system stays in the vicinity
of this periodic orbit. If the control was switched off before the new delay time was
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Fig. 26.14 Dependence of the control signal
�V on the value of the control resistor, i.e.,
the coupling strength for the Mackey-Glass
oscillator. The two curves correspond to a
stabilization of the period-1 and period-2

orbit. In both the cases the system cannot
be stabilized if the coupling strength is too
small, i.e., the coupling resistor is larger
than 80 k�.

Fig. 26.15 Delay-time spectroscopy on the
Mackey-Glass oscillator. In the upper part of
the figure different local maxima of the volt-
age across the capacitor are plotted. In the
lower part the control signal �D2� is plotted
on a semilogarithmic scale. The delay time

of the oscillator was � � 10�056 ms and the
control resistor was chosen to be
Rc � 20 k�. The delay-time interval reaching
from 0 to 100 ms was scanned with 0.1 ms
steps.



set the system can evolve freely and a lot of other more complex orbits could be
stabilized. These orbits have a periodic time of up to the fourth of the internal de-
lay time of the Mackey-Glass oscillator. The complex orbits were not caught after
every switch to the control state but only with a certain probability. This fact can be
understood in that the basin of attraction of the controlled orbit is restricted to a
certain fraction of the visited phase space.

26.6
Further Improvements

The results discussed here were gained with a delay-feedback controller which
was built from logic devices with low degree of integration. The intension was
to demonstrate that no fancy controllers are needed, in principle, and this
should be seen as a proof of concept. If a real application is planned a better
choice would be to use a microcontroller-based system with an integrated AD-
and DA-converter. Only if the requirements concerning resolution or speed of
conversion cannot be fulfilled by a microcontroller should one use an external
converter controlled by a microcontroller. Modern converters possess a conver-
sion speed of about 80 MSamples/s at a resolution of 12 bit. This should be suf-
ficient for many technical applications.

Here only delayed-feedback control is discussed. Extended feedback delay con-
trol [16–18] improves the performance of the controller in such a way that the
parameter regions of possible control are enlarged. This can be incorporated
very easily and would be advantageous.

As different as the two oscillators are they have one thing in common. They
possess a torsion around the unstable periodic orbits and, therefore, the de-
layed-feedback control will work (see [19–21]). But there exists a class of systems
without this torsion. It has been believed for a long time that such type of sys-
tem cannot be stabilized by means of the continuous time-delay controller.

Different control schemes have been devised to overcome that limitation [22–
24]. However, recently it was shown that this limitation does actually not hold
[25], see Chapter 4.

26.7
Conclusions

It was demonstrated that it is possible to set up a black box controller with a con-
trol strategy which is applicable to different systems without redesigning the con-
troller. It has to be stressed that the strategy is not applicable to any kind of system
but to a large variety of different systems. Further improvements of the controller
have been given. It was also shown that the controller can be used to analyze un-
known systems in the sense that it is possible to find unstable periodic orbits hid-
den in the complex dynamics of these systems. Therefore, it also serves as a mea-
surement tool.
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Part VII
Applications to Chemical Reaction Systems





Jan Schlesner, Vladimir Zykov, and Harald Engel

27.1
Introduction

Two-dimensional rotating excitation waves are observed in a variety of quite dif-
ferent physical, chemical, and biological media. The well-known examples in-
clude cardiac muscle tissue [1, 2], aggregating slime-mould cells [3], catalytic
surface reactions as the oxidation of carbon monoxide on a platinum single
crystal surface [4], or concentration waves in the Belousov-Zhabotinsky (BZ) re-
action [5–12]. From a theoretical point of view, all these experimentally available
systems belong to a single broad class known as excitable media [10, 13–15].

Excitable media are essentially nonlinear dissipative dynamical systems with
energy sources distributed in space. Wave processes in excitable media differ
strongly from those in optics or acoustics. Due to a balance between energy in-
flux and dissipation, the undamped propagation of a solitary wave is possible.
Usually, a solitary wave includes a rapid transition from a stable rest state to an
excited state followed by a slow recovery transition back to the rest state. During
this phase, the medium is refractory, and only gradually recovers excitability.
Due to the finite duration of the refractory phase, there is a minimal wave-
length of a periodic wave train. Moreover, two propagating waves annihilate
after a collision in contrast to an interference of waves in linear systems.

Spiral waves can be created using special initial conditions, or they evolve
from a disruption in a propagating excitation wave caused by a heterogeneity of
the medium. Although heterogeneities can facilitate their formation, spiral
waves exist in completely homogeneous, spatially uniform excitable media. The
influence of the boundary conditions decreases very fast with the distance from
the boundary and practically vanishes if this distance exceeds the spiral wave-
length. Thus, once created spiral waves represent very robust sources of wave
activity in an excitable medium.

Sometimes, such self-sustained activity destroys normal functions of biologi-
cal media and is undesirable. Certain cardiac arrhythmias as ventricular fibrilla-
tions, for example, are believed to be related to spiral wave dynamics and spiral
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instabilities. The role of spiral waves of electric activity in cardiac arrhythmias is
one motivation to elaborate efficient and gentle methods for the control of spiral
waves.

A spiral wave induces temporal oscillations with space-dependent amplitude
and phase in all sites of the medium. Different regimes of rotation have been
observed for spiral waves which can be characterized by the trajectory described
by the spiral tip [9, 11]. The simplest case is a periodic regime called rigid rota-
tion with a tip moving along a circle. Rigidly rotating spiral waves have constant
shape and rotate uniformly. Under certain conditions, a transition from one-fre-
quency periodic to two-frequency quasiperiodic motion occurs where the spiral
tip meanders rather than follows a circular orbit. Meandering spiral waves are
of two types called outward and inward meandering depending on whether
their tip trajectory forms a flower-like orbit with loops pointing outward or in-
ward, respectively. Finally, more complicated hypermeandering motion has been
reported that includes at least three incommensurate frequencies [16] or even
chaotic dynamics [17, 18].

The theory of spiral waves has been intensively elaborated during the last
years [19–30]. But despite great progress in the understanding of dynamics, sta-
bility and interaction of spiral waves, there are still many unsolved problems.
One important issue is the control of spiral wave dynamics. Here we focus on
the control of hypermeandering spiral waves which can be considered as an ex-
ample of chaos control in spatially extended two-dimensional nonlinear dynami-
cal system.

Two control strategies for hypermeandering spiral waves are discussed below.
Firstly, we describe the feedback-mediated stabilization of rigidly rotating spiral
waves in a parameter regime where they are unstable in the absence of feed-
back, and meandering or hypermeandering spiral waves are observed instead.
Secondly, a feedback-mediated parametric modulation is applied to the medium
that induces a displacement of the spiral core based on the phenomenon of res-
onant drift.

27.2
The FitzHugh-Nagumo Model

A prominent example for the study of wave propagation in excitable media is
the FitzHugh-Nagumo model [17, 31, 32] given by the equations

�u
�t
� 1

�
u	 u3�3	 v	 F�t�� �Du�u� �27�1�

�v
�t
� ��u� 
 	 �v�� �27�2�

Here, u�x� y� t� and v�x� y� t� represent the dimensionless concentrations of the
activator and the inhibitor, respectively, 
, �, and �
 1 are given parameters,
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and Du denotes the diffusion constant of the activator. The term F�t� specifies a
parametric forcing applied to the medium. Below, � will be considered as the
main bifurcation parameter that governs the transition from rigidly rotating to
meandering and to hypermeandering spiral waves.

To obtain spiral wave solutions of the FitzHugh-Nagumo model, appropriate
initial conditions have to be chosen for the numerical integration of Eqs. (27.1)
and (27.2) as described in [17], for example. Figure 27.1 shows isoconcentration
lines of a rigidly rotating spiral wave computed with parameters 
 � 1�2,
� � 0�5, � � 0�14, and Du � 1�0. Except for �, these parameters are kept fixed
throughout the paper. Simulations were performed by the forward Euler meth-
od using the five-point finite-difference representation of the Laplacian with a
spacing �x � �y � 0�1 and a time step �t � 0�002.

Solid and dash-dotted lines in Fig. 27.1 represent a snapshot of the isoconcen-
tration lines of the u-field at uc � 0�2 and of the v-field at vc � 	0�12, respec-
tively. The spiral wave rotates clockwise, and the spiral wave tip moves with a
constant velocity along the boundary of the circular core shown by the dashed
line. As the velocity of the tip in the normal direction to the core boundary is
equal to zero, we can define the tip coordinates from the intersection between
isoconcentration lines corresponding to two neighboring time instants t and
t� �t. We use this definition of the spiral tip in our computations below.

Different parameters in the FitzHugh-Nagumo model (27.1) and (27.2) result
in rigidly rotating, meandering or hypermeandering spiral wave solutions [17].
For fixed values of �, 
, and Du, the regime of rotation is uniquely defined by
the parameter �. The bifurcation scenario obtained under variation of � is shown
in Fig. 27.2. At � � 0�14, the spiral is in the regime of rigid rotation. Decreasing
�, at a certain threshold a supercritical Hopf bifurcation occurs and rigid rota-
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Fig. 27.1 Isoconcentration lines of the u – (solid line) and
v – field (dash-dotted line) of a rigidly rotating spiral wave.
The tip follows the dashed circular trajectory.



tion is replaced by outward meandering. When � decreases further, outward
meandering transforms to inward meandering. Finally, after crossing a second
threshold the hypermeandering regime is established.

27.3
Stabilization of Rigidly Rotating Spirals in the Hypermeandering Regime

There are at least two approaches to stabilize an unstable rigidly rotating spiral
wave: proportional feedback control and time delay autosynchronization [33].
Both are noninvasive meaning that the control force vanishes in the stabilized
state, and that the control does not change the intrinsic dynamics.

Proportional feedback control (PFC) has been successfully applied to stabilize
wave segments propagating in a two-dimensional excitable medium [34]. In a
circular domain, PFC can force a rigidly rotating spiral wave to move toward
the domain center [35]. Recently, rigid rotation of spiral waves was stabilized by
PFC in a parameter range where it performs meandering motion in the absence
of feedback [33].

On the other hand, the instability of rigid rotation can be viewed as a transi-
tion from a stable to an unstable periodic orbit (UPO) [20, 24–28]. Time delay
autosynchronization (TDAS) [36, 37] has been successfully employed to stabilize
UPOs in dynamical systems [38–40]. TDAS is especially efficient when all dy-
namical variables can be measured and controlled simultaneously [41].

In spatially extended media, either the system variables can be monitored
only at a finite number of points, or spatially or temporally averaged variables
are measured. Usually, the control signal is applied locally at a limited number
of points or globally. In spite of these restrictions, there are many examples of
successful control by TDAS in one-dimensional media [42–46]. In two- or three-
dimensional systems, only few examples for the stabilization of spatiotemporal
patterns by TDAS are known [33, 47].
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Fig. 27.2 Tip path patterns obtained under variation of the
bifurcation parameter �.



Let us now analyze the applicability of PFC to suppress hypermeandering of
spiral waves.

Characteristic for a rigidly rotating spiral wave is a constant distance r0 be-
tween the tip and the core center. We propose to apply a control force F�t� that
is proportional to the difference between the actual distance from an arbitrarily
chosen reference point, r�t�, and the desired core radius r0

F�t� � K r0 	 r�t� �� �27�3�

Here, K denotes the feedback strength. Before we can apply PFC, the reference
radius r0 must be known. To determine r0, simultaneously with Eqs. (27.1)–
(27.3) we solve a simple relaxation dynamics according to

dr0

dt
� 1

��
r�t� 	 r0 �� �27�4�

Provided r0 changes on a characteristic time scale much larger than the rotation
period of the spiral wave, i.e., �� 0 T , this additional equation ensures that r0 is
adapted automatically during feedback-mediated stabilization. In the limit
t ��, r0�t� approaches the previously unknown value r0. Figure 27.3 (a) dis-
plays the tip trajectory calculated from Eqs. (27.1) and (27.2) in the presence of
PFC according to Eq. (27.3). The cross marks the reference point. Under feed-
back the spiral tip becomes attracted to a circular orbit of radius r0 centered at
the reference point (red line in Fig. 27.3(a)). When the feedback is switched off
the tip leaves the circular orbit. After a short transient it follows a path charac-
teristic for a hypermeandering spiral wave (black line in Fig. 27.3 (a)). In the sta-
bilized regime the control force vanishes, since r�t� � r0. Therefore, the pro-
posed control method stabilizes an existing UPO and does not induce a new
periodic solution.

We have calculated numerically the dependence of the core radius and the ro-
tation frequency of stabilized rigid rotation on the bifurcation parameter �. In
the absence of feedback, the considered range of �-values corresponds to mean-
dering and hypermeandering spiral waves. In the meandering regime, the Four-
ier spectra of the tip coordinates contain two basic frequencies. Under feedback
control, the motion of the tip becomes periodic. The amplitude r0��� and the
frequency ���� of the remaining basic Fourier component are plotted in Fig.
27.4 (a) and (b), respectively. The same procedure has been applied in the hyper-
meandering regime. Here, the Fourier spectrum of the unperturbed spiral tip
displays more than two basic frequencies on a continuous background. Under
feedback, this complicated motion is replaced by the stabilized periodic orbit
with a characteristic one-frequency spectrum, from which radius r0��� and fre-
quency ���� of the stabilized rigid rotation have been taken. To speed up, the
numerical calculations, activator, and inhibitor field of a rigidly rotating spiral
wave stabilized at a certain � value can be used as an initial condition for feed-
back-mediated stabilization at a slightly changed value �� ��.
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The results in Fig. 27.4 demonstrate that it is possible to suppress both the
transition to meandering as well as to hypermeandering noninvasively by
means of global PFC. In the stabilized regime, the whole medium oscillates per-
iodically at the rotation frequency of the spiral wave. Finally, we emphasize
again that application of noninvasive PFC can stabilize a periodic two-dimen-
sional wave pattern in a broad parameter range with quite irregular autono-
mous spatiotemporal dynamics.
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Fig. 27.3 (a) Rigid rotation of a spiral wave in the hypermean-
dering regime stabilized by PFC (red line). At time t � 2000,
the feedback force is switched off, and the spiral tip moves
along the black line characteristic for hypermeandering.
Parameter values: uc � 0�2, � � 0�03, �� � 200. (b) Fourier
spectra of controlled (red) and uncontrolled (black) tip motion.



27.4
Control of Spiral Wave Location in the Hypermeandering Regime

Sometimes the purpose of spiral wave control is to suppress irregular wave ac-
tivity in the medium completely, rather than to replace it by unstable rigid rota-
tion. In this situation, one possibility is the application of a large-amplitude ex-
citability perturbation to the whole medium after which it will be recovered into
the rest state. Such a huge external perturbation, called defibrillation shock in
cardiology, can be rather dangerous as it can damage important living functions
of biological systems.

Alternatively, a sequence of relatively weak perturbations can be applied to
the system. Crucial for this control of spiral dynamics is the resonant drift of
spiral waves in response to a periodic change in the excitability of the medium
exactly at the rotation period of a rigidly rotating spiral wave. Resonant drift has
been predicted for weakly excitable media within a kinematical description [48],
confirmed in numerous computations and experiments [21, 49–52], and ex-
plained as a generic property of an excitable medium [53, 54]. Due to resonant
drift, the spiral wave can be shifted to the boundary of the medium, where it
hopefully should disappear. Below we demonstrate that under an appropriate
feedback-mediated parameter modulation not only rigidly rotating, but also
meandering and hypermeandering spiral waves can be moved along a pregiven
direction through the medium.

Up to now there is no general theory which allows us to predict the rotation
frequency � the wavelength and the shape of a rotating spiral wave starting
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Fig. 27.4 Core radius (a) and rotation frequency (b) of feed-
back-stabilized rigid rotation vs. the control parameter �. Left
and right vertical lines mark the transition to meandering
respectively hypermeandering in the absence of feedback.



from an underlying reaction–diffusion model like (27.1) and (27.2), though this
problem has been the subject of numerous studies [21, 48, 53, 55–57]. A. Win-
free was the first who suggested to approximate the wave front by an Archime-
dean spiral [6]


�r� t� � 
0 	 2�
�

r � �t� �27�5�

where 
 and r denote polar coordinates with the origin at the rotation center.
Rigidly rotating spiral wave solutions of Eqs. (27.1) and (27.2) outside a relative-
ly small circle of radius rA 
 � practically coincide with an Archimedean spiral.
Recent extensive numerical simulations of spiral waves in the Oregonator mod-
el [58], and experiments with the light-sensitive BZ reaction [59] have confirmed
the validity of the Archimedean approximation except of a small region of ra-
dius rA. Note that (27.5) gives the asymptotic form of spiral wave solutions to
the complex Ginzburg-Landau equation [60, 61]. The shape of weakly meander-
ing spiral waves exhibits only small oscillations around an Archimedean shape,
and the amplitude of these oscillations vanishes very quickly with increasing
distance from the spiral center [24]. Below, we will use the Archimedean ap-
proximation to study the feedback-mediated resonant drift of meandering and
hypermeandering spiral waves. The obtained results agree well with those from
direct numerical simulations, and thus justify our simplified approach.

Now, we derive an iterative map that describes the effect of pulse-like excit-
ability perturbations on spiral waves as outlined previously in [62]. Let us as-
sume an unperturbed spiral wave that is rotating rigidly at a frequency �0

around a core center located at a site z0 � x0 � iy0. One has to approximate the
shape of this spiral by expression (27.5) to determine the spiral phase 
0. After
a short perturbation, modeled as F�t� � AI��t� in Eqs. (27.1) and (27.2), the rota-
tion center, is shifted to a new site

z1 � z0 � h exp�i
0 � i��� �27�6�

where h is the magnitude of this displacement whose direction is determined
by the spiral phase 
0 and a constant � characterizing the excitable medium.
Additionally, the applied perturbation changes the rotation phase of the spiral
by �
. Changes in the spiral shape induced by the perturbation are assumed to
relax on a time scale Trel much smaller than the rotation period T0 � 2���0.

A second perturbation applied after the time interval Tm should produce a
similar displacement. For Trel 
 Tm the location of the spiral center after the
second perturbation can be written as

z2 � z1 � h exp�i
1 � i��� �27�7�

where


1 � 
0 � �
� �0Tm� �27�8�
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Since the direction of the displacement remains the same after subtracting 2�
from the right-hand side of Eq. (27.8), the last expression can be rewritten as


1 � 
0 � �0 � �


Tm
	 �m

 �
Tm� �27�9�

Consequently, after k similar perturbations according to F�t� � AI
$k	1

l�0

��t	 lTm� the spiral displacement is

zk � zk	1 � h exp�i
k	1 � i��� �27�10�

k	1 � 
k	2 � ���	 �m�Tm� �27�11�

where k � 2, and

�� � �0 � �
�Tm �27�12�

denotes the averaged rotation frequency of the spiral wave perturbed by the ap-
plied modulation.

The phenomenon of resonant drift is induced under modulation with fre-
quency �m � ��. In this case, from Eq. (27.11) it follows 
k � 
k	1 � � � � � 
0.
All particular displacements occur in the same direction and the total shift of
the spiral location after k perturbations is given by

zk � z0 � kh exp�i
0 � i��� �27�13�

It is important to stress that if �m � n��, where n is an integer, n � 1, the result
of n subsequent displacements, i.e., after one rotation period of the spiral wave,
is equal to zero, because zk�n � zk. A long term drift is absent in this case.

Another interesting consequence from Eqs. (27.10)–(27.12) can be obtained in
the case when �m is close to the averaged frequency of the perturbed spiral
wave, ��m���	 1� 
 1. Under the assumption that the displacement h is small,
the discrete maps (27.10) and (27.11) can be transformed into an ordinary dif-
ferential equation for the spiral location z�t�:

�z � h
Tm

expi����	 �m�t�
0 � ���� �27�14�

Thus, the velocity of the resonant drift induced by the periodic modulation is
determined by the ratio h�Tm. Under resonant forcing, �m � ��, the drift occurs
along a straight line whose direction depends on the initial orientation 
0 of
the spiral wave, and on the constant �. More generally, if the parameter modu-
lation is given by

F�t� � AI

�k

l�0

��t	 lTm 	 t0� �27�15�
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with arbitrary t0 � 0, the drift direction 	 should depend on the modulation
phase �mod � ��t0 � �mt0 as well yielding

	 � ��
0 � �mod� �27�16�

In summary, with �m � �� from Eq. (27.1) follows for the resonant drift

�z � h
Tm

exp�i	� �27�17�

with 	 defined by Eq. (27.16).
Note that Eq. (27.14) obtained for the discrete modulation (27.15) practically

coincides with induced drift equations known for a continuous periodic modula-
tion [21, 48, 53]. The only difference is that the constant � in (27.14) specifies a
displacement direction induced by a sequence of �-perturbations, but not by a
harmonic perturbation F�t� � A cos���t�. In both cases, this angle, which deter-
mines the drift direction for 
0 � �mod � 0, is a characteristic parameter that
depends on the properties of the excitable medium, and on the applied modula-
tion method.

Assume now that we are able to monitor the wave activity along a straight
line in the medium. Then, we can use this information to set up the following
feedback loop. Each time a wave front becomes tangent to a virtual detector
line, a short excitability perturbation is applied to the whole medium immedi-
ately or with some time delay �. Without loss of generality, the detector line is
given by x � 0, and the spiral wave is centered at coordinates �x� y� with x � 0.
Within the Archimedean approximation for the spiral wave given by Eq. (27.5),
straightforward geometrical considerations show that the wave front touches the
detector each time tk satisfying the equation

��tk �
0 	 2�
�

r � �	 arctan


x

� �
� 2�k� �27�18�

where

r�x� � x

������������������������������������������������
0�5�

�������������������������������
0�25� �

2�x

 �2
5?@@A

� �27�19�

and

 �
���������������
r2 	 x2

"
� �x

2�r
� �27�20�

For the definition of r�x� and  compare Fig. 27.5. Equation (27.18) determines
a modulating sequence similar to Eq. (27.15) with a phase shift

�mod � �	
0 � 2�
�

r 	 arctan


x

� �
� ���� �27�21�
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where the time delay � is taken into account. Substituting Eq. (27.21) into
Eq. (27.16), we obtain the direction 	 of the induced drift as a function of the
coordinate x � 0.

	�x� � �� �� 2�
�

r�x� 	 arctan


x

� �
� ���� �27�22�

On the left-hand side of the line detector, the drift direction is determined by a
similar expression, however, an additional rotation by the angle � should be in-
cluded. This gives for x � 0

	�x� � �� 2�
�

r�x� � arctan


x

� �
� ���� �27�23�

Finally, the drift of the spiral center can be obtained by Eq. (27.17) with 	 deter-
mined by Eqs. (27.22) and (27.23). The obtained drift velocity field is shown in
Fig. 27.6. There is a set of stationary trajectories given by the condition

	�x� � ��2� �n� �27�24�

where n is an arbitrary integer. A stable stationary trajectory corresponds to an
even number n � 2m, while an odd number n � 2m � 1 characterizes an un-
stable one. Solid lines in Fig. 27.6 show three trajectories of spiral wave centers
placed initially at different distances from the line detector. Asymptotically they
are attracted by stable stationary trajectories with basins of attraction separated
by unstable stationary trajectories.
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Fig. 27.5 An Archimedean spiral (solid curve) touches a line
detector (dashed).
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Fig. 27.6 Velocity field for spiral wave drift induced near a line
detector. Solid lines show numerically obtained trajectories of
the spiral center.

Fig. 27.7 Feedback-mediated resonant drift of (a) rigidly, (b)
meandering, and (c) hypermeandering spiral waves in parallel
to a line detector. The dashed line marks the detector. Param-
eter values: (a) � � 0�14, AI � 0�1, (b) � � 0�09, AI � 0�05,
and (c) � � 0�03, AI � 0�05.



To check the predictions of the iterated-map approach we have performed
direct numerical simulations of the FitzHugh-Nagumo equations. The results,
shown in Fig. 27.7, clearly demonstrate that the proposed control algorithm
works for rigidly rotating, meandering, and even hypermeandering spiral waves.

27.5
Discussion

We have presented two methods suitable to remove irregular wave activity in a
bounded domain of an excitable medium that results from a hypermeandering
spiral wave. The first method substitutes the irregular regime by a periodic one,
forcing the spiral wave into the regime of rigid rotation. The second method
causes a resonant drift of the hypermeandering spiral wave. In both cases we
set up a feedback control to suppress the undesired wave activity.

In the meandering and hypermeandering regime rigidly rotating spiral waves
are still a solution of the underlying reaction–diffusion equations which, how-
ever, is unstable. We have shown that this unstable solution can be stabilized
applying a noninvasive proportional feedback control. After successful stabiliza-
tion, the whole medium is excited periodically.

As rigid rotation is stabilized for values of the control parameter � where it is
unstable in the absence of feedback, our results are an example for a feedback-
mediated impact on the selection of a two-dimensional spatiotemporal pattern.

Although this issue is not in our focus here, the proposed PFC allows us to
determine the core radius and the rotation frequency of unstable rigidly rotating
spiral waves numerically irrespectively of whether underlying model equations
are known or not. Other characteristics, as the spatial profile of the unstable spi-
ral wave or the spatial gradient close to the spiral core, in principle can be ob-
tained too. This information could be very helpful in testing the validity of var-
ious theoretical approaches to spiral wave dynamics [21, 22, 29].

In the second part of the paper, we apply a variant of feedback-mediated reso-
nant drift to shift a hypermeandering spiral wave to the boundary of the medi-
um. The drift direction is in parallel to an arbitrarily oriented straight line de-
tector along which the wave activity is monitored. This might be important for
such possible applications as the low-voltage defibrillation of cardiac tissue, for
example.

Because the phase of the feedback signal depends on the orientation of the
spiral wave, the feedback-induced drift direction is uniquely determined by the
position of the spiral center (in Archimedean approximation). Thus, under feed-
back control the dynamics of spiral wave can be described by a drift velocity
field, and does not depend on the initial orientation of the spiral wave.

We find good agreement between the theoretically calculated velocity field of
resonant drift and the numerically obtained drift trajectories of the spiral center.
This is quite surprising, as the theoretical approach is based on an Archime-
dean approximation for the wave front which we not expected to hold for hyper-
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meandering spiral waves. With respect to the studied feedback algorithm this
approximation has been proven to be justified.

The theoretical approach presented in Section 27.4 is based on a very general
description of excitable media and does not use specific features of particular
systems. Therefore, the obtained results are of general value and can be applied
to spiral wave dynamics in quite different excitable media.
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Carsten Beta and Alexander S. Mikhailov

28.1
Introduction

Along with the chemical Belousov-Zhabotinsky system, catalytic surface reac-
tions provide a classical example of a medium with a rich potential of nonequi-
librium pattern formation. In such reactions, reacting molecules come by ad-
sorption from the gas phase to the metal surface, diffuse on it and undergo re-
actions. By changing the rates of supply of the gaseous reactants, reaction con-
ditions can easily be controlled. Because the reaction is confined to a catalytic
metal surface, its process can readily be monitored by optical and electron mi-
croscopy methods. All basic kinds of nonequilibrium behavior, characteristic for
bistable, excitable or oscillatory media, can be observed in surface chemical reac-
tions. In the context of the present volume, it is important that spatiotemporal
chaos (i.e., chemical turbulence) is also possible on catalytic surfaces. Both theo-
retical and experimental studies reveal that, in the oscillatory regime, the chaos
is spontaneously developing via an instability of uniform oscillations leading to
phase and amplitude turbulence.

Qualitatively, the behavior of real chemical systems near the onset of chaos is
often in good agreement with the predictions of the complex Ginzburg-Landau
(CGLE) equation that is valid for reaction–diffusion systems in the vicinity of a
supercritical Hopf bifurcation. Therefore, surface chemical reactions provide a
good opportunity to experimentally verify general predictions based on this
equation. On the other hand, advanced realistic models of some surface reac-
tions and, in particular, of the CO oxidation reaction on platinum are available.
While remaining simple, these models reproduce, with a satisfactory quantita-
tive agreement, the actually observed behavior.

To control spatiotemporal pattern formation and turbulence in surface reac-
tions, various methods can be used. The control can be, for example, implemen-
ted by using narrowly focused laser light that locally heats the metal surface. In
this chapter, only global-control methods are however considered, where the re-
action is steered by varying the supply rates of reactants into the reaction cham-
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ber and thus controlling partial pressures of these gaseous reactants. Not only
external periodic forcing, but also various global-feedback schemes can be im-
plemented by making the rates of reactants supply dependent on selected global
properties of monitored adsorbate coverage distributions on a catalytic surface.
Using the CO oxidation on platinum, first experiments on control of spatiotem-
poral chaos in chemical reactions have been performed.

28.2
The Catalytic CO Oxidation on Pt(110)

28.2.1
Mechanism

The catalytic oxidation of CO on platinum proceeds via a Langmuir-Hinshel-
wood mechanism [16], i.e., both CO and oxygen have to adsorb on the catalytic
surface before the reaction to carbon dioxide can take place, which is immedi-
ately released into the gas phase. While CO adsorbs as a molecule, oxygen dis-
sociates upon adsorption. At the temperatures considered here, only desorption
of CO has to be taken into account, whereas oxygen desorption can be ne-
glected. Similarly, only CO is diffusively mobile along the platinum surface, pro-
viding local coupling between neighboring sites on the crystal. The reaction can
be summarized in the following scheme:

2 CO� 2 = 2 COad

O2 � 2 � 2 Oad �28�1�
2 COad � 2 Oad � 2 CO2> � 4 �

where  stands for a free adsorption site and the index “ad” denotes adsorbed
species. Since the dissociative adsorption of oxygen requires two adjacent free
sites on the surface, a high CO coverage asymmetrically inhibits the adsorption
of oxygen. This induces bistable dynamics in a wide range of parameters, where
a mainly oxygen covered reactive state coexists with a CO covered non-reactive
state. Furthermore, the Pt(110) facet exhibits adsorbate dependent transitions in
surface structure. The empty and oxygen covered surface reconstructs in a
�1�2� missing row phase, whereas for sufficiently high CO coverages the re-
construction is lifed to the �1�1� bulk terminated structure. However, the stick-
ing coefficient of oxygen is higher on the �1�1� structure as compared to the
�1�2� surface, inducing an inherent negative feedback loop that can lead to
excitable and oscillatory dynamics in this system [25]. In combination with lat-
eral CO diffusion along the surface, a two-dimensional reaction–diffusion sys-
tem is established that can exhibit a wealth of complex spatiotemporal concen-
tration patterns. Note that the shape of concentration patterns on the Pt(110)
surface is affected by anisotropy of CO surface diffusion [44]. Diffusion of CO is
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faster in the 1�10� direction than in the perpendicular 001� direction causing an
elongated, or, in the case of curved fragments, elliptical shape of the pattern.

Further features like surface microfaceting, the formation of subsurface oxy-
gen, and global coupling through the gas phase are only of secondary impor-
tance for the results presented in the following sections and will be neglected
here.

28.2.2
Modeling

A mathematical model for the catalytic oxidation of CO on Pt(110) has been de-
veloped by Krischer, Eiswirth, and Ertl (KEE model) [15, 29]. Depending on the
choice of external parameters, the model not only shows monostable and bis-
table behavior but also excitable and oscillatory dynamics. The KEE model is
well established and has been successfully used for over a decade to study the
dynamics of catalytic CO oxidation on Pt(110) numerically. It consists of three
coupled differential equations, taking into account the most significant physical
processes described in the previous section,

�tu � k1pCOsCO�1	 u3� 	 k2u	 k3uv�D)2u� �28�2�

�tv � k4pO2 sO�1�1w � sO�1�2�1	 w���1	 u	 v�2 	 k3uv� �28�3�

�tw � k5
1

1� exp u0	u
�u

� �	 w

� �
� �28�4�

The three variables u, v, and w are normalized between zero and one. They de-
note the CO coverage, the oxygen coverage, and the local fraction of the surface
found in the nonreconstructed �1�1� structure, respectively. In Eqs. (28.2)–
(28.4), adsorption of CO and oxygen is taken into account, k1 and k4 denoting
the corresponding rate constants. In addition, adsorption depends on the re-
spective sticking coefficients si, Eq. (28.3) taking different sticking probabilities
of oxygen on the �1�1� and �1�2� facets into account. Desorption of CO is gov-
erned by the rate constant k2, and reaction between the two adsorbed species
proceeds with a rate constant k3. The partial pressures of the reactants pCO and
pO2 are global parameters that can be chosen externally.

Equation (28.4) describes the coverage dependent transition between the
�1�2� missing row structure and the �1�1� bulk terminated surface taking
place with a rate constant of k5. The function f , describing the equilibrium val-
ue of w in Eq. (28.4), is exclusively determined by u and can be approximated
by an exponential ansatz [42].

The KEE model has been modified and extended in many ways. A reduced
two-variable version of the model was derived that gives qualitatively similar re-
sults for many aspects of the spatiotemporal dynamics [2, 17]. Also, global cou-

28.2 The Catalytic CO Oxidation on Pt(110) 611



pling through the gas phase [18], faceting of the single crystal surface [29], and
the formation of subsurface oxygen [43] have been taken into account.

28.2.3
Experimental Setup

Experiments are commonly performed under low pressure conditions in a stain-
less steel ultrahigh vacuum (UHV) vessel that is operated as a continuous flow
reactor. The Pt(110) single crystal of about 10 mm in diameter is mounted in-
side the vacuum chamber and prepared, before each experiment, by repeated cy-
cles of argon ion sputtering, and annealing up to 750 K. In many experiments,
approximately 80% of the sample surface were covered by microlithographically
deposited Ti, which is easily oxidized to catalytically inert TiO2. Thus, only a
few reactive compartments are left on the surface to reduce effects of global
coupling through the gas phase.

Adsorbate patterns on the platinum surface are imaged using a photoemis-
sion electron microscope (PEEM). The PEEM yields spatially resolved real time
images of the local work function across the sample surface. Due to the adsor-
bate dependence of the work function, different values of local work function
can be translated into adsorbate coverages so that images of lateral concentra-
tion distributions on the catalyst surface become accessible in real time [39, 41].
According to the difference in work function between CO and O covered Pt, CO
covered areas appear bright in the PEEM image, whereas O covered regions are
dark. Besides PEEM, also optical methods are available to image the adsorbate
patterns on a catalyst surface [39]. Ellipsomicroscopy for surface imaging
(EMSI) and reflection anisotropy microscopy (RAM) allow the observation of
self-organization on the catalyst surface even at high pressures [21, 40].

A schematic experimental setup for catalytic CO oxidation is shown in
Fig. 28.1. It can be extended to incorporate various control schemes. In all cases
discussed here, the control force acts on the partial pressure of CO in the reac-
tor. Since changes in the pressure are experienced equally at all locations on the
catalyst surface, the control is acting globally. In the continuously pumped reac-
tion chamber, the dosing rate of CO gas determines the CO partial pressure
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Fig. 28.1 Schematic setup with external forcing (a) and feed-
back (b) (from [9]).



pCO and is controlled by an automated gas inlet system. In the following sec-
tions, both external forcing (a) and feedback (b) are implemented to change the
electronic input signal of the inlet system. The CO partial pressure inside the
chamber follows modulations in the inlet system with an intrinsic delay of
�i � 0�6 s determined by the residence time of gases in the pumped chamber.

28.3
Spatiotemporal Chaos in Catalytic CO Oxidation on Pt(110)

In his seminal book, Kuramoto has coined the term chemical turbulence for
spatiotemporally chaotic dynamical states in chemical reaction diffusion systems
[30]. Catalytic CO oxidation on Pt(110) is one of the few experimental systems
that shows, besides a wealth of regular wave patterns, spatiotemporally disor-
dered, irregular behavior of this type. Although observed already a long time
ago [27], a detailed statistical analysis of its dynamics has been performed only
recently [12] and will be summarized in this section.

In Fig. 28.2 (a), a snapshot from a spatiotemporally disordered, turbulent time
series is shown. An irregular fine texture can be seen that is composed of ran-
domly traveling and constantly reshaping structures. We apply a two-dimen-
sional variant of the analytic signal approach to transform the series of PEEM
images into time-dependent spatial distributions of phase and amplitude
[6, 36, 37]. From the image intensity I�
x� t�, the analytic signal ��
x� t� �
I�
x� t� � i�I�
x� t� is generated, where �I�
x� t� is the Hilbert transform of I�
x� t�.
The phase and amplitude variables are defined as � � arg � and R � ���ref ���
with � � �� � and �ref ��� a reference amplitude that compensates for deviations
from harmonic oscillations [6].
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Fig. 28.2 Chemical turbulence in catalytic
CO oxidation on Pt(110). (a) PEEM image of
size 275� 275 �m2. The parameters are
T � 502 K, pO2 � 40�0� 10	5 mbar, and
pCO � 13�1� 10	5 mbar. The inset shows
the directions of fast and slow CO diffusion,
110� and 001�, respectively. (b) Phase and
(c) amplitude representations of (a) with

zooms of selected regions indicated by rect-
angular boxes. The images are coded in a
linear gray scale color table, where white
(black) denotes high (low) values of the re-
spective quantity. In the zoom in (b), the lo-
cations of topological defects are marked
with the symbols ? and @, according to
their topological charge (from [12]).



In Fig. 28.2 (b) and (c), the phase and amplitude representations of the PEEM
image in (a) are shown. In the phase image (b), topological defects can be char-
acterized by an integer topological charge mtop � 1

2�

B )��
r� t� � d
s, i.e., along any
closed contour surrounding a defect, the phase changes by an amount of
2�mtop. At a defect, the local amplitude drops to zero, the phase is not defined,
and the phase gradient diverges. The number of defects was counted inside a
region of 50� 50 �m in size. In the inset of Fig. 28.3 (a), the number n	 of neg-
ative defects is shown as an example in the course of time. Figure 28.3 (a) dis-
plays the corresponding probability distribution function (PDF) for the number
of defects n.

Assuming that the defects are statistically independent, the shape of the PDF
can be explained in terms of a simple probabilistic model, based on the gain
and loss rates of defects in the observed area [20]. The gain (creation and enter-
ing) and loss (decay and leaving) rates are determined from the experimental
data. In first approximation, creation and entering of defects are independent of
the number of defects n in the observed area, c�n� � c0 and e�n� � e0. The
decay shows a combined quadratic and linear dependence on n, d�n� �
d01 n2 � d02 n, whereas the leaving rate grows linearly with n, l�n� � l0 n.

In the statistically stationary state, the master equation for the probability
p�n� of finding a number of n defects in the observed area reduces to a simple
recursive relation for the PDF. With the above expressions for the rate con-
stants, the recursion leads to a modified Poisson distribution [13, 46],

p�n� � 1
I��2 ���

	
" �

	���2��n

���� 1� n�n� � �28�5�
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Fig. 28.3 (a) PDF of the number of defects n
(bars) and modified Poisson distribution
(open circles), determined from the gain
and loss rates c � 1�04, d � 0�02 n2 � 0�11 n,
e � 0�17, and l � 0�04 n. (a, inset) Number

of negatively charged defects n	 as a func-
tion of time in an area of 50� 50�m in size.
The dashed line at 4�84 denotes the mean
value. (b) Normalized pair correlation func-
tion (from [12]).

a) b)



where I� is the modified Bessel function, 	 � �c0 � e0��d01 and � � �d02 � l0��
d01. The PDF is shown in Fig. 28.3 (a, open circles) for the values of 	 � 60�60
and � � 7�68 determined from the gain and loss rates.

In Fig. 28.3 (b), the normalized pair correlation function is displayed (see [14,
24]) for definition). It shows that in the immediate vicinity of a defect, the prob-
ability of finding an oppositely charged defect is strongly increased. Gil et al.
derived the first probabilistic description of defect turbulence in the framework
of the CGLE [20]. Their analysis is based on the assumption that defects are
well mixed and move independently of each other, i.e., that correlations between
defects can be neglected.

Here, this is clearly not the case. The shape of the normalized pair correlation
function can be understood by the presence of short-range correlations between
oppositely charged defects. The peak at small distances indicates that a large
number of defect pairs self-annihilate shortly after being created. Only to a les-
ser extent, the oppositely charged defects detach and travel independently
through the system. In the latter case, defects mix and annihilation occurs pro-
portional to n2 as prediced by Gil et al. On the other hand, in the case of self-
annihilation events, the oppositely charged defects are not statistically indepen-
dent and annihilation will occur proportional to n. The sharp drop in the pair
correlation function at intermediate distances suggests that annihilation events
can be mostly attributed to these two scenarios, which leads to a combined
quadratic and linear dependence of the effective annihilation rate on n.

28.4
Control of Spatiotemporal Chaos by Global Delayed Feedback

Global delayed feedback can be applied to control spatiotemporal chaos and pat-
tern formation in extended dynamical systems. In this section, we present ex-
perimental [6, 10, 28] and numerical results [8, 28] from oscillatory catalytic CO
oxidation on Pt(110) under global-delayed feedback. We review control of chemi-
cal turbulence in this system discussing both the formation of novel feedback-
induced patterns and aspects of the invasiveness of the control scheme (for a
review see also [34]).

Global feedback is implemented into the CO oxidation system as follows. The
integral intensity I�t� of the PEEM image is continuously recorded, normalized
between zero and unity for the completely O and CO covered surface, respec-
tively. From this quantity, a feedback signal is computed by taking the difference
between the intensity delayed by a fixed time lag �, I�t	 ��, and either (a) a
constant reference intensity Iref or (b) the instantaneous image intensity I�t�.
Case (b) is commonly referred to as time delay autosynchronization (TDAS)
[38]. The resulting signal, multiplied by an additional intensity factor �, is used
as input for the electronically operated dosing system of CO gas into the reac-
tion chamber,
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�a� pCO�t� � p0
CO � � �I�t	 �� 	 Iref � � �28�6�

�b� pCO�t� � p0
CO � ��I�t	 �� 	 I�t��� �28�7�

The constant reference value Iref was determined prior to each series of experi-
ments as the time average of the global-PEEM intensity I�t� in the initially de-
veloping state of spiral-wave turbulence. Note that an additional control loop la-
tency �i is present, due to the finite pumping rate of the chamber. It was shown
that for �i 
 � there is no significant qualitative difference to the results with-
out control loop latency and, therefore, the effect of an intrinsic delay can be ne-
glected in the discussion of the present results [10].

28.4.1
Control of Turbulence in Catalytic CO Oxidation – Experimental

Temperature and partial pressures of the reactants are chosen such that uni-
form oscillations are unstable in absence of feedback. The system spontaneously
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Fig. 28.4 Feedback-induced transition from
chemical turbulence to homogeneous oscil-
lations. (top) PEEM images of freely devel-
oping chemical turbulence in absence of
feedback (a), intermittent turbulence for
small values of feedback intensity (b), and
homogeneous oscillations for higher values
of feedback intensity (c). (middle) Space–
time plot for the transition from turbulence
to homogeneous oscillations along the line
AB indicated in image (a). From left to right,

the plot shows, with increasing time, turbu-
lence for � � 0�0, transition to intermittent
turbulence and the persistent state of inter-
mittent turbulence for � � 0�77� 10	5 mbar,
and the transition to homogeneous oscilla-
tions for � � 1�2� 10	5 mbar. Below the
space–time diagram, the feedback intensity
is plotted as a function of time. The parame-
ters are T � 505 K, pO2 � 4� 10	4 mbar,
p0

CO � 9�5� 10	5 mbar, and � � 3 s (from
[10]).



develops disordered, highly irregular spiral-wave turbulence. A snapshot of this
dynamical state is shown in Fig. 28.4 (a). For sufficiently strong feedback inten-
sities � chemical turbulence can be suppressed with both feedback schemes
(28.6) and (28.7) introduced above. We present a series of experiments, where
both the feedback intensity � and the delay time � in (28.7) are systematically
varied.

28.4.1.1 Control of Turbulence
In the presence of feedback, the system gradually synchronizes with increasing
feedback intensity �. An example of the feedback-induced transition from turbu-
lence to homogeneous oscillations is shown in Fig. 28.4. For zero feedback in-
tensity, the system is in a state of fully developed spiral-wave turbulence as dis-
played in Fig. 28.4 (a). Oscillations are already synchronized to a certain extent
for intermediate values of � resulting in a state of intermittent turbulence,
Fig. 28.4 (b). Finally, for higher feedback intensities, complete synchronization is
reached and the system performs homogeneous oscillations, see Fig. 28.4 (c). A
space–time plot along the diagonal of the PEEM image further illustrates the
process of synchronization as shown in the lower part of Fig. 28.4. Note that for
synchronization of the system in dependence on the feedback intensity �, strong
hysteresis effects are observed.

In the state of control, the period T of homogeneous oscillations depends on
the choice of the delay time � in the feedback scheme. For T � � the optimal
case of a noninvasive feedback would be established. Figure 28.5 shows that the
period approaches the line for which T equals � with increasing delay (black
squares). However, the actual intersection point for which T � � is not reached
and a jump occurs instead around the line given by T � �. As the value of T ap-
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Fig. 28.5 Period T of homogeneous oscilla-
tions (black squares) and feedback magni-
tude M � ��I�t	 �� 	 I�t��� (open circles) as
function of the delay time �. The parameters

are T � 515 K, pO2 � 4� 10	4 mbar,
p0

CO � 10�0� 10	5 mbar, and ��p0
CO � 0�32

(from [10]).



proaches �, the feedback magnitude M (open circles) can be decreased by about
50%, indicating that the invasiveness of the feedback is reduced considerably by
optimizing the choice of the delay time in the feedback scheme. However, the
limit case of a completely noninvasive control could not be established in the
experiments.

28.4.1.2 Spatiotemporal Pattern Formation
In a narrow interval of intermediate feedback intensities close to the transition
from turbulence to uniform oscillations, different spatiotemporal patterns can
be stabilized [6, 10, 28]. Here, we present an overview of the experimentally
observed feedback induced space–time patterns that are obtained by application
of the global-feedback scheme (28.6) (see Fig. 28.6). A large number of experi-
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Fig. 28.6 (a)–(f) PEEM images (top row),
distributions of phase (second row), ampli-
tude (third row), and phase portraits (bot-
tom row) for several typical patterns ob-
served in CO oxidation experiments. In the
PEEM images, blue (dark gray) color de-
notes surface areas predominantly covered
by oxygen, and red (light gray) regions are
mainly CO covered. Green (bright) color de-
notes intermediate values of intensity. In the
phase and amplitude representations, yellow
(bright) color denotes high, and blue (dark)
color denotes low values. Green and red

(gray) areas denote intermediate phase and
amplitude values. The parameter values of
temperature (K), oxygen partial pressure
(10	5 mbar), base CO pressure p0

(10	5 mbar), feedback intensity �

(10	5 mbar) and delay time � (s) are, respec-
tively: (a) 529, 40.0, 12.3, 0, 0; (b) 540, 40.0,
13.1, 1.7, 0.7; (c) 537, 40.0, 11.4, 3.0, 0.7;
(d) 500, 10.0, 3.1, 0.6, 0.8; (e) 535, 40.0,
12.2, 4.0, 0.6; and (f) 505, 10.0, 3.3, 1.6, 0.8.
The side length of images is (a), (c), (d)
330 �m, (b) 360 �m, (e) 210 �m, and (f)
270 �m (from [6]).



ments was conducted to study the spatiotemporal dynamics of the system under
systematic variation of the feedback parameters � and �. In absence of feedback,
the system displays chemical turbulence (Fig. 28.6 (a)).

As the feedback intensity is increased, intermittent turbulence can be ob-
served. It is characterized by irregular cascades of localized patterns on a uni-
formly oscillating background. In particular, two types of localized objects can
be identified, namely bubble-shaped structures and localized spiral-wave frag-
ments, see Figs. 28.6(b) and (c).

Besides, several regular space–time patterns can be stabilized for delays in
the interval 0�6 s � � � 1�0 s. The precise stability regions of these patterns de-
pend sensitively on the choice of temperature and partial pressures. In the state
of oscillatory phase clusters, the surface is divided into large domains (“clus-
ters”) of synchronous oscillations (Fig. 28.6 (d)). Two oscillatory states can be dis-
tinguished that show the same period (twice the period of the feedback signal)
and identical amplitude while their phases are shifted by half a period with re-
spect to each other. No intrinsic spatial wavelength is found in such a pattern.
Note that oscillatory phase clusters under global-delayed feedback fulfill the con-
dition of phase balance. This means that the total areas occupied by the two
anti-phase domains within the imaged part of the surface are approximately
equal. In Fig. 28.6 (e), oscillatory arrays of cells are shown that occupy the entire
imaged surface area and are visible only during short intervals within each
oscillation period when the surface switches between the uniformly CO and O
covered states. Typically, the cellular arrays have an irregular structure with an
average cell size of approximately 20 �m. No unambiguously regular, hexagonal
arrays have been observed. Oscillatory standing waves are characterized by the
repeated appearance of alternating bright and dark stripes from a uniform state.
They form a spatially periodic array and have a wavelength of roughly 20–
50 �m depending on the choice of parameters. A typical example of oscillatory
standing waves is displayed in Fig. 28.6 (f).

The observed patterns can be further characterized by a decomposition of the
experimental space–time data into phase and amplitude variables. This decom-
position was performed using a variant of the analytic signal approach (see Sec-
tion 28.3 and [6] for an explanation). The resulting phase and amplitude pat-
terns are shown in the second and third row of Fig. 28.6, the phase portrait
being displayed in the bottom row.

28.4.2
Control of Turbulence in Catalytic CO Oxidation – Numerical Simulations

Control of turbulence by global-delayed feedback was studied in numerical si-
mulations of the model (28.2)–(28.4) [8, 28]. Global delayed feedback was intro-
duced, similar to relation (28.6) in the experiment, through a dependence of the
CO partial pressure on the average CO coverage �u�t�,

pCO�t� � p0
CO � � ��u�t	 �� 	 �uref �� �28�8�
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The model parameters were chosen such that, in absence of feedback, an iso-
lated system element performed nonharmonic stable oscillations of period
T0 � 2�73 s, but the system with diffusion showed spatiotemporal chaos charac-
teristic for amplitude turbulence. The synchronization diagram, based on the si-
mulations of the one-dimensional system, is displayed in Fig. 28.7.

For sufficiently large feedback intensity, global-delayed feedback allows to sup-
press amplitude turbulence and induces uniform oscillations in a wide range of
delays (light gray-shaded regions). The minimal value of � needed to stabilize
uniform oscillations, i.e., the efficiency of the feedback, strongly depends on the
choice of �. At very small delays, ��T0 � 0�03, the suppression of turbulence is
impossible for realistic values of �.

Close to the border of synchronization (the boundary between the white and
the gray-shaded regions in Fig. 28.7 (a)), intermittent turbulence can be found.
Here, a large part of the system is already synchronized, while a few amplitude
defects persist and initiate cascades of defect reproduction that lead to random
bursts of localized structures on a uniformly oscillating background. Defects re-
produce until nearly the entire system is turbulent. Then, they simultaneously
annihilate and only a few of them survive to initiate another turbulent cascade.
In two space dimensions, this process is reflected by irregular cascades of circu-
lar structures on the background of uniform oscillations.

In the dark gray regions of Fig. 28.7, turbulence is suppressed and the forma-
tion of oscillatory cluster patterns can be observed. They consist of large, homo-
geneously oscillating domains that are separated by narrow domain interfaces.
No intrinsic spatial wavelength is present in such patterns. Two different types
of stable clusters are observed. Phase clusters are characterized by different do-
mains that follow the same limit cycle but oscillate with opposite phase. Similar
to the experiment, they show the property of phase balance (see above). Ampli-
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Fig. 28.7 Synchronization diagrams for the one-dimensional
system in the presence of global-delayed feedback, starting from
(a) developed turbulence and (b) the uniform initial state.
The dashed line in (b) additionally shows the synchronization
boundary, when starting from the turbulent state (from [8]).



tude clusters exist at ��T0 � 0�15 for high feedback intensities, ��p0 � 0�17.
They are characterized by the coexistence of two stable limit cycles and do not
show phase balance. The domain interfaces are stationary in time for both clus-
ter types.

Figure 28.7 (b) shows the synchronization diagram as it is obtained when a
uniform state with small superimposed random perturbations is taken as initial
condition. In a wide range of delays, strong hysteresis is found for the transi-
tion between turbulence and uniform oscillations (compare the dashed line in
Fig. 28.7 (b) denoting the former border of synchronization).

Inside the hatched region in Fig. 28.7 (b), standing waves develop from small
random perturbations. These patterns consist of stationary periodic modulations
of both the oscillation phase and amplitude (a local increase in R corresponding
to a decrease in �). They show an intrinsic wavelength that is a characteristic
property of the pattern for a given set of system parameters. For decreasing
feedback intensity, standing waves become unstable. They first give way to a
pattern of breathing waves and, under a further decrease of feedback intensity,
the pattern breaks down and phase turbulence develops in the system. In the
two-dimensional system, this region approximately coincides with the range of
parameters where oscillatory cellular structures are found. Like wave patterns,
such structures represent small-amplitude modulations of uniform oscillations.
Close to the border to uniform oscillations, the arrays of cells are regular and
show a hexagonal symmetry.

Figure 28.8 presents a summary of different patterns in a two-dimensional
system. CO coverage, phase distribution, amplitude distribution, and phase pro-
trait are displayed from top to bottom. The unperturbed turbulent state (Fig.
28.8 (a)) is characterized by strong amplitude and phase fluctuations. Intermit-
tent turbulence (Fig. 28.8 (b)) is observed close to the synchronization border un-
der increasing feedback intensity. Stationary two-phase clusters (Fig. 28.8 (c))
were found for further increasing feedback intensity in narrow intervals of the
delay time. Because the local oscillations inside the cluster domains exhibit peri-
od-two behavior, oscillations within different cluster domains at a given time dif-
fer also in amplitude; nonetheless, they correspond to the same limit cycle. Hex-
agonal cell arrays arising from a finite wavelength instability are shown in Fig.
28.8 (d). Secondary instabilities lead to breathing cellular structures (not shown
in this figure), and to phase turbulence (Fig. 28.8 (e)).

28.4.3
Control of Turbulence in Oscillatory Media – Theory

A feedback scheme of type (28.6) was initially proposed by Battogtokh and Mi-
khailov [3] to control spatiotemporal chaos in reaction–diffusion systems. They
demonstrated this in the framework of the complex Ginzburg-Landau equation
that allows to study general aspects of turbulence in oscillatory media near a
supercritical Hopf bifurcation. Their extensive investigation will be reviewed be-
low (see also [34] and references therein). It served as a motivation and theoreti-
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cal basis for the experimental and numerical work on catalytic CO oxidation
that was presented in the earlier sections above.

For a general oscillatory reaction–diffusion system with an additional feedback
term of type (28.6) the following amplitude equation can be derived close to the
soft onset of oscillations,

�� � �	 �1� i
� �� �2�� �1� i��)2�� �ei���t� � �28�9�

where

��t� � 1
S

3
�S�

��
r� t�d
r �28�10�

is the global average of the complex oscillation amplitude ��
r� t�. This equation
was originally proposed in [45] (see also [3, 4, 32, 33]). Here, we choose the case
where uniform oscillations are modulationally unstable in absence of feedback
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Fig. 28.8 Distributions of CO coverage (top
row), oscillation phase (second row), ampli-
tude (third row), and phase portraits (bot-
tom) for (a) unforced turbulence and (b)–(e)
several typical feedback-induced two-dimen-
sional patterns. In the images, yellow color

denotes high, green and red color intermedi-
ate, and blue color low values of displayed
variables. In phase portraits (b) and (c),
bold dots are added to indicate the uniform
states (from [8]).



and turbulence spontaneously develops. This situation is realized when
1� �
 � 0, i.e., uniform oscillations are Benjamin-Feir unstable.

Equation (28.9) admits a simple solution corresponding to bulk oscillations,
��t� � �0e	i�0t with �0 � 1� � cos �� �1�2 and �0 � 
 � � 
 cos �	 sin �� �. As the
feedback intensity � is decreased, patterns characterized by spatial modulation
of the oscillation phase can develop. To study the behavior of the globally
coupled system near this first desynchronization transition [3, 19, 31, 33], one
can write ��
r� t� as a superposition of active modes. In one dimension, we have

��x� t� � e	i�t H � A�ei�x � A	e	i�x
� �

� �28�11�

If ansatz (28.11) is substituted into Eq. (28.9), a pair of coupled equations for
the complex amplitudes H and A! is obtained. Linear stability analysis [4, 31]
allows to determine the threshold �c and the critical wave number �c of this
instability (as the wave number of the modulation mode that first begins to
grow).

Figure 28.9 shows the stability diagram of uniform oscillations. When the
curve AB is crossed with decreasing feedback intensity �, spatial modulations of
the oscillation phase with wavelength � � 2���c develop. In two dimensions,
such standing waves correspond to oscillating stripes. Additionally, resonant pat-
terns of hexagonal symmetry can occur. If � is further decreased, the mixed-
mode states undergo subharmonic instabilities giving rise to breathing standing
waves of cellular patterns, respectively [4].

Along the curve BC, bulk oscillations become unstable with respect to a long-
wavelength spatial modulation with �c � 0. Numerical simulations show [4]
that here the medium breaks into large phase domain clusters with a size on
the order of the dimension of the medium. The boundaries AD and CE
are given by the condition � � 	1� cos �. On these lines, the amplitude
�0 � 1� � cos �� �1�2 of bulk synchronized oscillations should vanish. However,
oscillations in the system cannot disappear (indeed, the steady state � � 0 is al-
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Fig. 28.9 Synchronization diagram for � � 2 and 
 � 	1�4�
Bulk oscillations are linearly stable above the curve DABCE
(from [4]).



ways unstable). Upon crossing of these boundaries, long-wavelength periodic
modulation of the uniform oscillatory state develops as well. Note that suppres-
sion of turbulence is possible only inside a window of phase shifts �.

In a two-dimensional system, different transition scenarios from defect
mediated turbulence to uniform oscillations can be observed depending on the
value of the phase shift �. In absence of feedback, amplitude turbulence pre-
vails. It is characterized by the presence of amplitude defects that occupy irregu-
lar cells formed by so-called shocks, lines of increased oscillation amplitude.
Generally, regimes of intermittent turbulence are observed for small feedback
intensities.

At intermediate values of �, different regular patterns can be stabilized and
give way to uniform oscillations for increasing �. For � � 	0�2� hexagonal cel-
lular patterns can be observed. If the phase shift is increased to � � 0, the tran-
sition to uniform oscillations occurs via the development of localized turbulent
spots that emerge from the initial irregular cells of amplitude turbulence. For �

approaching 0�275� (point B in the synchronization diagram, Fig. 28.9), the
cells get larger and, in the interval 0�275 � ��� � 0�599 (corresponding to the
segment BC in Fig. 28.9), they are replaced by large phase domains (clusters).
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Fig. 28.10 Different two-dimensional pat-
terns in the CGLE with global feedback
(� � 2� 
 � 	1�4). For each pattern, the dis-
tributions of phase (top row), amplitude
modulus (middle) and the phase portraits
(bottom row) are shown. (a) Amplitude tur-

bulence on background of an irregular cellu-
lar structure (� � 0�18� � � 	0�2), (b) a cel-
lular structure (� � 0�26� � � 	0�2), (c) lo-
calized turbulence (� � 0�55� � � 0), and (d)
amplitude clusters (� � 4� � � 0�4) (from
[5]).



Inside the clusters, not only the phase, but also the amplitude of oscillations is
changed. They result from a long-wavelength instability of the uniform mode
and were first considered by Falcke et al. [19]. It can be shown [1] that the con-
ditions for this instability are the same as those determining clustering in popu-
lations of globally coupled oscillators [22].

Figure 28.10 presents a summary of typical patterns found in numerical si-
mulations of the complex Ginzburg-Landau equation with global feedback. For
each pattern, the distributions of phase � and amplitude � are shown. Addition-
ally, the bottom row displays phase portraits of these patterns, constructed by
plotting the states of all elements in the plane spanned by the polar coordinates
(�� �).

Note that the model (28.9) considered above was obtained by a reduction that
is valid only for short delay times �
 1. Since time is measured in units of the
relaxation time for the oscillation amplitude, which diverges near a supercritical
Hopf bifurcation, this assumption always holds sufficiently close to the Hopf bi-
furcation point. Nonetheless, it may be also interesting to consider the global-
control problem without assuming that the delay time is short.

28.4.4
Time Delay Autosynchronization

The control scheme implemented in the reduced model (28.9) is invasive. This
means that when turbulence is suppressed and uniform oscillations are stabi-
lized, the control signal does not vanish and, effectively, the system is then un-
der the action of a uniform periodic driving force. It is known that for chaotic
dynamical systems, described by a small number of variables, stabilization of
unstable periodic orbits can be achieved in a non-invasive way by using time de-
lay autosynchronization (TDAS) proposed by Pyragas [38]. Applications of this
method to stabilize traveling waves in the CGLE using a local feedback scheme
(where the control signal was separately generated for each point of the medi-
um) have been studied [23, 35].

We have extended the investigations of Battogtokh and Mikhailov to study the
effect of a global-TDAS scheme on the dynamics of the complex Ginzburg-
Landau equation [10, 11]. This analysis complements the experimental studies
performed with a feedback of type (28.7) that were presented above. For weak
feedback a separation of time scales between amplitude and phase variables al-
lows adiabatic elimination of the amplitude variable. If uniform oscillations are
established in the system, the dynamics can be approximated by the phase
equation for a single oscillator under the effect of weak TDAS,

�� � �� �f ���t� 	 ��t	 ��� �28�12�

(see also [26]). Here, � is the oscillation frequency in absence of feedback, � is
the delay time, and �
 1 the feedback intensity. The function f is generally
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2�-periodic and satisfies the conditions f �0� � f �2�� � 0. See [10] for the deriva-
tion of Eq. (28.12) for a Stuart–Landau oscillator under TDAS feedback.

Uniform oscillations in the experimental system correspond to harmonic so-
lutions ��t� � �t of the phase equation (28.12). Their oscillation frequency
�� � � should satisfy

� � �� �f ���� or � � �	 �

f ���� � �28�13�

Figure 28.11 (a) shows different solutions � of Eq. (28.13) as a function of the
feedback intensity for � � T0 � 2���. Besides a solution � � � with vanishing
feedback signal, other solutions with non-zero feedback emerge at higher feed-
back intensities via a saddle-node bifurcation. Solid (dotted) lines indicate linear-
ly stable (unstable) solutions [10].

Tracing the dependence of T on the delay time � in numerical simulations of
Eq. (28.12), it was shown that the solution with � � � is indeed stable at
� � T0 for feedback intensities below a critical value � � �c (Fig. 28.11 (b)). For
� � �c the � � � solution is unstable and a state with vanishing feedback sig-
nal cannot be established. Instead, a discontinuity occurs and hysteresis can be
observed (see Fig. 28.11 (c)). This behavior is qualitatively similar to the experi-
mental result displayed in Fig. 28.5. Similar results were obtained in numerical
simulations of the realistic three variable reaction model for catalytic CO oxida-
tion that was introduced in Section 28.2 [10].

To investigate control of turbulence in a spatially extended system, again the
complex Ginzburg-Landau equation in the Benjamin-Feir unstable regime is
considered,

�� � �1	 i���	 �1� i
����2�� �1� i��)2�� F�t� � �28�14�
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Fig. 28.11 (a) Oscillation frequency as func-
tion of the feedback intensity for � � 1 in
the case of a Stuart-Landau oscillator, where
f ���� � a sin���� � b cos���� 	 b,
�� � ��t� 	 ��t	 ��, a � cos �� 
 sin �,
and b � sin �	 
 cos �. The parameters are
� � 2�, 
 � 3, and � � ��6. (b) and (c) Os-

cillation period as function of delay time
with (a) � � 0�2 and (b) � � 0�6. Hysteresis
effects are found in the gray shaded region
in (b). Open circles indicate unstable solu-
tions yielded by Eq. (28.13). The time step
for integration was �t � 0�0001 (from [10]).

a) b) c)



where, in this case, F�t� is given by a global-TDAS term, F�t� � � ei�����t	 ��
	 ���t�� with ���t� � 1

L

# L
0 ��
x� t�d
x. The parameters �, �, and � denote the feed-

back intensity, the delay time, and a phase shift in the application of the control
force, respectively. For sufficiently large �, turbulence can be suppressed and
uniform oscillations are stabilized. Based on the ansatz (28.11), we analyzed the
linear stability of uniform oscillations in the presence of TDAS. For small am-
plitudes A! homogeneous contributions can be separated from spatially inho-
mogeneous terms, yielding a Stuart-Landau-type equation for H and a pair of
coupled equations for A� and A	.

The stability of the uniform system H corresponds to the case of the phase
oscillator described above. Stability of uniform oscillations with respect to spa-
tially inhomogeneous perturbations can be determined by solving the eigenval-
ue problem of the pair of linearized coupled equations for A� and A	, yielding
conditions for the critical feedback intensity and wavenumber. Based on these
conditions, the stability boundary in the ��� ��-plane can be determined numeri-
cally. The resulting synchronization diagram is displayed in Fig. 28.12. Uniform
oscillations are linearly stable (unstable) inside the gray shaded (white) regions.
Repeated cusps are observed in the synchronization border whenever � becomes
equal to an integer multiple of the period of the unperturbed uniform system,
� � k 2����� 
�� k � 1� 2� 3� � � � . For a discussion of the behavior at large delay
time, see [11]. Numerical simulations indicate that regular spatiotemporal pat-
terns like breathing and standing waves can be expected for �-values close to
the border of complete synchrony.

It was shown that for the choice of � � 2���0 a solution � � �0 � �� 
 ex-
ists for which the feedback signal is vanishing so that noninvasive control
would be established. However, it can be demonstrated that in this case, the ex-
pression for the largest eigenvalue � does not depend on �, so that in the Benja-
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Fig. 28.12 Synchronization diagram. Uniform oscillations are
stable inside the shaded region. The parameters are � � 2,

 � 	1�4, � � 2�	 
 � 7�68, and � � ��2 (from [11]).
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min-Feir unstable case, all inhomogeneous modes with a wave number less
than � � �������������������������������������	2�1� �
��1� �2

�
are growing independently of �. Thus, for

1� �
 � 0 the solution with � � �� 
 is always unstable so that a noninvasive
stabilization of uniform oscillations with TDAS is not possible in this type of
system. This yields an explanation of the experimental findings summarized in
Fig. 28.5.

28.5
Control of Spatiotemporal Chaos by Periodic Forcing

Spatiotemporal chaos in catalytic CO oxidation on Pt(110) can be also controlled
by the application of an external periodic force [7, 34]. For an introduction to
the experimental system and the laboratory setup, see Section 28.2. Again, tem-
perature and partial pressures are chosen such that the unperturbed system
spontaneously develops chemical turbulence. External periodic forcing is imple-
mented via the gas phase by periodic modulation of the CO partial pressure in
the reaction chamber,

pCO�t� � p0
CO � 	 cos�2��f t� � �28�15�

where the forcing amplitude and frequency 	 and �f are independently chosen,
external parameters. For large forcing amplitudes turbulence can be suppressed
and uniform oscillations are established in the system. For intermediate forcing
amplitudes, however, a rich variety of spatiotemporal patterns can be induced in
this surface catalytic reaction.

Forcing frequencies in the range of 0�20 Hz %�f % 0�67 Hz were applied, with
modulations in CO partial pressure of a relative amplitude between 10% and
20%. Various nonresonant and resonant spatiotemporal patterns can be ob-
served depending on the choice of the forcing parameters. For increasing forc-
ing amplitude, freely evolving chemical turbulence is first replaced by intermit-
tent turbulence. On the other hand, starting from frequency locked uniform
oscillations, cellular structures can emerge upon a decrease of the forcing
strength. Both patterns resemble intermittent turbulence and cellular structures
observed in the presence of global-delayed feedback as described in Section
28.4.

Besides nonresonant structures, additional resonant patterns can be found at
higher forcing frequency, �f � 0�5 Hz, due to 2 :1 subharmonic entrainment of
local oscillations. In particular, oscillatory phase clusters are observed. Similar to
cluster states that emerge under global feedback, the surface splits into large do-
mains belonging to either of two oscillatory states. Within both cluster states, lo-
cal oscillations are entrained at half the frequency of the driving force, � � �f �2,
and locked to the external stimulus with a phase shift of one forcing period be-
tween the two clusters. At the low frequency edge of the 2 :1 resonance, oscilla-
tory stripe patterns occur, forming a labyrinthine structure. The growth mecha-
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nism of this pattern is illustrated in Fig. 28.13 (a). Starting from an initial state
of uniform small-amplitude oscillations around a mainly CO covered state, the
pattern grows stripe by stripe until it occupies the entire imaged surface area.
Due to anisotropy of CO diffusion on the Pt(110) single crystal surface, the
stripes are mainly oriented along the direction of fast CO diffusion (the 1�10� di-
rection). The space–time diagram in Fig. 28.13 (b) shows that stripes occur only
during short intervals of each oscillation cycle. After one forcing period, the lo-
cations of stripes are shifted, so that the initial pattern is repeated for every sec-
ond forcing cycle.
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Fig. 28.13 Irregular oscillatory stripes under
periodic forcing. (a) PEEM images
�240� 240 �m2� showing the initial develop-
ment of the pattern at time intervals of one
forcing period between subsequent snap-
shots (first five frames) and the fully devel-
oped structure (sixth frame). (b) Space–time
diagram for the fully developed pattern,

taken along the line AB indicated in the first
image in (a). The curve below shows the
corresponding temporal variation of CO par-
tial pressure. The forcing frequency and am-
plitude are �f � 0�50 Hz and 	 � 20�2 %,
respectively. The parameters are T � 531 K,
pO2 � 40�0� 10	5 mbar, and
p0

CO � 10�4� 10	5 mbar (from[7]).
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István Z. Kiss and John L. Hudson

29.1
Introduction

Several electrochemical systems give rise to chaotic current oscillations under
potentiostatic control [1]. Low-dimensional chaos occurs, for example, during
electrodissolution of copper (in phosphoric acid [2, 3] or acetate buffer [4]), nick-
el (in sulfuric acid [5–7]), and the electrocatalytic reduction of indium ions [8].
Complex chaotic behavior including chaotic bursting [9] and non-phase coherent
[10] and high dimensional chaos [11] has been found during the electrodissolu-
tion of iron in sulfuric acid. These chaotic electrochemical systems are good
testbeds for experimental verification of chaos control techniques since the cur-
rent (proportional to the rate of reaction) can be conveniently measured and the
circuit potential can be used as a control parameter.

Electrochemical experiments can be carried out on either a single electrode or
on electrode arrays. Single electrodes can be used for a control of a single oscil-
lator. In the experiments on electrode arrays the interactions among the ele-
ments must be considered as well as feedback and/or forcing. Both perturba-
tions of global parameters (such as the circuit potential) and local parameters
(through perturbation of resistors connected to the electrodes) are possible that
enable testing various control techniques.

The control of chaotic behavior encompasses both the destruction of chaotic
attractor by the stabilization of unstable periodic orbits (UPOs) and the control
of coherence through, for example, phase synchronization [12, 13]. The control
of chaotic behavior is typically achieved through resonant control (periodic per-
turbation of a system parameter [14, 15]), and discrete [16] or continuous [17]
feedback. These standards methods have been successfully applied to low-di-
mensional chaotic electrochemical systems: the chaotic electrodissolution of cop-
per was suppressed by periodic modulation of the circuit potential and period-1
and period-2 oscillations were observed [18]; simple proportional [3] and recur-
sive [19] feedback, delayed feedback [20], and an artificial neural network meth-
od [21] were used to stabilize unstable periodic orbits.

633

29
Forcing and Feedback Control of Arrays
of Chaotic Electrochemical Oscillators



Here we review some of our recent experimental results on the mechanisms
of resonant and feedback techniques with a single oscillator, and their exten-
sions to small assemblies and larger populations of chaotic oscillators. Since for
sets and populations the interactions play important roles, we put special em-
phasis on the interaction of coupling and forcing and feedback, respectively. Fi-
nally, we discuss control of chaos on a collective level when the goal is the regu-
larization of the mean field without a major change of the chaotic behavior on
a local level.

29.2
Control of Single Chaotic Oscillator

29.2.1
Experimental Setup

A standard electrochemical cell consisting of a nickel working electrode, a
Hg�Hg2SO4/K2SO4 reference electrode, and a platinum mesh counter electrode
was used. Experiments were carried out in 4.5 M H2SO4 solution at a tempera-
ture of 11 �C. A schematic of the apparatus is shown in Fig. 29.1.

The 64 electrode array in an 8�8 geometry is shown; for experiments with a
single oscillator the array is replaced with one electrode. The working electrodes
are embedded in epoxy and reaction takes place only at the ends. The diameter
of the electrode in the experiments on forcing of one oscillator is 2 mm and
those of the 64 elements in the array are 1 mm. The currents of the electrodes
are measured independently at a sampling rate of 100 Hz and thus the rate of
reaction as a function of position and time is obtained. In some of the experi-
ments global coupling is added to the array with the use of resistors. The exter-
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Fig. 29.1 Experimental setup.



nal resistors are added individually (Rind) or collectively (Rcoll ). The collective re-
sistor couples the electrodes globally and the strength of this coupling is charac-
terized by a parameter �, which is the ratio of collective to total resistance:
� � Rcoll�Rtot. This value takes on values from zero to one as the global coupling
increases. Additional details on the experiments can be found in the original pa-
pers [22–24].

The electrode is held at the applied potential (Vapp�t�) with a potentiostat. The
applied potential is the sum of a constant potential (V0) and a perturbation
�V�t�. The perturbation depends on the specific chaos control procedure and
the following techniques are applied:

In the forcing experiments of both a single electrode and the array a sinusoid-
al signal with frequency � and amplitude A is superimposed on the applied po-
tential: �V�t� � A sin 2��t.

In the feedback experiments a feedback signal is generated with gain (K) and
delay (�). Two types of feedbacks are discussed.

In the direct delayed feedback the perturbation of output voltage is propor-
tional to the difference of the delayed total current Itot�t	 �� and the precalcu-
lated mean total current, �Itot�; the applied potential perturbation is then:

�V�t� � KItot�t	 �� 	 �Itot��� �29�1�

Since the feedback is a small amplitude perturbation of the applied potential,
we assume that the mean total current does not change significantly after the
feedback is imposed. The mean total current is used as the offset of the feed-
back signal to maintain the applied potential in the chaotic region.

In the differential-delayed feedback [17] the difference between the delayed
and the actual value of the total current is used:

�V�t� � KItot�t� 	 Itot�t	 ���� �29�2�

29.2.2
Chaotic Ni Dissolution: Low-Dimensional, Phase Coherent Attractor

29.2.2.1 Unforced Chaotic Oscillator
As reported in previous studies [7, 25], the potentiostatic dissolution of Ni exhi-
bits chaotic dynamics if an appropriate series resistance (Rs) is added to the cir-
cuit. The reconstructed chaotic attractor from the current time series data, along
with the corresponding power spectrum of the unforced system with
Rs � 170�, is shown in Fig. 29.2 (a) and (b), respectively. The chaotic attractor
is low dimensional with an information dimension of approximately 2.2 [7].
The presence of a sharp peak at f � 1�323 Hz in the power spectrum implies
strong phase coherence.
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29.2.2.2 Phase of the Unforced System
In order to characterize the response of the chaotic system to a periodic forcing
it is useful to compare the phases of the chaotic and forcing signals. We applied
the Hilbert transform approach [27, 28] to obtain the phase ��t� from the angle
of a two-dimensional embedding in the Hilbert transform vs. signal phase space
(see Fig. 29.2 (c)), where

H�I�t�� � �	1
3 �

	�

I���
t	 �

d� �29�3�

is the Hilbert transform of I�t�. The frequency of the chaotic oscillations (�0),
obtained from the linear least-squares fit to ��t�, is �0 � 1�325 Hz (see Fig.
29.2 (d)). Note that although � is monotonically increasing there are some slight
deviations from the fitted line (Fig. 29.2 (d), inset). The deviations arise because
the instantaneous frequency (d��t��dt) depends in general on the amplitude.
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Fig. 29.2 Phase coherent chaotic oscillator
[26]. (a) Reconstructed attractor using time
delay coordinates. (b) Power spectrum. (c)
Hilbert transform of the current, H��I�t��, vs.
current, �I�t�. (d) Phase ��t� (solid) as a

function of t. The linear least-squares fit
(dotted in the inset, enlarged by a factor of
32) gives the frequency of the chaotic oscil-
lation, �0 � 1�325 Hz.



29.2.3
Forcing: Phase Synchronization and Intermittency

29.2.3.1 Forcing with � � ��

For forcing experiments [26] the phases of the chaotic (��t�) and the periodic
driving (��t�) signals were determined.

Results are first presented with a forcing frequency of � � 1�32 Hz, which is
within the experimental error of �0. A diagram showing the minima of the os-
cillations as a function of the forcing amplitude is presented in Fig. 29.3. At
small amplitude the frequency of the oscillations locks on � although the chaot-
ic dynamics are only affected slightly. Even at small amplitudes the small varia-
tion of � (!0�015 Hz) that had been observed in the unforced system di-
minishes to !0�001 Hz. Therefore all the dynamical states shown in Fig. 29.3
have the same frequency regardless of the characteristics of the state. With in-
creasing forcing amplitude, chaos�P4�P2�P1 transitions are observed. Note
that the lowest branch of the P4 oscillations is actually two points; the values of
those two minima are almost indistinguishable because of noise. The P4�P2
and P2�P1 transitions are inverse period-doubling bifurcations. [The experi-
mental data cannot reveal the nature of chaos�P4 transition. One possible sce-
nario can be an experimentally not resolvable period-doubling sequence. How-
ever, we cannot exclude the possibility of intermittency, which was observed
with � �� �0 (see later)].

29.2 Control of Single Chaotic Oscillator 637

Fig. 29.3 Forcing a single oscillator with
� � �0 [26]. The minima of the oscillations
(Imin) as a function of the amplitude of the
forcing (A) are shown. The forcing frequency

� � 1�32 Hz is within the experimental error
of �0. The chaotic (C), period-4 (P4), period-
2 (P2), and period-1 (P1) regions are also
shown.



29.2.3.2 Forcing with � �� ��

Forcing experiments have been carried out for a range of forcing frequencies
between 1.21 Hz and 1.45 Hz [26]. For a given amplitude (A � 6�6 mV, Fig.
29.4 (a)) phase synchronization occurs only for frequency region around �0. As
the amplitude is made larger, the phase synchronized frequency region in-
creases. Figure 29.4 shows the critical forcing amplitude Ac at which phase syn-
chronization is observed. The experimentally determined synchronization ton-
gue is approximately symmetric around �0.

The bifurcation diagrams at different frequencies were found to be similar to
that presented in Fig. 29.3 for 1�21 Hz % � % 1�40 Hz. For larger forcing fre-
quencies (� � 1�40 Hz) the transition into the phase-locked region was qualita-
tively different; instead of a chaotic phase synchronization there is an intermit-
tent transition from chaos to a periodic state; the periodic state is P2 for
� � 1�45 Hz, and P4 for � � 1�40 Hz. The time series of the current and the
phase difference are shown in Fig. 29.5 for � � 1�45 Hz. Figures 29.5 (a) and (b)
are for a forcing amplitude (A � 23�1 mV) just below critical.

The long P2 sequence is interrupted by a short chaotic series. The periodic re-
gion is phase synchronized, while during the chaotic region there is a phase
slip. The current and phase difference are shown for amplitude close to the crit-
ical in Fig. 29.5 (c) and (d) (A � 24�7 mV); phase synchronization and period-2
oscillations are seen. For � � 1�40 Hz, i.e., closer to �0 a similar intermittent
transition was observed; however, the chaotic (not phase synchronized) state
was transformed to a P4 (phase synchronized) state.

29.2.4
Delayed Feedback: Tracking

It is often possible to stabilize a UPO with a differential delayed feedback tech-
nique with appropriate control gain and delay set to the period of the UPO. More-
over, tracking of unstable orbits can be achieved by continuously updating K and �.
Among the control parameters, � is of greatest importance since usually the gain
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Fig. 29.4 Forcing a single oscillator with � �� �0 [26]. (a) The
frequency difference (�	 �) as a function of the forcing fre-
quency (�) for A � 16�5 mV. (b) The phase locked region in
A	� parameter space.



can be set to a value that ensures successful control [29–31]. An analytical approx-
imation for � was suggested based on the calculation of the frequency of the con-
trol perturbation signal [32]. An even simpler method uses gradient descent for
optimization with error function as the magnitude of control perturbations [33,
34]. Such a method is demonstrated in Fig. 29.6 with the low-dimensional chaotic
anodic electrodissolution of copper in phosphoric acid [2, 3].

A successful control of a period-1 unstable orbit is shown in Fig. 29.6 (a) [35];
before the control is switched on (t � 30 s) the system exhibits low-dimensional
chaotic current oscillations. After the control is turned on (i.e., the circuit poten-
tial is perturbed according to Eq. (29.2), periodic oscillations are observed. The
initial value of the control constant � was chosen to be the approximate period
of the oscillations (� � 0�85 s) while the control gain K was adjusted to achieve
best performance. The control perturbations do not vanish completely and an
improvement of � is automatically calculated with the gradient descent method.
As � increases to a limiting value of 0�980 s (not shown) the control perturba-
tions decrease (Fig. 29.6 (a)). The control becomes more robust as well since sta-
bilized oscillations show less variations in its amplitudes.
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Fig. 29.5 Forcing a single oscillator: intermittency [26]. Cur-
rent time series and phase differences, � � 1�45 Hz (a), (b).
Intermittent periodic and chaotic oscillations with phase slips.
A � 23�1 mV� A � Acrit. (c), (d). Phase synchronized period
state, A � 24�7.



In the chaotic copper dissolution without control a (steady state 	 period-1 	
period-2 	 period-4 	 chaos 	 period-4 	 period-2 	 period-1) bifurcation struc-
ture can be observed as the potential is varied as shown in Fig. 29.6 (b). Using the
delayed-feedback control with autosetting time delay, the unstable period-1 orbit
can traced through a period-doubling cascade [35]. The determined period (not
shown) strongly depends on the bifurcation parameter, the circuit potential; it in-
creases from about 0�8 s to 1�7 s. Note that the period-1 orbit was successfully traced
in the entire bifurcation diagram covering the stability loss of the period-1 orbit.

29.3
Control of Small Assemblies of Chaotic Oscillators

The chaotic behavior of small assemblies (two to four elements) of chaotic oscil-
lators represents a degree of complexity between those of a single, low-dimen-
sional chaotic system and those of the fully developed spatiotemporal chaotic
system [7, 22]. In these small assemblies the number of elements and the de-
gree of their interactions determine the complexity of the collective signal; an
example is shown in Table 29.1, where it is seen that the dimension of the
mean signal increases from 2.8 to 4.8 as the number of elements is increased
from two to four and as the coupling strength decreased.

The overall control of such assemblies has been successfully achieved by a
combined control-synchronization procedure [22]. The spatial variations are re-
moved by synchronization with local, simultaneous perturbations of the individ-
ual resistors (�rk) connected to the electrodes

�rk�t� � Cik�t� 	 Itot�n��
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Fig. 29.6 Delayed-feedback control and
tracking of a single chaotic oscillator [35].
(a) Stabilizing the unstable period-1 orbit
using the delayed-feedback algorithm (Eq.
(8.2)) K � 4 mV�mA) with corrections to the
period, �. The time series of the current
(top, left axis) and the potential perturba-

tions (bottom, right axis) as the period � is
adjusted every 2 s. (b) Tracking unstable peri-
od-1 orbit. Diagram showing the maxima
and minima of the stable (solid circle) and
tracked unstable period-1 (open circle) oscil-
lations.



where n is the number of electrodes, ik�t� is the current of the kth electrode,
and C is a control constant. When the system is synchronized, the uniform per-
iodic orbits are stabilized by a differential global delayed feedback of the (com-
mon) circuit potential of the array using the mean current.

Figure 29.7 shows the stabilization of the uniform period-2 oscillations of the
most complex, uncoupled four oscillator system; during the local perturbations
the individual oscillators become synchronized after which the “standard” de-
layed-feedback technique is capable of stabilizing the uniform period-2 oscillations.

Results of control experiments of assemblies with various complexities are
summarized in Table 29.1. The simplest system, composed of two coupled
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Table 29.1 Control of small sets of oscillators: Procedures to
stabilize a uniform periodic state for four system of different
(overall) complexities [22].

Procedures to stabilize the unstable P2 orbit b

n a � a D2
a synchronization

for targeting
synchronization
for control

delayed feedback
method

4 0 4.8 + + +
2 0 3.5 + + +
4 0.4 2.9 + – +
2 0.2 2.8 – – +

a n � no. of electrodes. � � global coupling. D2 � correlation
dimension.

b + required, – not required.

Fig. 29.7 Control of four-oscillator assembly
with a combined control-synchronization
procedure. Top figure: time series total cur-
rent (left axis) and perturbations of the cir-
cuit potential (right axis) during stabilization
of period-2 oscillations. Bottom: the differ-

ence between the current of one of the oscil-
lators and the mean current. The local per-
turbations are applied during a period of
length “Sync” while the global delayed feed-
back is applied during a period of “Control”
[22].



chaotic oscillators (D2 � 2�8) was successfully controlled with the delayed feed-
back only. For a somewhat more complex coupled system with four coupled
electrodes (D2 � 2�9), the local perturbations need to be applied as a targeting
procedure only to initiate the control; after successful control it could be
switched off (i.e., the control is not globally stable). For the most complex sys-
tems with two and four uncoupled electrodes both local and global perturba-
tions were required for successful chaos control.

29.4
Control of Oscillator Populations

We now turn to an array of 64 electrodes. Forcing and feedback were applied to
a globally coupled electrode array. Therefore, we compare the effects of global
coupling, forcing, and feedback [23, 36].

29.4.1
Global Coupling

As global coupling strength is increased, a population of 64 chaotic oscillators
has been seen to undergo the sequence: Very weakly coupled chaos � Intermit-
tent chaotic clusters � Stable chaotic clusters � Intermittent chaotic clusters
� Chaotic synchronized state [6, 36]. These transitions are depicted schemati-
cally in the middle row of Fig. 29.8; representative cluster configurations are
also shown in Fig. 29.8. In the 64 electrode system many stable cluster config-
urations are possible. We have observed clusters with as few as 18 elements so
that the observed range is (18, 46) to (32, 32). A finite range of stable two-clus-
ter configurations has also been observed in theoretical studies with coupled
maps [37, 38]. Two of the cluster configurations obtained in the nickel experi-
ments are shown in Fig. 29.8; one of these is a fairly balanced configuration
(30, 34) whereas in the other there are 19 and 45 elements in each cluster, re-
spectively. Note in both configurations of Fig. 29.8 that the edge elements have
a tendency to be in the same cluster. There is a relatively small (but not zero)
coupling that is inherent in the system [24, 39] and that exists even without the
added coupling; coupling among the edge regions is somewhat stronger than it
is among elements in the interior of the array. Although the stable cluster con-
figurations are unaffected by small perturbations, a sufficiently large distur-
bance can move an element or elements from one cluster to another. In the in-
termittent cluster regions on either side of the stable cluster region, clusters
form and break up. Sometimes two clusters form and at other times almost
complete synchronization occurs; however, neither the cluster formation nor the
synchronization is stable and both break up after a short time.
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29.4.2
Periodic Forcing of Arrays of Chaotic Oscillators

The forcing is applied to a base state in which some global coupling is present,
that is, to a state with a global coupling strength of � � 0�56 [23, 36, 40]. We
use this base state, rather than the very weakly coupled state because the for-
cing is not strong enough to synchronize the state at � � 0�0 under the condi-
tions of these experiments and because we wish to compare the transitions into
and through the cluster states of forcing (and the feedback in the next section)
with the globally coupled case; we thus start the sets of experiments at a state
just below the stable cluster region. The forcing frequency is chosen to be near
the dominant frequency of the unforced chaotic signal, �0 � 1�3 Hz. With varia-
tions in the forcing amplitude over the range 0 to 50 mV the system, as shown
in Fig. 29.8, goes through the following sequence: Unsynchronized chaos � In-
termittent chaotic clusters � Stable chaotic clusters � Stable periodic clusters
� Periodic synchronized state [23, 36, 40]. At 5 mV forcing amplitude the ten-
dency of clustering and synchronization can be already seen but the clustered
states are not stable and exist for short times. As the forcing amplitude is in-
creased to 25 mV intermittent clustering can be more clearly seen; clusters
form more often and remain intact for longer times before breaking up. The
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Fig. 29.8 The collective behavior of an array
of 64 Ni electrodes with global coupling, for-
cing, and feedback. Top: with increasing the
amplitude of the forcing. Middle: with in-

creasing global coupling strength. Bottom:
with increasing the gain of the feedback. In
the stable clustering region some represen-
tative cluster configurations are shown [23].



clusters are still unstable but can hold together for times up to approximately
15 oscillation cycles. The clusters became stable as the forcing amplitude was
increased to 30 mV. In the stable chaotic cluster region two clusters are always
seen. The arrangement seen in Fig. 29.8 is (26, 38), i.e., the two clusters contain
26 and 38 elements, respectively. As the amplitude is increased further from
the stable chaotic cluster region, stable periodic clusters form. Two to four
stable clusters are seen, depending on conditions. Representative cluster ar-
rangements are shown in Fig. 29.8. The four-cluster periodic configuration ob-
tained at A � 35 mV is (5, 11, 23, 25). The sizes of the groups differ. When four
clusters are formed there is a tendency for the clusters to group, that is, for two
of the clusters to have similar time series but with a phase lag; the other two
clusters then have a different time series. Thus two of the clusters are approxi-
mately on the same (periodic) attractor and the other two have a different cycle.
When only two clusters exist, the limit cycles of the two clusters differ and thus
the two do not just differ by a phase lag. The four-cluster state gives way to a
two-cluster state as the forcing amplitude is increased. Although we do not have
a sufficiently high resolution in the parameter (amplitude of forcing), it appears
that the transition from a state with four clusters to one with two clusters may
occur by a mechanism in which the sets of clusters with the same time series
(but different phases) merge through a loss of the phase difference. Additional
increase to a forcing amplitude of 50 mV results in a period-1, synchronized
state.

29.4.3
Feedback on Arrays of Chaotic Oscillators

Direct delay feedback (Eq. (29.1)) was added to the chaotic oscillators using the
same base state as that used in the forcing studies described in the section
above [23, 36, 41]. The behavior was studied as a function of the feedback gain.
The results presented here will all be for a zero time delay in the feedback. The
dependence on feedback gain is also shown in Fig. 29.8, i.e., with increasing
feedback gain we see: Unsynchronized chaos � Intermittent chaotic clusters �
Stable chaotic clusters � Stable periodic clusters � Periodic synchronized state
� Stable steady state. Representative cluster arrangements are shown in Fig.
29.8 for three values of the feedback gain. In the chaotic region two clusters are
always obtained and the numbers of elements in the two clusters are approxi-
mately evenly balanced. The distribution ranged from (32, 32) to (28, 36); one
of the (29, 35) configurations is shown in Fig. 29.8. As the feedback gain is in-
creased and the behavior becomes periodic, two trends are noticed in the config-
urations: an imbalance in cluster sizes occurs and a third cluster arises. As the
feedback gain is further increased, one of the clusters begins to dominate as
seen in Fig. 29.8 and with further increase this cluster encompasses the entire
array and synchronization is obtained.
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29.4.4
Feedback, Forcing, and Global Coupling: Order Parameter

One measure of order/disorder in the coupled oscillator systems is an order pa-
rameter [36, 42] obtained from pair distances in three-dimensional recon-
structed state space. The order parameter, r�t�, is defined as a fraction of the
number of pairs whose distance in the three-dimensional state space is less
than some value, here taken to be 0.06 mA. A mean order parameter is calcu-
lated by taking mean pair distances. The mean order parameter has a value ap-
proximately zero for uncoupled chaotic oscillators and one in the identically
synchronized state. We show this mean order parameter as a function of feed-
back gain (K), forcing amplitude (A), and global coupling strength (�) for the
three types of coupling, respectively, in Fig. 29.9 [23, 36]. The order parameter
for feedback is shown at the top of the figure. As the feedback gain is increased,
the order parameter rises somewhat during the transition from the intermittent
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Fig. 29.9 Mean order parameter r based on mean distance as
a function of global coupling strength. (a) Feedback. (b) Forc-
ing. (c) Global coupling [36].



cluster to the stable cluster region; it then reaches a plateau (somewhat above
0.5) in the stable chaotic cluster region in which the two clusters are approxi-
mately the same size. The order parameter continues to increase in the stable
periodic cluster region in which three clusters exist and finally increases to 1.0
with further increase in the gain since one of the clusters grows and dominates
the system. In the case of external forcing shown in the center panel, the order
parameter again increases with transition from intermittent clusters to stable
chaotic clusters as the forcing amplitude is made larger. However, the order pa-
rameter drops during the transition from stable chaotic clusters (A � 30 mV) to
stable periodic clusters (35 mV % A % 45 mV). This decrease in the order param-
eter occurs with the emergence of three- and four-cluster configurations for which
the order is lower than the two cluster chaotic configuration. Additional increases
in the forcing amplitude lead to a synchronized state with order parameter of one.
The globally coupled case is shown at the bottom. The stable chaotic cluster region
is also at a maximum of the order parameter; the stable clusters are bordered on
both sides by regions of intermittent clusters that are less ordered.

The order parameter as a function of time (not shown) was also obtained [23,
41]. For low coupling strength the order parameter is near zero at all times. In
the stable cluster regions, both chaotic and periodic, the order parameter varies
only slightly from the mean value shown in Fig. 29.9. There are occasional
peaks to values well above the base line. This is not caused by experimental er-
ror but rather by the close approach of the clusters. The variation in the order
parameter with time results in chaotic itinerancy [37, 38, 43]: the variation in
the number of precision-dependent clusters. In these experiments the order pa-
rameter varies with time from approximately one (one precision-dependent clus-
ter) to low values (large number of clusters) [43].

29.4.5
Control of Complexity of a Collective Signal

In populations of chaotic oscillators the collective behavior can differ qualita-
tively from the local behavior because of the interactions among the oscillators
[7, 24, 39, 44]. An example is shown in Fig. 29.10 where global coupling pro-
duces regular collective behavior as phase synchronization among the oscillators
sets in [24, 39]. Without any added interactions the collective behavior (mean
current, h, see Fig. 29.10 (a)) exhibits statistical fluctuations expected from the
law of large numbers. However, at weak added coupling near where phase syn-
chronization sets in (Fig. 29.10 (b)) the collective behavior is nearly periodic
while the local behavior is nearly chaotic. At strong global coupling (Fig.
29.10 (c)) when identical synchronization occurs the local and global chaotic be-
haviors are identical. Figure 29.10 (d) shows that with increasing the interaction
between the oscillators there is an optimal interaction strength at which the co-
herence of the collective signal is maximal and, therefore, with optimizing inter-
actions among the oscillators the collective behavior can be made nearly peri-
odic while the local oscillators are chaotic [24, 39].
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29.5
Concluding Remarks

We have reviewed some chaos control studies with an experimental system of
metal electrodissolution on single, small sets, and larger populations of elec-
trodes. Phase synchronization, i.e., control of the phases of the oscillations dur-
ing periodic forcing of a single chaotic oscillator, was first discussed. Chaotic
phase synchronization, in general, can take place through three routes [45]; (i)
phase synchronization through statistical phase locking with the amplitudes re-
maining uncorrelated, (ii) through intermittent destruction of the chaotic attrac-
tor, or (iii) through the parallel appearance of phase and generalized [46] syn-
chronization. In the forcing experiments type (i) transition occurred when the
forcing frequency was close to the inherent frequency of the chaotic behavior,
and type (ii) occurred when the forcing frequency was far away from the inher-
ent frequency. We note that the third route to chaotic phase synchronization
was also observed in an electrochemical system, non-phase coherent chaotic
iron electrodissolution on two electrodes; with increasing the coupling strength,
phase and generalized synchronization occur in parallel [10].

A delayed-feedback technique can be used for tracking unstable periodic or-
bits while a system parameter, the circuit potential, was varied. The method is
simpler than the OGY based methods and thus provides a versatile tool for con-
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Fig. 29.10 Control of collective motion
through global coupling of 64 chaotic oscilla-
tors. Top row: time series of mean current
and the power spectrum (inset). (a) No
added coupling (� � 0). (b) Weak coupling

(� � 0�1). (c) Strong coupling (� � 1). Bot-
tom row: coherence factor (FFT peak divided
by the width) as a function of coupling
strength [24, 39].



structing experimental bifurcation diagrams where both the stable and unstable
phase objects are determined. Such bifurcation diagrams can be applied to gain
insight into the dynamics of complex chemical reactions [47].

We also investigated populations of oscillators using electrode arrays to which
global coupling, periodic forcing, and feedback were applied. The three types of
experiments all produce intermittent and stable chaotic cluster states and syn-
chronization with sufficiently large values of global coupling, feedback gain,
and forcing amplitude, respectively. The three cases differ, however, in other de-
tails. With global coupling the stable chaotic cluster region is bounded on both
sides by less ordered regions of intermittent clusters. With feedback, increases
in gain past the stable chaotic cluster region yield periodic clusters, first two,
and then three. As the gain becomes larger one of the three clusters grows and
the array is synchronized. With the imposition of periodic forcing as many as
four periodic stable clusters emerge. The imposed coupling differs in the three
types of experiments. Global coupling produces direct interactions among the
elements. The external forcing has a different role. There is some very weak in-
herent local and long-range coupling (through the electrolyte) and also moder-
ate global coupling (controlled by system electronics) in the system to which the
forcing is applied. This intrinsic coupling was too weak to produce clustering or
synchronization but it did furnish interactions among the elements and contrib-
uted to the collective dynamics of the system. The application of the periodic
forcing changes the dynamics of the individual elements and clustering and
synchronization become possible with the same strength of intrinsic coupling.
The feedback influences the dynamics of the individual oscillators and adds an
additional global coupling. Although many theoretical studies of collective dy-
namics have been carried out with examples in biology, physics, and chemistry,
far fewer experimental studies are known. The electrochemical arrays are ideal
for such experiments since the dynamics can be measured at each site and the
coupling can be carefully controlled.
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Part VIII
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Peter A. Tass, Christian Hauptmann, and Oleksandr V. Popovych

30.1
Introduction

Synchronization is a generic phenomenon of interacting oscillators, which has
been observed and studied in many fields in physics, engineering, chemistry,
biology, and medicine (see e.g. [27, 39, 54, 73, 76, 99]). Synchronization pro-
cesses are of crucial importance for brain function. Well-coordinated synchrony
within and between neuronal populations appears to be an important mecha-
nism for neuronal signaling and information processing [69, 73]. In contrast,
pathologically strong synchronization processes may severely impair brain func-
tion as, e.g., by Parkinson’s disease (PD), essential tremor, or epilepsy [15, 16,
34, 63, 92]. Parkinsonian resting tremor, for instance, appears to be caused by a
population of neurons located in the thalamus and the basal ganglia. These
neurons fire in a synchronized and intrinsically periodical manner at a fre-
quency similar to that of the tremor, regardless of any feedback signals [41, 43,
52]. In contrast, under physiological conditions, these neurons fire incoherently
[51]. In patients with PD this neuronal cluster acts like a pacemaker and acti-
vates premotor areas and the motor cortex [2, 96], where the latter synchronize
their oscillatory activity [89] and drive muscles causing the peripheral shaking.

In patients with medically refractory movements disorders, e.g., with ad-
vanced PD or essential tremor, depth electrodes are chronically implanted in tar-
get areas like the thalamic ventralis intermedius nucleus or the subthalamic nu-
cleus [4, 6]. Electrical deep brain stimulation (DBS) is performed by administer-
ing a permanent high-frequency (HF) (�100 Hz) periodic pulse train via the
depth electrodes [4, 6]. HF DBS has been developed empirically and its mecha-
nism is not yet fully understood [48]. It appears to strongly alter the neuronal
firing and basically mimics the effect of tissue lesioning, e.g., by suppressing
neuronal firing, which, in turn, suppresses the peripheral tremor [48, 95]. HF
DBS is reversible and has a much lower rate of side effects than lesioning with
thermocoagulation [68]. However, HF DBS may lead to side effects like dysar-
thria, dysesthesia, and cerebellar ataxia [95]. On the other hand, 11–15% of PD
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patients have unsatisfactory outcomes concerning tremor suppression in spite
of proper electrode placement [19, 42].

To improve deep brain stimulation novel stimulation techniques have been
developed with methods from statistical physics and nonlinear dynamics (see
[76] and references below). The goal of these techniques is to selectively counter-
act the pathological synchronization processes. We here present three methods
which are particularly effective and robust against parameter variations and,
hence, promising for therapeutic applications:

(i) Multisite coordinated reset stimulation (Section 30.2) [84, 85]: Brief and mild
resetting stimuli are administered at different sites at subsequent times and
cause an effective transient desynchronization. Desynchronized firing is main-
tained by repetitive administration of multisite coordinated reset stimuli.

(ii) Linear multisite delayed feedback stimulation (Section 30.3) [29–31]: The ac-
tivity of a neuronal population is permanently registered, amplified, and fed
back at different sites with different delays. By its tendency to split the whole
population into entrained and phase shifted sub-populations, the multisite echo
counterbalances the population’s tendency to synchronize in phase, so that a ro-
bust desynchronization is achieved.

(iii) Nonlinear delayed feedback stimulation (Section 30.4) [57–59]: The activity
of a neuronal population is permanently registered and fed back after nonlinear
processing. The perturbation caused by this distorted echo causes a powerful
desynchronization at minimal and practically vanishing stimulation currents.
This method specifically counteracts the pathological interactions, so that the
neurons’ natural frequencies get restored.

A novel, theoretically fascinating and clinically highly relevant aspect emerges,
if we take into account synaptic plasticity, i.e., the fact that the nervous system
adapts the strength of the neurons’ synaptic interaction (coupling) to the timing
of the neurons’ firing. As shown theoretically [32, 88, 90, 91], networks with
synaptic plasticity may unlearn their tendency to produce synchronized activity.
Desynchronizing stimulation may reshape the connectivity (coupling) pattern
and induce long-lasting effects. This approach may lead to powerful and even
curative stimulation techniques (see Section 30.5).

30.2
Multisite Coordinated Reset Stimulation

Based on Winfree’s pioneering phase resetting studies of circadian rhythms
[98], the effects of a pulsatile stimulus on the amplitude and, in particular, the
phase dynamics of a single oscillator were analyzed in detail [23, 98, 99]. With
topological methods Winfree showed that an oscillation can be annihilated by a
stimulus of a critical intensity and duration administered at a critical initial
phase [98, 99]. The phase resetting approach has been used to investigate the re-
actions of a single neuron to a pulsatile electrical stimulus; both theoretically [5]
and experimentally [26].
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Neuronal synchronization processes are of crucial importance under physio-
logical [69] as well as pathological [15, 16, 34, 63, 92] conditions. Furthermore,
noise is inevitable in biological systems [22]. To understand brain functioning
and to design effective therapeutic stimulation techniques, which work in the
presence of noise, it is necessary to understand stimulation induced synchroni-
zation and desynchronization of neuronal populations. For this reason stochas-
tic phase resetting has been studied in both ensembles of uncoupled oscillators
[74, 75] and ensembles of coupled oscillators [76] subject to noise. This leads to
effectively desynchronizing stimulation techniques, such as double pulse stimu-
lation [77, 78, 82], stimulation with a brief high-frequency pulse train followed
by a single pulse [79], and stimulation with a brief low-frequency pulse train fol-
lowed by a single pulse [80, 81]. These methods share one particular feature:
each stimulus consists of two qualitatively different stimuli. The first stimulus
is stronger and resets (restarts) the ensemble, whereas the second, weaker stim-
ulus is a single pulse which is administered after a constant time delay and de-
synchronizes by hitting the cluster in a vulnerable state. All of these methods
require a precise calibration of the stimulus parameters.

In contrast, multisite coordinated reset stimulation does not require any time-
consuming calibration [84, 85]. This method causes an effective desynchroniza-
tion and is particularly robust against parameter variations, e.g., variations of
the neurons’ mean frequency. Multisite coordinated reset stimulation means
that a synchronized population of neurons is stimulated with a sequence of
brief resetting stimuli (typically brief high-frequency stimulus trains) via differ-
ent sites. The delay between the subsequent resetting stimuli equals �/n, where
��T, T is the mean period of the synchronized oscillation, and n is the num-
ber of stimulation sites [84, 85]. The subsequent reset of different sub-popula-
tions induces a so-called cluster state, i.e., the whole population splits into n
sub-populations which differ with respect to their mean phase. From the cluster
state the neurons typically relax to a uniformly desynchronized state before they
revert back to the in-phase synchronized state, if left unperturbed. Hence, to
maintain a desynchronized firing, multisite coordinated reset stimuli have to be
administered repetitively. Multisite coordinated reset stimulation exploits transi-
ent responses which are due to the oscillators’ (pathologically strong) interac-
tions.

We model the neuronal population with a network of N phase oscillators [17,
25, 28, 39] and, in addition, take into account stimulation and random forces
[76]:

��j � �	 K
N

�N
k�1

sin��j 	 �k� � Xj�t�Sj��j� � Fj�t� � �30�1�

where �j is the phase of the jth phase oscillator. All oscillators have the same ei-
genfrequency � and are globally coupled with strength K�0. In neurons the
impact of an electrical stimulus depends on the neuron’s phase [5, 26]. Hence,
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the stimulus is modeled by a 2�-periodic function like Sj(�j)� I cos �j with the
intensity parameter I. Stimulus administration is modeled by

Xj�t� � 1 
 neuron j is stimulated at time t
0 
 else

�
� �30�2�

The random forces Fj (t) are Gaussian white noise with �Fj (t)��0 and �Fj(t)
Fk(t�)��D�jk�(t	 t�), where D is a constant noise amplitude. For vanishing stim-
ulation (X�0), Eq. (30.1) is the well-known Kuramoto model of coupled phase
oscillators [39].

A phase-dependent stimulus, like Sj (�j)� I cos(�j) resets the jth oscillator to
a particular phase provided the intensity parameter I is large compared to the
coupling strength and to the noise amplitude and provided the stimulation
duration is long enough [76, 83]. Such a reset can be achieved with a strong sin-
gle pulse [76, 78, 82, 86], a HF pulse train (with a pulse rate 20 times larger
than the mean eigenfrequency �) [79] or a low-frequency pulse train (with a
pulse rate similar to �) [80, 81]. We here use a HF pulse train for the reset.

Let us, first, assume that there is no noise (D�0). A HF pulse train with
Sj(�j)� Ij cos (�j��) resets the jth neuron close to the phase �res

j �� [76, 83].
Hence, we could easily desynchronize the population by stimulating each neu-
ron separately to achieve equidistant resets. For this, we would administer HF
pulse trains of identical timing (i.e., Xj (t)�X (t) for j�1,. . ., N) but different
stimulation mechanisms Sj(�j)� Ij cos [� j�2� (j	1)/N]. After such a phase-
scattering stimulation the population would be perfectly desynchronized, with a
uniform distribution of the phases �res

j �2�(j	1)/N. However, stimulating each
neuron separately would require the use of many electrodes and would easily
damage or even destroy the neural tissue. Furthermore, noise makes the reset
less perfect. Therefore, we choose a different approach. Instead of inducing a
perfectly uniform distribution of the phases, we simply split the population into
a few, say four, sub-populations which are equally spaced in a cycle [0, 2�].

We denote as sub-population 1, 2, 3, and 4 the groups of neurons j�1,. . ., N/4,
j�N/4�1, . . ., N/2, j�N/2�1, . . ., 3N/4, and j�3N/4�1, . . ., N, respectively (with
N divisible by 4). To split the population in four equally spaced sub-populations we
may choose qualitatively different strategies: (i) Simultaneous stimulation of all four
sub-populations: Phase shifts of the reset neurons are induced by phase shifts of
the stimulation mechanisms. We stimulate neuron j of sub-population k�1, . . ., 4
with a HF pulse train with Sj(�j)� I cos [� j�2�(k	1)/4]. (ii) The four sub-pop-
ulations are stimulated at different times with identical stimulation mechanisms Sj.
The delay between subsequent HF pulse trains is equal to T/4, where T�2�/�
is the period of the population without stimulation. We may stimulate neuron j
of sub-population k�1, . . . , 4 at time t��T (k 	1)/4 with a HF pulse train with
Sj(�j)� I cos(�j). (iii) Strategies (i) and (ii) can be combined, e.g., by perform-
ing two subsequent antiphase resets of pairs of sub-populations with a time delay of
T/4 (Fig. 30.1 (a)). Sub-population 1 and 2 are stimulated simultaneously at time
t�, but with different polarity. A neuron of sub-population 1 is stimulated with
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Sj (�j)� I cos(�j), whereas a neuron of sub-population 2 is stimulated with
Sj (�j)� I cos (�j��)�	 I cos (�j). Analogously, sub-populations 3 and 4 are si-
multaneously stimulated at time t��T/4. A neuron of sub-population 3 is stimu-
lated with Sj (�j)� I cos (�j), whereas a neuron of sub-population 4 is stimulated
with Sj (�j)�	 I cos(�j).

Variant (i) requires that we are able to modify the stimulation mechanism
S (�j) itself. This might be difficult in an experimental application. In contrast,
variants (ii) and (iii) operate with identical pulses of the same or different polar-
ity, administered at different times. Numerically variants (i)–(iii) work compar-
ably well. We here consider version (iii). To estimate the extent and type of syn-
chronization of the whole population we use the cluster variables

Zm�t� � Rm�t�ei�m�t� � 1
N

�N

j�1

eim�j�t� � �30�3�

where Rm (t) and �m (t) are the corresponding real amplitude and real phase,
where 0%Rm (t)%1 for all times t [7, 76]. Cluster variables are convenient for
characterizing synchronized states of different types: Perfect in-phase synchroni-
zation corresponds to R1�1, whereas an incoherent state, with uniformly dis-
tributed phases, is associated with Rm�0 (m�1, 2, 3, . . .). R1�0 combined with
large Rm is indicative of an m-cluster state consisting of m distinct and equally
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Fig. 30.1 (a) Two subsequent antiphase re-
sets of pairs of sub-populations are achieved
by administering two pairs of high-frequency
(HF) pulse trains with different polarity with
a time delay of T/4, where T � 2��� is the
period of the population. Time course and
polarity of HF pulse trains is schematically
indicated with X ��t� � X�t�Sj�0�, where the
numbers indicate the sub-population to
which the corresponding HF pulse train is
administered. Single pulses are highlighted
by shaded regions. Each HF pulse train con-
sists of 15 single pulses with duration of
0.02, intersected by pauses of length 0.03.

HF pulse trains 1 and 3 have positive polar-
ity: Sj��j� � I cos��j�, whereas HF pulse
trains 2 and 4 have negative polarity:
Sj��j� � 	I cos��j�, with I � 30. Stimulation
starts at time tB�0 and ends at tE � 0�97.
(b) Stimulating model (30.1) according to
(a) results in a configuration at the end of
the stimulation given by Z�k�1 �tE� where num-
bers indicate the corresponding sub-popula-
tion k � 1� � � � � 4. The unit circle marks the
maximal range of �Z�k�1 �. Model parameters:
N � 100�K � 2�� � 2�, noise amplitude
D � 0�4.



spaced clusters, where within each cluster all oscillators have similar phase.
Analogously, we use

Z�k�m �t� � R�k�m �t�ei��k�m �t� � 4
N

�
j�Ak

eim�j�t� � �30�4�

as cluster variables for the four sub-populations separately. k�1, . . ., 4 is the in-
dex of the sub-population introduced above, m is the index referring to an m-
cluster state (see Eq. (30.3)), and �k is the set of indices belonging to the kth
sub-population, e.g., �1� {1,. . ., N/4}. With Z(k)

1 we estimate the extent of in-
phase synchronization within sub-population k. The latter is perfectly in-phase
synchronized if R(k)

1 �1.
The effect of a multisite coordinated reset is illustrated with a snapshot of

Z1
(k)(tE), the centers of mass of all four sub-populations at the end of the stimula-

tion (Fig. 30.1 (b)). All four sub-populations are strongly synchronized, where their
mean phases �

�k�
1 are equally spaced in the cycle. R1

(1) and R1
(2) are a bit smaller

than R1
(3) and R1

(4). This follows from the fact that at the end of the HF pulse trains
1 and 2 (i.e., at time tE	T/4) Z(1)

1 and Z(2)
1 are located exactly where Z1

(3) and Z1
(4) are

located at the end of the HF pulse trains 3 and 4 (i.e., at the end of the stimulation,
at time tE). Between tE	T/4 and tE sub-populations 1 and 2 spontaneously run in
the counterclockwise direction through a quarter of a cycle and relax to a less syn-
chronized state with smaller R(1)

1 and R(2)
1 . The arrangement of Z(1)

1 , . . ., Z(4)
1 at the

end of the stimulation is a symmetrical 4-cluster state of the whole population,
with R4 from (30.3) close to 1 and R1 close to 0. The coordinated reset splits the
whole populations in four distinct, symmetrically arranged sub-populations.

To understand how a stimulus-induced clustering leads to an effective desyn-
chronization, we study the dynamics of the leading modes Z1, . . ., Z4. We first
recall the dynamical behavior of model (30.1) without stimulation (with X (t)�0
in (30.2)). For large N it has been shown that noisy in-phase synchronization
emerges out of the incoherent state due to a decrease of the noise amplitude D
or, analogously, because of an increase of the coupling strength [39, 76]. For
K�D a stable limit cycle Z1 (t)�Y exp(i�t) emerges, where Y is a complex con-
stant [76]. When K exceeds its critical value Kcrit�D, Z1 from (30.3) becomes an
order parameter, which according to the slaving principle [27] governs the dy-
namics of the other, stable modes Zm (m�2, 3, . . .) on the center manifold [56]:
The order parameter Z1 acts on a slow time scale, whereas the stable modes Zm

act on a fast time scale and relax to values given by the order parameter Z1 [27,
102]. In model (30.1) with large N this relationship reads [76]:

Rm $ Rv
1 with v � 2� m � 2� 3� 4� � � � �30�5�

The collective dynamics will not only be visualized with the cluster variables
Zm, but also by considering the collective firing. A single firing/bursting model
neuron fires/bursts whenever its phase is close to zero (modulo 2) [17, 25, 28,

30 Control of Synchronization in Oscillatory Neural Networks658



39, 76]. We illustrate the collective firing with the relative number of neurons pro-
ducing an action potential or burst at time t given by

nfire�t� �
number of neurons with cos�j � 0�99

N
� �30�6�

0%nfire (t)%1 for all t. nfire(t)�0 means that no neuron fires/bursts, while all
neurons fire/burst at time t if nfire(t)�1. Varying the threshold parameter 0.99
in a reasonable range does not change the results.

Figure 30.2 shows the dynamics before, during and after stimulation. The
phase at which the coordinated reset from Fig. 30.1 is applied to the same neu-
ronal population is varied within one cycle. The impact of this stimulus is inde-
pendent of the phase at which it is administered. At the end of the stimulation
the system has reached the 4 cluster-state shown in Fig. 30.1 (a): R4 has a value
similar to the prestimulus range, whereas R1, R2 and R3 are close to zero. In
the poststimulus period the system does not remain in the 4 cluster-state.
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Fig. 30.2 The stimulus from Fig. 30.1 (a) is
administered to the in-phase synchronized
neuronal population from Eq. (30.1) at dif-
ferent initial phases. At the beginning of
each simulation the phases are given by
�j � 	� ��j, where ��j is normally distrib-
uted with variance

�������
0�3

"
. The time course of

R1 (a), R2 (b), R3 (c), R4 (d) from Eq. (30.3),
and the relative number of firing neurons
nfire from Eq. (30.6) (e) is shown in 101 si-
mulations, where the normalized mean ini-

tial phase 
 � 	�2� is varied in equidistant
steps within one cycle [0, 1]. The first 30 per-
iods were discarded to guarantee that the
stimuli hit the population in a stable syn-
chronized state. Same stimulation parame-
ters and model parameters as in Fig. 30.1.
Stimulation starts at tB � 0 and ends at
tE � 0�97. Pairs of HF pulse trains 1, 2 and
3, 4 are indicated by green and blue horizon-
tal bars, respectively.



Rather due to the slaving principle R4 rapidly decays to zero, so that the system
approaches a perfectly desynchronized state characterized by Rm�0 (m�1, 2, 3,
4, . . .). The vanishing R1 suppresses R4 according to (30.5). Without coupling
(but with noise) the 4 cluster-state would decay more slowly (see [74]). From the
mathematician’s viewpoint the relaxation of R4 is due to the system being at-
tracted by the center manifold as characterized by (30.5). By imposing a 4 clus-
ter-state, the stimulation does only half of the desynchronizing work. The rest,
namely approaching a uniformly desynchronized state, is done by the system it-
self. In this way the coupling, which causes the synchronization, is used for im-
proving the desynchronizing effect.

In the course of the poststimulus transient R1 and according to (30.5) also R2,
R3, and R4 recover again. The system finally reaches its stable in-phase synchro-
nized state again.

In summary, by shifting the system into an unstable 4-cluster state, the sys-
tem reacts by automatically running through a desynchronized state. Finally,
the system reverts back to the synchronized state, if left unperturbed. The re-
sults are stable with respect to variations of N between 20 and 1000 and more.

The effectively desynchronizing multisite coordinated reset can be used to
block the resynchronization. For this, we may use three different control strate-
gies:

(i) Periodic administration of coordinated reset stimuli: The most simple, open
loop type of stimulation is a periodic administration of coordinated reset stim-
uli.

(ii) Demand-controlled timing of the administration of identical stimuli: Whenever
the population tends to resynchronize, the same stimulus is administered
(Fig. 30.3). The larger the coupling strength K, the more often a stimulus has to
be administered to maintain an uncorrelated firing. In an experimental applica-
tion one has to observe the synchronized oscillation during a sufficiently long
period of time in order to perform a frequency analysis which yields the period
T of the population in the absence of stimulation and, thus, the critical stimula-
tion parameter T/4 (the time delay between the two pairs of HF pulse trains,
see Fig. 30.1 (a)).

(iii) Entrainment with periodically administered HF pulse trains of demand-con-
trolled length: The stimuli are periodically administered with offset times
tn�n��, where n�0, 1, 2, 3, . . . is the index labeling different stimuli, ��T� �

is a time interval in the range of the period T of the population without stimula-
tion, and � is a small integer such as 2 or 3. This means we perform a 1 :� en-
trainment of the four sub-populations, where the spontaneous frequency of the
neurons is approx. � times larger compared to the frequency of stimulus admin-
istration. The smaller |�|, the smaller is the stimulation strength necessary to
achieve an entrainment.

The closed-loop variants (ii) and (iii) require that the ensembles activity can
be measured appropriately. Unlike in Fig. 30.1 (a), we use HF pulse trains of de-
mand-controlled length: The length of the HF pulse trains increases linearly be-
tween a minimal value Mmin and a maximal value Mmax of single pulses (except
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for rounding), where the latter is initially used for desynchronizing the fully
synchronized population. R1 is measured at times tn�� tn	 tmax, where tmax is
the maximal duration of a HF pulse train (containing Mmax single pulses).
R1 (tn�) determines the number of pulses of the HF pulse trains 1–4 of the nth
stimulus according to

Mn � min
R1�t�n��Mmax 	Mmin�

R1�t0�
! "

�

�Mmin�Mmax

� (
� �30�7�

where n�0, 1, 2, 3, . . ., [x]� stands for rounding x to the nearest integer, and
min {x1, x2} stands for the minimum of {x1, x2}. The nth stimulus ends pre-
cisely at time tn�n��, whereas it starts somewhere between tn� (for Mn�Mmax)
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Fig. 30.3 Time course of R1 from Eq. (30.3
(a), (c), and (e)) and of nfire from Eq. (30.6)
(b), (d), (f) during different types of stimula-
tion. Demand-controlled timing of stimulus ad-
ministration (a) and (b): As soon as the am-
plitude R1 of the recovering order parameter
reaches the value of 0.5, the stimulus from
Fig. 30.1 (a) is administered again. Periodical
stimulation with demand-controlled length of
HF pulse train (c) and (d): The stimulus from
Fig. 30.1 (a) is administered periodically,
where the length of the HF pulse trains is
adapted to R 1 according to Eq. (30.7) with

Mmax � 15 and Mmin � 0. Standard perma-
nent HF pulse train stimulation (e) and (f):
Each neuron is stimulated with the same HF
pulse train: Xj�t� � X�t� in Eqs. (30.1) and
(30.2). (a)–(f): Numerical integration, model
parameters, and initial conditions as in
Fig. 30.2. Begin and end of stimuli are indi-
cated by vertical lines. (a)–(d): Upper and
lower shaded regions correspond to pairs of
HF pulse trains 1, 2 and 3, 4, respectively.
(e) and (f): HF pulse train is indicated by
one.



and tn (for Mn�Mmin�0), depending on its duration. With this adaptive en-
trainment we stabilize the periodic motion of Z1

(1), . . ., Z1
(4), the centers of mass

of the four sub-populations. In this way only minor corrections are necessary to
keep the centers of mass Z1

(1), . . ., Z1
(4) sufficiently close to their corresponding

attractors (Fig. 30.1 (b)) at times tn�n��. If the suppression of R1 is not suffi-
cient we may (i) choose a larger intensity parameter I in Sj (�j)� I cos �j, (ii) in-
crease Mmin, (iii) administer the stimuli at a higher rate, i.e., decrease �, so that
the inter-stimulus interval tn� 1	 tn��� gets smaller, and/or (iv) increase the
duration of each single pulse of the pulse trains. The feedback value of R1 can
also be evaluated before time tn� , especially in case of a slow order parameter dy-
namics (i.e., when the coupling is weak with respect to the noise). We could
also use the mean of R1 in a period of evaluation.

Applying the standard, permanent HF pulse train stimulation [4, 6] to our
model (30.1) (in a first approximation) corresponds to stimulating each neuron
with the same HF pulse train [Xj (t)�X (t) in (30.1), (30.2)]. During a permanent
HF stimulation a high-frequency entrainment of the order parameter Z1 cap-
tures Z1 in a small portion of the Gaussian plane [79], so that the individual
neurons’ firing is stopped, but no desynchronization occurs (Fig. 30.3 (e) and
(f)). In contrast, during stimulation R1 is larger compared to its prestimulus lev-
el, and after stimulation the synchronous firing continues immediately. To sup-
press the firing with such a simple pulse train persistently, it has to be adminis-
tered permanently. The number of single pulses used to suppress the firing in
Fig. 30.3 (e) and (f) is 5.35 and 8.02 times larger than that used for blocking the
resynchronization in Fig. 30.3 (a) and (b) and (c), (d), respectively. This illus-
trates the effectiveness of the demand-controlled multisite coordinated reset
stimulation. The latter can effectively desynchronize stimulated oscillators with
a signicantly smaller amount of stimulation current compared to the standard
permanent HF pulse-train stimulation.

30.3
Linear Multisite Delayed Feedback

In this section we present another technique for effective and robust desynchro-
nization of neuronal populations. As in the previous section, the presented de-
synchronization technique is also based on the stimulation of a strongly syn-
chronized population of interacting oscillators. The stimulation is administered
via several sites, e.g., four sites, where through each stimulation site an individ-
ual stimulation signal is applied. The individual stimulation signals are derived
from the delayed mean field of the ensemble. Therefore, the macroscopic activ-
ity (mean field) of the controlled population is measured, delayed, amplified
and fed back in a spatially coordinated way via the stimulation sites using differ-
ent delays for each stimulation site, respectively [29–31]. More precisely, let the
stimulation electrodes be En, n�1, 2, 3, 4, where the individual stimulation sig-
nals Sn are administered via the electrodes En, respectively. We denote the mea-
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sured mean field of the ensemble by Z (t). Then the stimulation signals are de-
ned as Sn (t)�KZ (t	�n), where K is a stimulus amplification and �n, n�1, 2, 3,
4 are (different) time delays. In the following the parameters K and � are con-
sidered as the main stimulation parameters.

To investigate the effect of linear multisite delayed feedback stimulation we con-
sider an ensemble of coupled limit cycle oscillators stimulated with the individ-
ual stimulation terms Sj (t):

�zj�t� � �aj � i�j 	 �zj�t��2�zj�t� � CZ�t� � Sj�t� � �30�8�

where the complex state variables of the individual oscillators are given by
zj�xj� iyj (j�1, . . .,N, where N denotes the number of oscillators) and
Z (t)� 1

N

$N
j�1 zj�t� denotes the mean field of the ensemble. Note, Sj(t) indicates

the stimulation term received by the jth oscillator, while Sn (t) refers to the stim-
ulation signal applied to the population through the nth electrode.

Without coupling and stimulation all oscillators of ensemble (30.8) indepen-
dently and uniformly rotate around the origin on limit cycles (radius:

���
a

"
j, fre-

quency: �j). The deviation of the mean field Z (t) from zero is of the order of 1/����
N

"
[49, 54]. For increasing coupling strength (C�0), the oscillators start to syn-

chronize which is characterized by large-amplitude oscillations of the mean field
Z (t) (frequency: �0� 1

N

$N
j�1 �j). We will use this property of the mean field to-

gether with the mean field of order two (four) Z2�4� � N	1$N
j�1�zj��zj��2�4�, re-

spectively, to distinguish between synchronized, desynchronized, and clustered
states of the stimulated population of oscillators.

For the investigation of the stimulation effects we use a similar two-parameter
diagram for the averaged order parameter �R(t)� as suggested for synchroniza-
tion control by [64, 65] in the case of linear single-site delayed feedback, where the
stimulation signal S (t) attains the form S (t)�KZ(t	�). The stimulation is per-
formed via one stimulation electrode in such a way that all oscillators of the en-
semble receive the same stimulation signal Sj (t)�S(t). For stimulation with lin-
ear single-site delayed feedback in a corresponding two-parameter diagram islands
of perfect desynchronization are complemented by areas of stimulation-en-
hanced synchronization [58, 64, 65] (Fig. 30.4 (a)).

In contrast, in Fig. 30.4 (b)–(d) where the desynchronization impact of the
stimulation with linear multisite delayed feedback is illustrated (see [29–31]) the
whole population is split into four sub-populations, where each of them is as-
signed to the corresponding stimulation electrode and receives the correspond-
ing stimulation signal from that electrode only. The stimulation signals Sn are
constructed from the delayed mean field of the ensemble Sn(t)�KZ(t	�n). We
start with time delays calculated from the following relation:

�n � 11	 2�n	 1�
8

� � n � 1� 2� 3� 4 � �30�9�
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As one can see, the delays �n are symmetrically distributed with respect to the
main delay �, where the smallest distance between neighboring electrodes is
chosen as �/4. In the case, where � �T (mean period of the ensemble), the de-
lays �n are uniformly distributed over the mean period T.

For the detailed investigation of the effect of such a stimulation on the phases
of ensemble (30.8) and for the calculation of the order parameters displayed in
Fig. 30.4 we consider the following system:

��j�t� � �j � CR�t� sin
�t� � �j�t�� � Sj�t� � �30�10�

where R (t) is the order parameter and 
 (t) is the mean phase [39]. The corre-
sponding stimulation term in Eq. (30.10) attains the following form:

Sj�t� � K
�4

n�1

�n�jR�t	 �n� sin
�t	 �n� 	 �j�t�� � �30�11�

where the constants �n,j define the spatial topology of the stimulus administra-
tion. �n,j attains the values 1 or 0 depending on whether or not the oscillator j
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Fig. 30.4 Effect of linear single-site delayed
feedback. The value of the averaged first or-
der parameter �R�t�� is plotted versus delay
� and stimulus amplification K (a). Control
of synchronization by linear multisite delayed
feedback. The values of the averaged first
�R�t�� (b), second �R2�t�� (c), and fourth
�R4�t��(d) order parameters are depicted,

respectively, versus � and K. Other parame-
ters: C � 0�25, mean period of the stimula-
tion-free ensemble T � 5 (mean natural fre-
quency �0 � 2��T � 1�2566 � � ��, Gaussian
distributed individual natural frequencies �j

(mean �0, deviation  � 0�1�, number of os-
cillators N � 100 and aj � 1�



belongs to the sub-population assigned by the stimulation electrode En. For ex-
ample, for N coupled oscillators, we define �1,j�1 for 1% j%N/4 and 0 other-
wise; �2,j�1 for N/4�1% j%N/2 and 0 otherwise; �3,j�1 for N/2�1% j%3N/4
and 0 otherwise; and �4,j�1 for 3N/4�1% j%N and 0 otherwise.

The desynchronization impact of the stimulation with linear multisite delayed
feedback was explained in detail in [29–31]. In the present realization, we consider
the following stimulation protocol. Instead of four delays �n, n�1, . . ., 4 we use
only two of them, �1 and �2. We put �3��1 and �4��2, where the polarity of the
stimulation signals S3 (t) and S4 (t) is reversed: �3,j�	1 for N/2�1% j%3N/4
and 0 otherwise; and �4,j�1 for 3N/4�1% j%N and 0 otherwise. Assuming that
the mean field of the ensemble uniformly oscillates around zero with period �, the
alternating polarity of the signal corresponds to a shift in time by half a period.
Therefore, under this condition the stimulation signal S3(t)� 	S1(t)�
	KZ(t	�1) approximates the stimulation signal S1(t��/2) which is shifted in
time by half of the period, which, in turn, is equal to KZ(t	�3), where �3 is calcu-
lated according to Eq. (30.9). Analogous arguments are applicable to the stimula-
tion signal S4(t)�–S2(t)�–KZ(t	�2).

The results of the numerical simulations of ensemble (30.10) stimulated with
linear multisite delayed feedback (30.11) are shown in Fig. 30.4 (b)–(d). As one can
see, the in-phase synchronization in the stimulated ensemble is effectively
suppressed and the averaged order parameter �R (t)� attains small values
(Fig. 30.4 (b)). This indicates a symmetrical redistribution of the phases �j (t)
over the unit circle. In Fig. 30.4 (c) and (d) the values of the averaged second
�R2(t)� and fourth �R4(t)� order parameter are depicted versus delay � and stimu-
lus amplification K, respectively. One can see that either the second order pa-
rameter attains relatively large values indicating a two-cluster state, or, if the val-
ues of �R2(t)� become small (e.g., for ��T), the relatively large values of the
fourth order parameter indicate a four-cluster state. Therefore, the whole popu-
lation splits into two or four distinct populations which have the same fre-
quency, while their phases are equidistantly distributed within the cycle. Hence,
depending on the values of the parameters � and K, linear multisite delayed feed-
back with four stimulation sites may cause either a two-cluster state, where
�R(t)� is close to zero and �R2(t)� is maximal, or a four-cluster state, where both
�R(t)� and �R2(t)� are close to zero, but �R4(t)� is maximal.

Two trajectories of the X-coordinate of the mean field Z (t) (Fig. 30.5) illustrate
the detailed behavior of the system during linear multisite delayed feedback. For a
delay � close to the mean period of the stimulation-free ensemble (Fig. 30.5 (a)),
a four cluster state is induced by the stimulation (C�0.25 for t�100, C�0 else;
K�30 for t�200, K�0 else). The value of the X-coordinate of the mean field Z (t)
(Fig. 30.5 (a), red curve) saturates to values close to zero, while the mean fields of
higher order Z2 (Z4) saturate to low (high) values, respectively. As argued above
such a state corresponds to a four cluster state. The subplots, which show four tra-
jectories from each of the stimulated subsystems, illustrate the emerging four-
cluster state induced by linear multisite delayed feedback. For ��10 we observe a
two-cluster state (Fig. 30.5 (b)), as indicated by the two-dimensional diagram
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(Fig. 30.4 (c) and (d)): both Z2 and Z4 attain high values close to one. For consider-
ably strong coupling (e.g., C�0.5) the linear multisite delayed feedback stimulation
method reaches its limitations and an intermittent behavior occurs. The desired
two- (��10) or four- (��5) cluster state periodically alternates with a mostly de-
synchronized state. A noisy environment, which is inevitable for realistic systems,
has capabilities to reduce the effective coupling. In such an environment intermit-
tent behavior is not observed and linear multisite delayed feedback induces a robust
desynchronization even for considerably strong coupling [29–31].

30.4
Nonlinear Delayed Feedback

In this section we present another technique for the control of collective dy-
namics in networks of interacting oscillators. As in the previous section, the
present method is based on a delayed feedback loop, which is known to be an
effective technique for the control of the dynamics of chaotic oscillators [35, 60,
61, 70]. The impact of a delay on the collective dynamics of coupled oscillators
is intensively studied nowadays (see e.g. [18, 38, 62, 64, 67, 94, 103]). Recently,
novel methods based on a linear single-site [64, 65] or linear multisite [29–31]
(Section 30.3) delayed feedback were suggested for the control of synchroniza-
tion. In the former realization, the linear delayed feedback method can com-
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Fig. 30.5 Control of synchronization of
coupled and stimulated limit-cycle oscilla-
tors. Time courses of the X-coordinate of the
mean field Z (t) (red curves). Green and red
curves in the main plots are the amplitudes
of the mean fields of higher order, namely,
Zn � N	1$N

j�1
zj

�zj �
� �n

. In the subplots four
trajectories from each of the stimulated sub-

system are shown for t � �320� 340�. Other
parameters: (a) � � 5�0, (b) � � 10,
C � 0�25, K � 30, mean period of the stimu-
lation-free ensemble T � 5 (mean natural
frequency �0 � 2��T � 1�2566 � � ��, Gaus-
sian distributed individual natural frequency
�j��0, deviation  � 0�1�, number of oscilla-
tors N � 100 and aj � 1.



pletely desynchronize a controlled ensemble provided parameter values are cho-
sen within bounded island-like regions complemented by areas of stimulus-en-
hanced synchronization. In contrast, the linear multisite delayed feedback meth-
od demonstrates greater robustness with respect to parameter variations. How-
ever, linear multisite delayed feedback induce CPG-like cluster states (see
above), which are not desynchronized states. Nevertheless, CPG-like dynamics
might be beneficial for other medical applications (see below).

To reliably induce complete desynchronization, we here suggest to use a non-
linear delayed feedback (NDF) for the control of the collective dynamics in oscil-
latory networks [57–59, 87]. The extent of synchronization can be adjusted by
the NDF method to any amount ranging from complete in-phase locking to
complete desynchronization. The NDF method distinguishes itself by a particu-
lar robustness with respect to system and stimulation parameter variations: A
synchronized population of oscillators is stimulated with a signal which is con-
structed by using the delayed mean field of the ensemble nonlinearly combined
with the instantaneous mean field. The stimulation results in a complete desyn-
chronization of the oscillators and restores their natural frequencies, so that the
oscillators rotate as if they were uncoupled. Simultaneously, the amplitude of
the stimulation signal practically vanishes when a desynchronized state is
achieved. This naturally realizes a demand-controlled character of the proposed
desynchronization technique. We illustrate the discussed control method by two
examples of coupled limit-cycle and phase oscillators. By means of a model
equation approximating the macroscopic dynamics of the controlled ensemble,
we explore the main dynamical properties of synchronization control by NDF.

The controlled network of interacting oscillators is stimulated by a signal S (t)
derived from the mean field of the ensemble. The mean field Z (t) of the en-
semble is measured and is supposed to have the form of a complex analytic sig-
nal 1) Z (t)�X (t)� iY(t). The stimulation signal is then constructed by a non-
linear combination of a delayed complex conjugate mean field with the instanta-
neous mean field

S�t� � KZ2�t�Z��t	 �� � �30�12�

where K is a stimulus amplification parameter, � is a time delay, and the aster-
isk denotes complex conjugacy. We illustrate the impact of the stimulation by
the NDF (30.12) on the collective dynamics of an exemplary ensemble of
coupled limit-cycle oscillators

�zj�t� � �aj � i�j 	 �zj�t��2�zj�t� � CZ�t� � S�t� � �30�13�
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1) In the case, where only the real part X (t) of
the mean field Z (t) is measured, the imagi-
nary part Y (t) can be obtained by, e.g.,

Hilbert transform Y�t� � �	1P�V �
#�
	�

X�s�
t	s ds,

where P.V. denotes Cauchy principal value [54].



System (30.13) is a population of N globally coupled Landau-Stuart oscillators
representing a normal form of a supercritical Andronov-Hopf bifurcation [40].
The individual limit-cycle oscillators described by the complex variables
zj�xj� iyj have individual natural frequencies �j and amplitudes

���
a

"
j and are

globally coupled via their mean field Z�N–1 $N
j�1 zj, where C is the parameter

of the coupling strength. If the latter increases, the oscillators synchronize and
start to rotate with the same frequency, where the pairwise differences between
variables of individual oscillators decrease (mod 2�) [39, 47]. This phenomenon
is reflected by the dynamics of the mean field which increases its amplitude in
accordance with the extent of synchronization in the ensemble [39, 47, 54]. In
what follows we consider two cases of (i) very strong coupling, where the oscil-
lators (30.13) are strongly in-phase locked, and (ii) weak coupling, where most
of the oscillators still remain desynchronized.

The impact of the NDF stimulation (30.12) on the globally coupled ensemble
(30.13) for the two cases mentioned above is illustrated in Fig. 30.6. The popula-
tion of N�100 stimulated limit-cycle oscillators (30.13) is numerically simulated
for strong (Fig. 30.6 (a)) and weak (Fig. 30.6 (b)) coupling among the oscillators.
In the course of the simulation, the coupling (C) and the stimulation (K) are
switched on at times t�100 and t�200, respectively. One can see that if the
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Fig. 30.6 Control of synchronization of
coupled and stimulated oscillators (30.13).
Time courses of the X-coordinate of the
mean field Z(t) (red curves) and the ampli-
tude of the stimulation signal �S�t�� (30.12)
(blue curves) are plotted versus time. Cou-
pling (C) and stimulation (K) are switched
on at different times: C � K � 0 for t � 100,
then (a) C � 1 and (b) C � 0�15 for t � 100,
and, finally, (a) K � 100 and (b) K � 	0�5
for t � 200. In the subplots two selected

trajectories xj�t� of oscillators (30.13) are
depicted for time t � �360� 400� (stimulated
regime). The mean period of the stimula-
tion-free ensemble (30.13) T � 5 (mean
natural frequency �0 � 2��T � 1�2566����,
the individual natural frequencies �j are
Gaussian distributed with mean �0 and
deviation  � 0�1. The time delay � � 2�5,
the number of oscillators N � 100, and
aj � 1.



coupling and stimulation are absent (t�100) the mean field of the ensemble
(Fig. 30.6, red curve) displays small-amplitude oscillations caused by a finite-size
effect [55], which is characteristic for a desynchronized state [39, 47, 54]. The
onset of strong coupling leads to a significant increase of the amplitude of the
mean field (Fig. 30.6 (a), where C�1) reflecting an onset of strong synchroniza-
tion of the oscillators. A weak coupling, on the other hand, leads to small
changes in the dynamics of the mean field of ensemble (30.13) (see Fig. 30.6 (b),
where C�0.15), and the oscillators mostly remain desynchronized. The onset
of the stimulation takes place when the corresponding strongly synchronized
(Fig. 30.6 (a)) or weakly synchronized (Fig. 30.6 (b)) dynamics is established in
system (30.13). Depending on the values of the stimulation parameters K and �

of the NDF signal (30.12) the stimulation can have different effects on the oscil-
lators. In particular, the NDF stimulation can effectively desynchronize a popu-
lation of strongly coupled oscillators. This can be seen in Fig. 30.6 (a), where the
onset of the stimulation results in a decrease of the amplitude of the mean
field, which practically reaches the level of the coupling- and stimulation-free re-
gime. In the other case, the NDF stimulation can induce synchronization in the
stimulated ensemble, which is illustrated in Fig. 30.6 (b). One can see that the
stimulation can provoke large-amplitude oscillations of the mean field character-
istic for a synchronized dynamics.

The stimulation with the NDF signal (30.12) does not destroy the natural os-
cillatory activity of the individual elements of the ensemble. This follows from
the insets in Fig. 30.6, where the trajectories of two selected oscillators in the
stimulated regime are plotted. In accordance with the desynchronizing effect of
NDF stimulation (30.12), the stimulated oscillators rotate with different frequen-
cies and, thus, are desynchronized (see subplot in Fig. 30.6 (a)). On the other
hand, the synchronizing effect of NDF stimulation results in a strong in-phase
synchronization of the stimulated oscillators, which is illustrated in the subplot
in Fig. 30.6 (b), where the trajectories of two selected oscillators of the stimulat-
ed ensemble practically coincide. In Fig. 30.6 (a) another important property of
the desynchronizing NDF stimulation is illustrated. As soon as a stimulation-in-
duced desynchronized state is archived, the amplitude of the stimulation signal
|S (t)| (Fig. 30.6 (a), blue curve) declines and reaches values of the same order of
magnitude as the amplitude of the mean field. This is because of the nonlinear
dependence of the stimulation signal (30.12) on the mean field. Therefore, the
discussed method represents a demand-controlled technique for the desynchro-
nization of interacting oscillators, where the stimulated system is subjected to a
highly effective control at a minimal amount of stimulation force.

As mentioned above, the NDF stimulation (30.12) makes the individual fre-
quencies ��j of the strongly coupled and stimulated oscillators (30.13) different
from each other, in this way stabilizing a desynchronized state (Fig. 30.6 (a)). To
illustrate the impact of the NDF stimulation on the frequencies of the stimulat-
ed oscillators, in Fig. 30.7 (a) the following frequencies of the stimulated ensem-
ble (30.13) are depicted versus the stimulus amplification parameter K: individu-
al frequencies ��j (gray dots), frequency � (blue curves) of the mean field Z (t),
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and the mean of the individual frequencies �� � N	1$N
j�1 ��j (green curves). As

the parameter K�0 increases, the individual frequencies ��j diverge from each
other via a sequence of frequency-splitting bifurcations, where ��j split, one after
other, from the mean frequency �. This process leads to the onset of desynchro-
nization in the stimulated ensemble, where the individual stimulated oscillators
start to rotate with different frequencies. One can see in Fig. 30.7 (a) that � � ��

for K�0. Moreover, in this case the stimulation preserves the mean natural fre-
quency �0 � N	1$N

j�1 �j, i.e. � � �0. The situation is different for K�0,
where NDF stimulation can lead to a multistability of stimulation-induced states
in system (30.13) and can significantly detune frequencies of the stimulated en-
semble. For example, we plot in Fig. 30.7 (a) two different sets of the individual
frequencies ���j� (light and dark gray dots) and the corresponding mean fre-

30 Control of Synchronization in Oscillatory Neural Networks670

Fig. 30.7 Evolution of the frequencies and
desynchronization of the coupled oscillators
(30.13) stimulated with the NDF (30.12). (a)
Two different realizations of the frequencies
���j� (light and dark gray dots) of the indi-
vidual oscillators, frequency � (solid and
dashed blue curves) of the mean field Z�t�,
and the mean of the individual frequencies
�� � N	1$N

j�1 ��j (solid and dashed green
curves) can be observed in system (30.13)
for two different initial conditions. Coupling
C � 1. The solid (dashed) green and blue
curves correspond to the individual frequen-
cies depicted by light (dark) gray dots used
in two different simulations. (b) The time-

averaged amplitude of the mean field
��Z�t��� is depicted for C � 1 (solid red
curve, corresponds to frequencies in (a))
and C � 0�15 (dashed red curve). In (c) and
(d) the time-averaged amplitude of the mean
field ��Z�t��� (red circles), amplitude of stim-
ulation signal ��S�t��� (green diamonds), and
the maximum of the frequency difference
maxj ���j 	 �j� (blue triangles) are depicted
versus (b) positive and (c) negative values
of K in log-log scale. The black dashed lines
with the indicated slopes are given for com-
parison. Delay � � 2�5, the number of oscil-
lators (a), (b) N � 50 and (c), (d) N � 100,
and the other parameters are as in Fig. 30.6.



quencies � (solid and dashed blue curves) which can be realized in the stimu-
lated ensemble (30.13) for different initial conditions for K�0. The coexisting
stable stimulation-induced states can be synchronous (for small values of |K|)
or desynchronous (for large values of |K|), where the stimulated oscillators can
rotate with the same or with different individual frequencies ��j, respectively
(Fig. 30.7 (a) for K�0). Note that � can significantly deviate from �� (solid and
dashed green curves in Fig. 30.7 (a)), where the mean field of the stimulated en-
semble oscillates much faster (solid blue curve in Fig. 30.7 (a)) or much slower
(dashed blue curve in Fig. 30.7 (a)) than the individual oscillators.

For large values of the stimulus amplification |K|, the extent of synchroniza-
tion in the stimulated ensemble (30.13) decays as given by the time-averaged
amplitude of the mean field �|Z (t)|� (red curves in Fig. 30.7 (b)). This holds both
for strongly coupled (solid red curve in Fig. 30.7 (b), corresponding to the fre-
quencies in Fig. 30.7 (a)) as well as for weakly coupled (dashed red curve in
Fig. 30.7 (b)) ensembles with the difference that in the latter case there is a rela-
tively large interval of values of K, where the synchronization among stimulated
oscillators is enhanced compared to the stimulation-free regime (dashed red
curve in Fig. 30.7 (b) for K�0). Note, the amplitude of the mean field �|Z(t)|�
(solid red curve in Fig. 30.7 (b)) is the same for both realizations of the frequen-
cies {��j} in Fig. 30.7 (a) obtained for two different initial conditions.

A few more important properties of the desynchronizing impact of NDF stim-
ulation are illustrated in Fig. 30.7 (c) and (d), where the time-averaged ampli-
tude of the mean field �|Z (t)|� (red circles), time-averaged amplitude of the
stimulation signal �|S(t)|� (green diamonds), and the maximum of the frequency
differences maxj ���j 	 �j� (blue triangles) are plotted versus |K| in log–log scale.
One can clearly see that, as |K| increases, the amplitudes of the mean field and
stimulation signal decay in accordance with the following power law:

��Z�t��� � 1��������K�� � ��S�t��� � 1��������K�� � �30�14�

Moreover, as numerical evidence suggests, the individual frequencies ��j of
the stimulated oscillators approach the natural frequencies �j with the rate
���j 	 �j� � 1�K�, where the exponent � might depend on parameters of the
stimulated system (Fig. 30.7 (c) and (d), blue triangles). Therefore, with increas-
ing stimulus amplification |K| the stimulated oscillators become effectively de-
synchronized, where the extent of the residual synchronization, as given by the
amplitude of the mean field, decays according to Eq. (30.14). Simultaneously,
the amount of the stimulation force applied to the stimulated ensemble, as giv-
en by the amplitude of the stimulation signal, decay with the same rate. More-
over, the stimulation effectively restores the individual natural frequencies of
the stimulated oscillators, where all stimulated oscillators start to rotate with
their natural frequencies suppressed by synchronization.

To study the phase dynamics of the stimulated ensemble (30.13), (30.12) in
more detail, we consider the corresponding ensemble of phase oscillators. For
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this, we substitute zj (t)� rj (t) exp (i�j (t)) into Eqs. (30.12), (30.13), and, neglect-
ing the dynamics of the amplitudes rj, we consider the following system for the
phases �j:

��j�t� � �j � CR�t� sin
�t�	�j�t���KR2�t�R�t	�� sin2
�t�	
�t	 ��	�j�t�� �
�30�15�

Here, the mean field of the phase ensemble (30.15) is given by W (t)�R( t)
exp (i
(t))�N–$N

j�1 exp (i�j (t)), where R (t) is the order parameter and �(t) is
the mean phase [8, 39]. The order parameter R� [0, 1] serves as a good indicator
of the onset of synchronization in ensemble (30.15): If the phase oscillators are
in-phase synchronized with pairwise phase differences tending to zero (mod
2�), then R�1.

The robustness of the discussed control method with respect to variations of sys-
tem and stimulation parameters is of particular importance for its application.

We address the robustness issue by calculating the time-averaged order pa-
rameter �R (t)� of the phase ensemble (30.15) versus stimulation parameters �

and K. The results of the calculations are depicted as a two-parameter diagram
in Fig. 30.8 for the two cases of strong coupling (Fig. 30.8 (a), where C�1) and
weak coupling (Fig. 30.8 (b), where C�0.15). One can see in Fig. 30.8 (a) that
for any value of ��0 the order parameter decays with increasing K, which indi-
cates an onset of desynchronization in the stimulated ensemble. For a weakly
coupled ensemble, the NDF stimulation can induce enhancement of synchroniza-
tion in island-like regions of (�, K)-parameter plane complemented by domain of
complete desynchronization (Fig. 30.8 (b)). We note here that in the above Figs.
30.6 and 30.7 the calculations are performed for a fixed delay ��T/2, where T
is the mean period of the ensemble without stimulation. One can expect a similar
dynamics of the mean field and the frequencies of the stimulated oscillators for
other values of delay which, e.g., are multiple of T/2 (see Fig. 30.8).
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Fig. 30.8 Control of synchronization by NDF
stimulation versus stimulation parameters �

and K . The values of the time-averaged order
parameter �R�t�� are depicted in color rang-
ing from 0 (blue) to 1 (red) for (a) strongly
coupled �C � 1� and (b) weakly coupled

�C � 0�15� ensemble of N � 100 stimulated
phase oscillators (30.15). The natural fre-
quencies �j are distributed as in Fig. 30.6.
T denotes a mean natural period of ensemble
(30.15) without stimulation, T � 5.



The dynamics of the mean field W (t) of the stimulated ensemble (30.15) can
be approximated by the following model equation [57, 58, 87]:

�W�t� � C
2
�1	 �W�t��2�W�t� � i�0W�t� � K

2
W2�t�W��t	 ��� �30�16�

were �0 � N	1$N
j�1 �j is the mean natural frequency of the ensemble. In a

strongly synchronized regime (for large enough C�0 and K�0) the dynamics
of the mean field of ensemble (30.15) for large N can be approximated by a uni-
form rotation on the unit circle with the frequency ���0 emerging in a Hopf
bifurcation [39], where the amplitude of the mean field is given by the order pa-
rameter R (t)�1. Global NDF stimulation (30.12) affects all oscillators (30.15)
in the same way and is modeled by the same stimulation term in Eq. (30.16). So-
lutions of Eq. (30.16) of the form W (t)�R (t) exp (i
(t)), where R (t)�const ��0,

(t)��t + const, can be derived from the following equations:

� � �0 � KC sin����
2C 	 2K cos���� � R2 � C

C 	 K cos���� � �30�17�

With the help of the model equation (30.16) one can investigate the existence,
stability, and dynamical properties of stimulation-induced desynchronized states
of ensemble (30.15). For example, in the stimulated ensemble (30.15) we find
the same decay rate of the order parameter �R� and the amplitude of the stimu-
lation signal ��S�� as predicted by Eq. (30.14). This decay rate can also be derived
from Eq. (30.17) (Fig. 30.9 (b)). The mean frequency � of the NDF-induced de-
synchronized states of ensemble (30.15) can also be calculated from Eq. (30.17).
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Fig. 30.9 Mean frequency � (plot (a)) and
the time-averaged order parameter �R� (plot
(b)) of the stimulation-induced desynchro-
nized states versus stimulus amplification K.
Symbols indicate the values of � and �R�
calculated for the stimulation-induced desyn-
chronized states of the ensemble of N�200
stimulated phase oscillators (30.15) for
� � 2�5 � T�2 (red squares) and
� � 5�0 � T (blue circles), where T � 2���0

is the mean natural period of ensemble
(30.15). The black solid curves are the theo-
retical predictions of � and �R� obtained
from Eqs. (30.16) and (30.17) for the corre-
sponding values of delay. Plot (b) is in a
log–log scale, where the dashed line has a
slope –1/2 and is shown for comparison.
Parameter C � 1�0 and the natural frequen-
cies �j of oscillators (30.15) are distributed
as in Fig. 30.6.



In particular, the mean natural frequency �0 can be preserved under stimula-
tion ���0 as illustrated in Fig. 30.9 (a) for ��T/2 (red squares) (see also
Fig. 30.7 (a) for K�0). For other values of delay (or opposite sign of K), the feed-
back can induce multistability of desynchronized states, where the mean fre-
quency of the stimulated ensemble can significantly be detuned from its origi-
nal value. This phenomenon is illustrated in Fig. 30.9 (a) for ��T (blue circles),
where, depending on the initial conditions, � can approach, e.g., values
�1�1.73 or �2�0.78 for large values of K (�0�1.256 in Fig. 30.9) (see also
Fig. 30.7 (a) for K < 0). The latter property of the NDF stimulation may play an
important role in the macroscopic frequency control of the stimulated popula-
tions of oscillators.

30.5
Reshaping Neural Networks

Plasticity is a fundamental property of the nervous system: In order to learn
and to adapt to sensory inputs, neurons continuously adapt the strength of their
synaptic connections in relation to the mutual timing properties of their firing
or bursting [1, 9, 20, 33, 37, 46, 71, 93, 104]. However, plasticity may not only
lead to desired learning and optimization processes. Rather, neuronal popula-
tions can learn pathologically strong interactions which may lead, e.g., to the
emergence of epilepsies [50, 72]. This is well-known from the so-called kindling
phenomenon [24], where preparatory stimulation induces the spontaneous pro-
duction of epileptic seizures without gross morphological changes [50].

Recently, theoretical studies have initiated an approach which is targeted on
unlearning pathologically strong synaptic interactions by desynchronizing brain
stimulation [32, 88, 90, 91]. This approach exploits plasticity in two different
ways: On the one hand, due to plasticity, desynchronizing stimulation may de-
crease the strength of the neurons’ synapses by decreasing the rate of coinci-
dences. On the other hand, neuronal networks with synaptic plasticity may ex-
hibit bi- or multistability. Accordingly, by decreasing the mean synaptic weight,
desynchronizing stimulation may shift a neuronal population from a stable syn-
chronized (pathological) state to a stable desynchronized (healthy) state, where
the neuronal population remains thereafter.

To illustrate this concept we present a numerical simulation where both kin-
dling stimulation, i.e., low-frequency stimulation, and antikindling stimulation,
i.e., multisite coordinated reset stimulation, are applied to a population of burst-
ing neurons [32, 91] (Fig. 30.10).

Since the purpose of Fig. 30.10 is to illustrate and discuss a concept we omit
all the details of the model, and refer the interested reader to [32, 91]. The syn-
aptic connectivities are modified following a simplified plasticity rule with sym-
metric spike timing characteristics [1, 9, 36, 44, 53, 100]. In our neuronal popu-
lation, which models a standard target for deep brain stimulation, synchronized
states (modeling disease states) as well as a desynchronized state (modeling a
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healthy state) are stable. The desynchronized state in our simulations is charac-
terized by very small coupling coefficients. In realistic neuronal systems one
might expect to observe among the majority of weakly coupled neurons also
clusters of functionally related neurons characterized by stronger coupling.
These clusters might be involved in a signal processing task induced by, for ex-
ample, external sensory signals. To mimic such a situation we added a weak, ex-
ponentially correlated stochastic external signal to a small number of neurons
(for details on the sensory input signal see [10, 13, 101]).

Starting from the stable desynchronized state, kindling stimulation, i.e., low-
frequency stimulation presented through one centered electrode, induces a high
portion of coinciding bursting activities which results in an increase of the cor-
responding synaptic connectivities (see Fig. 30.10 (e)), the induced connectivity
pattern reflects the concentric decay of the stimulation strength with distance
from the centered electrode). Finally, the synchronized state is stabilized and re-
mains thereafter (Fig. 30.10 (a) and (b)). Antikindling stimulation, i.e., desyn-
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Fig. 30.10 Illustration of the effects of anti-
kindling and kindling stimulation on a popu-
lation of bursters in the presence of an addi-
tional weak external input: (a) local field po-
tential (LFP, the stimulation epoch is indi-
cated by a red bar and by vertical lines). (b)
Synchronization measure. (c) Mean connec-
tivity (MC). (d) Separate analysis of the
mean connectivity for the five neurons af-
fected by the weak external stochastic input
(MC5, red), the mean connectivity of the

other neurons is displayed by the blue curve
�MC95�. (e) Clustered coupling pattern calcu-
lated at different times, where the mean con-
nectivity is evaluated for each neuron within
the cluster it belongs to �MC5 or MC95�. The
colors indicate the amount of the averaged
synaptic coupling strength (red (blue) color
indicates strong (weak) coupling). For de-
tails on the used model and the parameters
see [32, 91].



chronizing multisite coordinated reset stimulation presented through four
equally distributed electrodes, results in a reduction of the synaptic connectiv-
ities which, finally, ends up in a stabilization of the desynchronized state which
outlasts the epoch of desynchronizing stimulation (see Fig. 30.10 (c)). If the
mean synaptic connectivity is analyzed separately for the cluster of functionally
related neurons (MC5), i.e., the five neurons which receive the additional exter-
nal input, and for the neurons not affected by the additional input (MC95),
Fig. 30.10 (d) illustrates that kindling stimulation disturbs the cluster of func-
tionally related neurons while multisite coordinated reset stimulation leaves this
cluster unperturbed, in particular the connectivities of the functionally related
neurons are able to recover during the desynchronizing stimulation (Fig.
30.10 (d) and (e)).

Therapeutically rewiring stimuli of this kind [32, 88, 90, 91] shift the popula-
tion into the basin of attraction of the stable desynchronized state in an ex-
tremely mild way leaving clusters of functionally related neurons unperturbed.
This concept might contribute to a novel therapeutic stimulation strategy for
the therapy of neurological and psychiatric diseases characterized by abnormal
synchrony [21]. Instead of suppressing pathological synchronization this
approach aims at reshaping neural networks in a way that they unlearn their
tendency to generate pathological synchrony. According to our theoretical results
[32, 88, 90, 91] this requires considerably less stimulation current as compared
to standard high-frequency stimulation. Also Fig. 30.10 illustrates why we do
not expect that maladaptive processes, i.e., the formation of misconnected clus-
ters, occur. Desynchronizing stimulation specifically counteracts pathological
synchrony in this way giving rise to the reemergence of physiological patterns
of connectivity.

30.6
Discussion

In this chapter we presented three methods for the control of collective dy-
namics in ensembles of interacting oscillators. These methods are coordinated
reset stimulation (Section 30.2), linear multisite delayed feedback (Section 30.3),
and nonlinear delayed feedback (Section 30.4). We have shown that all three
methods can effectively suppress the undesirable synchronization among oscil-
lators, where the latter continue to exhibit their natural oscillatory activity. In
contrast, high-frequency pulse train stimulation of sufficient strength blocks the
individual oscillators.

The coordinated reset stimulation requires repetitive (demand-controlled or sim-
ple periodic) stimulus administration, where the stimulated oscillators are kept
in a permanent transient between synchronized and desynchronized states.
With such a stimulation protocol, the amount of the administered stimulation
current is significantly smaller than that of the high-frequency stimulation. This
allows us to expect much less side effects because of the smaller current spread
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when this technique is being used for the deep brain stimulation. Multisite co-
ordinated reset stimulation also works in simulations with realistic stimulation
and interaction topologies [84, 85]. Unlike other stimulation techniques, which
are based on phase resetting principles and require thorough calibration [77–
82], multisite coordinated reset stimulation distinguishes itself by the absence
of critical stimulation parameters, by the robustness of the desynchronizing ef-
fect, and by the quick availability (without time consuming calibration).

Linear multisite delayed feedback allows to control cluster-states in the stimulat-
ed system. On the one hand, depending on the chosen stimulation parameter �,
one can induce an N-cluster state, where N refers to the number of electrodes
used for the stimulation. On the other hand, linear multisite delayed feedback
stimulation provides an effective method for the control of spatiotemporal dy-
namics. Applied to CPGs, which are neural networks that can endogenously
(i.e., without external drive) produce oscillatory patterned outputs [3, 11, 14, 45,
97], i.e., anatomically distinct, but interacting clusters of neurons, our approach
might induce a coordinated sequential firing of different clusters. Different ar-
rangements of the delays can cause different types of dynamics which might
control different locomotor patterns. In this way, linear multisite delayed feed-
back stimulation maintains spatially patterned synchrony with minimal
amounts of stimulation. Hence, linear multisite delayed feedback stimulation
might be tested for the restoration of CPG activity in patients with incomplete
spinal cord injury [11, 12] or gait ignition disorders [66].

By stimulation with nonlinear delayed feedback, the synchronization of the
stimulated oscillators can effectively be enhanced, if the coupling strength and
stimulus amplification are weak. On the other hand, for any coupling strength,
even for very strong coupling, the synchronization can be effectively suppressed,
if the stimulus amplification parameter is large enough, which is the main fea-
ture of the nonlinear delayed feedback. In the latter case, the stimulation re-
stores the natural frequencies of the oscillators suppressed by synchronization.
We approximate the decay rate of the order parameter of the stimulated ensem-
ble and the amplitude of the stimulation signal, which characterize the extent
of synchrony among the oscillators and the amount of the administered stimu-
lation force, respectively. Both quantities decay with increasing stimulus amplifi-
cation according to the power law (30.14). This scaling is extremely important
for medical applications. Translated into the context of electrical brain stimula-
tion, Eq. (30.14) means that the better the pathological synchrony is suppressed,
the less stimulation current is needed. The stimulation can lead to a multistabil-
ity of stimulation-induced desynchronized states, where the mean frequency of
the stimulated ensemble can significantly be detuned by stimulation. This may
open up a novel avenue for the frequency control of ensembles of interacting
oscillators, for example, for populations of oscillatory neurons in the brain. We
note that the discussed method demonstrates a great robustness with respect to
system and stimulation parameter variations, which is of primary importance
for applications. The NDF method also demonstrates a broad applicability and
universality, which has been tested on a number of coupled networks of differ-
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ent nature including ensembles of synaptically coupled bursting neurons and
for a variety of stimulation protocols (see [57–59, 87]).

Desynchronizing stimulation might effectively counteract pathological neuro-
nal synchronization processes, in order to achieve an effective suppression of
symptoms. Moreover, desynchronizing stimulation might even reshape affected
neuronal networks, to induce long-lasting therapeutic effects (see Section 30.5).
This approach might, hence, lead to a fundamentally novel therapy for diseases
characterized by pathological brain synchrony.
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31.1
Introduction

The heart is a very complex and highly nonlinear system. Its predominant role
is to function as a mechanical pump for the circulatory system. To do so, at
each heart beat, the cells of the heart are stimulated by a typical propagation se-
quence of electrical activity. Disruption of this electrical pattern may lead to car-
diac arrhythmias.

Despite the complexity of the heart, its electrical behavior can be studied
using a variety of experimental and clinical techniques, and can be modeled
mathematically using relatively simple systems of nonlinear differential equa-
tions. While these approaches have in recent years allowed great headway into
understanding the dynamical behavior of the heart, cardiac arrhythmias such as
ventricular fibrillation still claim the lives of hundreds of thousands of people
each year in the United States alone [1]. Bridging the gap between understand-
ing the mechanistic bases of arrhythmias and applying such knowledge to im-
prove therapy presents one of the greatest challenges in the field of cardiac elec-
trophysiology.

This chapter describes recent progress in attempting to control certain cardiac
arrhythmias. In Sections 31.2 and 31.3 we give an introduction to cardiac elec-
trophysiology and cardiac arrhythmias. A discussion on current therapies and
their limitations is presented in Section 31.4. In Section 31.5, we describe re-
cent advances toward controlling a certain type of abnormal heart rhythm called
electrical alternans, which may act as a precursor for more complex and poten-
tially lethal arrhythmias. Finally, in Section 31.6, we present recent progress in
control of these more complex arrhythmias themselves. It is worth noting that
chapter 32 by S. Sinha and S. Sridhar (“Controlling Spatiotemporal Chaos and
Spiral Turbulence in Excitable Media“) in this volume deals more specifically
with control of cardiac fibrillation.
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31.2
Cardiac Electrophysiology

Efficient pumping of blood throughout the body requires that the heart muscu-
lature contracts in a coordinated manner. Given that the contraction of individu-
al myocytes is driven by electrical excitation (through a process known as excita-
tion–contraction coupling [7]), coordinated cardiac contraction requires that dif-
ferent regions of the heart be electrically activated in a specific sequence. This
sequential activation is facilitated by the anatomical arrangement of the heart
into distinct but contiguous regions whose electrophysiological properties are
markedly different [53]. Figure 31.1 illustrates the normal conduction system. A
normal sequence is initiated in the natural pacemaker of the heart (the so-called
sinoatrial (SA) node) when the transmembrane voltage of cells transiently in-
creases, then decreases, over a time course of a few hundred milliseconds. This
voltage change is known as an action potential. Because the SA nodal region is
electrically coupled to the right atrium, activation of the SA node causes a wave
of activation to spread throughout the atria. Electrical activation of the atria is
soon followed by mechanical contraction of the atria.

Electrical excitation of the atria leads to activation of the atrioventricular (AV)
node, the anatomical location of which is indicated in Fig. 31.1. In anatomically
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Fig. 31.1 A schematic diagram of the anatomical layout of the
heart. The diagram illustrates a number of the major electro-
physiological components of the heart, including the SA and
AV nodes and the His-Purkinje system. PV: pulmonary vein,
MV: mitral valve, TV: tricuspid valve, AoV: aortic valve, SVC:
superior vena cava, IVC: inferior vena cava (reproduced from
[40] with permission).



normal hearts, the AV node provides the only electrical connection between the
atria and ventricles. The activation of the AV node leads to the subsequent exci-
tation of the bundle of His, the left and right bundle branches, and the Purkinje
fibers. Branches of the His-Purkinje system radiate throughout the ventricular
tissue, and thus excitation of the His-Purkinje system leads to the excitation
and subsequent contraction of the ventricles. The electrophysiological properties
and anatomical layout of the AV node and His-Purkinje conduction system en-
sure that sufficient time exists for blood to flow from the atria to the ventricles
before the ventricles contract. Ventricular contraction forcefully propels oxyge-
nated blood from the left ventricle into the aorta and the systemic circulation,
and deoxygenated blood from the right ventricle into the pulmonary artery and
the pulmonary circulation (Fig. 31.1).

31.2.1
Restitution and Alternans

At the cellular level, the action potential is generated by the diffusion of ions
through specialized channels in the cell membrane. The conductance of the
membrane to the various ions present in the body varies as the channels open
and close. This opening and closing generally depends nonlinearly on trans-
membrane potential and on time. One consequence of this is the phenomenon
of restitution. Restitution is generally quantified by the restitution curve, which
is a functional representation of the duration of an action potential (APD) ver-
sus the preceding rest period (the diastolic interval, or DI). An example is
shown in Fig. 31.2. Such a curve reduces the high-dimensional dynamics of the
cardiac cell to a simple one-dimensional approximation, expressed mathemati-
cally as the discrete map equation APDn�1 � f �DIn�.
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Fig. 31.2 A typical action potential duration
(APD) restitution curve, generated with the
Shiferaw et al. model [54] of a ventricular
cell. To generate the APD restitution curve, a
train of action potentials are stimulated at a
constant pacing rate, followed by one prema-
ture stimulus. Thus, the diastolic interval

(DI) following the penultimate action poten-
tial is varied, and the duration of the result-
ing action potential is plotted as a function
of the preceding DI. As the action potentials
in the insets demonstrate, APD shortens as
DI is shortened, leading to a restitution
curve with the general shape as shown.



The APD restitution curve is generally a monotonically increasing function as
shown in Fig. 31.2. This reflects the fact that if a cell is allowed less time to re-
cover before being excited, its action potential will be shorter. During constant
pacing, a stable period 1 solution usually occurs, where each APD (and DI) is
the same as the previous APD (or DI). Thus, for each stimulus input there is
one APD; this is typically known as a 1 :1 response.

In many cells, however, a critical stimulation rate exists at which a bifurcation
to a qualitatively different behavior occurs [29, 43]. When paced faster than this
critical rate, a stable period-2 behavior occurs, during which the action potential
duration alternates on a beat-to-beat basis and returns to a given state after
every two periods (i.e., after two action potentials) instead of after one, as shown
in Fig. 31.3. That is, during alternans, there is a 2 :2 response – two action po-
tentials of different duration occur for every two periodic stimuli. The particular
excitation rate at which the action potential activity in a given cell bifurcates to
alternans is dependent upon the membrane currents and intracellular regula-
tory mechanisms operating in that cell.

Our interest in alternans resides in the role of alternans as a precursor, or
even as a trigger event, for more complex and potentially fatal cardiac arrhyth-
mias. The details of the implications of APD alternans for ventricular arrhyth-
mias will be discussed in Section 31.3.3, while research toward controlling alter-
nans is discussed in Section 31.5.

31.3
Cardiac Arrhythmias

The normal (sinus) rhythm of cardiac activation described in Section 31.2 can
be disrupted in many ways leading to very different types of cardiac arrhyth-
mias. Arrhythmias may range from benign, to debilitating, to fatal. Some occur
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Fig. 31.3 Action potential duration bifurca-
tion diagram, generated with the Shiferaw et
al. model [54] in a one-dimensional cable.
When pacing at a relatively slow rate, identi-
cal action potentials occur each time a stim-

ulus is applied (i.e., 1 :1 behavior). However,
increasing the pacing rate causes the action
potential behavior to bifurcate, such that for
every two stimuli, two different action poten-
tials occur (i.e., 2 : 2 behavior).



as a consequence of chronic heart disease while others may be triggered in
healthy hearts.

Two of the most commonly occurring and potentially lethal cardiac arrhyth-
mias are ventricular tachycardia and ventricular fibrillation. Ventricular fibrilla-
tion is thought to be the arrhythmia typically underlying sudden cardiac death.
Mainly because of their severity, much of the current research on arrhythmia
control has focused on these arrhythmias.

Ventricular tachycardia and ventricular fibrillation are both so-called reentrant
arrhythmias. In this section, we briefly describe these arrhythmias and discuss
how they may arise.

31.3.1
Reentry

Reentrant arrhythmias occur when tissue is repeatedly activated by an activation
wave that again and again reenters the same anatomical region and reactivates
it. A simple model of reentry is the closed ring, shown in Fig. 31.4 A, where the
activation wavefront rotates around an anatomical obstacle (e.g., scar tissue or a
valve). This type of reentry can be identified by the following characteristics: (1)
an area of unidirectional conduction block must exist at the time of reentry ini-
tiation, causing the activation wavefront to move in one direction only around
the ring; (2) the activation wavefront must move around an anatomically dis-
tinct pathway, returning to its point of origin and then following the same path
again; and (3) interruption of the reentrant circuit at any point along its path
should terminate the circus movement. For a given closed circuit to form a re-
entrant ring, the rotation time around the ring must be longer than the recov-
ery period of all segments of the circuit.

In the absence of an anatomical obstacle, it is still possible for circus move-
ment reentry to occur. In such a situation, the activation wavefront rotates
around a region that may be anatomically continuous, but which is functionally
discontinuous. Such a situation occurs in the leading-circle/figure-of-eight/
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Fig. 31.4 Schematic illustration of anatomical (A) and functional (B)
reentry. In anatomical reentry a wave cycles around an anatomical
obstacle, while functional reentry may occur in completely homo-
geneous tissue, when a functional discontinuity at the tip of a spiral
wave serves as a pivot point. Spiral waves may also become
anchored to obstacles, causing anatomical reentry.



spiral-wave models of reentrant arrhythmias [4], where a functional discontinu-
ity (instead of an anatomical discontinuity) serves as a pivot point about which
the activation wave rotates. The functional discontinuity can be created by a re-
gion of depressed excitability (from residual or sustained refractoriness), or, in
the case of spiral waves (Fig. 31.4 (B)), by the high degree of curvature of the
activation wavefront at the pivot point [5].

31.3.2
Ventricular Tachyarrhythmias

Some ventricular tachycardias are associated with the existence of a single reen-
trant circuit. This rhythm may terminate spontaneously if, for example, the
wavefront catches up to the tail, or if the reentrant activity is disrupted by a dif-
ferent wavefront, for example one originating from the SA node. Alternatively,
the reentrant circuit may destabilize and the reentrant wave may break up into
multiple waves that can propagate into different regions of the ventricles. This
can lead to the highly disorganized state of ventricular fibrillation.

While ventricular tachycardia can lead to excessively rapid contraction, poten-
tially causing a reduction in the efficiency with which blood is pumped
throughout the body, ventricular fibrillation leads to uncoordinated contraction
and a drastic reduction in blood flow around the body. Unless defibrillation re-
stores normal ventricular activation patterns within a few minutes of the onset
of the arrhythmia, ventricular fibrillation invariably leads to death.

31.3.3
Alternans as an Arrhythmia Trigger

Initiation of ventricular tachyarrhythmias is sometimes preceded by the occur-
rence of alternans. As outlined below, it is possible that alternans actually
causes the onset of some arrhythmias.

In tissue, alternans may occur in different spatial patterns. One type of pat-
tern is spatially concordant alternans, where the tissue everywhere exhibits a
long action potential on one beat and everywhere a short action potential on the
next beat. A second type of pattern is spatially discordant alternans, where (at
least) one region is out of phase and exhibits a long action potential, while for
the same beat another region exhibits a short action potential. Discordant alter-
nans may arise even in spatially homogeneous tissue, due to dynamically in-
duced spatial variations in the conduction velocity of the propagating waves.

Discordant alternans may initiate arrhythmias through unidirectional block,
which can occur when a propagating wave enters a region where a long action
potential has left the tissue with too little recovery time for the wave to propa-
gate further, while a neighboring region having had an action potential of short-
er duration allows for propagation. Evidence of causality between alternans and
the onset of arrhythmias has been demonstrated in experiments [10, 24, 46] and
in computer simulations [24, 38, 48].
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31.4
Current Treatment of Arrhythmias

Cardiac arrhythmias are currently treated using one or more of the following
strategies: pharmacological treatment, implantable devices, and ablation therapy.
For more details on the treatments described below, refer to [37].

31.4.1
Pharmacological Treatment

Despite a number of large clinical trials investigating the influence of an array
of putative antiarrhythmic drugs, to date, only one class of drugs, 
-blockers,
which inhibit sympathetic nervous stimulation, have been demonstrated to be
effective in preventing sudden cardiac death [33]. Some agents that block ion-
specific channels have been tested in clinical trials, but they have either been
proven ineffective or, worse, they have paradoxically increased mortality [59, 60].
These findings have made safety a key consideration in the development of new
drugs, cardiac and otherwise, to the point where all new drugs are evaluated for
inducing prolongation of the QT interval on the electrocardiogram, the most
common adverse side effect. Recently, ACE inhibitors, which have long been
the gold standard in treatment of high blood pressure, have shown promising
results in terms of reducing the risk of sudden cardiac death [20].

Because of the limitations of current antiarrhythmic drugs, a recent book on
the pharmacological treatment of cardiac arrhythmias states that the first princi-
ple of treating arrhythmias is to “avoid using antiarrhythmic drugs whenever
possible” [22]. Consistent with this view, there has been an ongoing shift in em-
phasis in the therapies for ventricular arrhythmias, from pharmacological to
nonpharmacological approaches [56]. Implantable devices (such as implantable
cardioverter defibrillators) and ablative therapies have now become the therapies
of choice for many patients, reflecting the demonstrated efficacy of these
approaches and the recognition of the inherent risks, particularly the proar-
rhythmic effects, associated with long-term antiarrhythmic drug use [51].

31.4.2
Implantable Cardioverter Defibrillators

While pharmacological treatment is sometimes useful for preventing tachy-
arrhythmias from occurring, implantable cardioverter defibrillators (ICDs) at-
tempt to terminate tachyarrhythmias once they have initiated. In 2003, an esti-
mated 150,000 defibrillators were implanted in patients in the United States,
with that number expected to increase in the coming years [35].

The first task of the ICD is to detect tachyarrhythmias. This is accomplished
by the microprocessor, which continuously analyzes the recorded signals to de-
termine whether an arrhythmia is occurring. Because mistakes can be deadly
(in the case of a missed arrhythmia) or painful (in the case of a nonpathological
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rhythm identified as a ventricular arrhythmia such that a defibrillation shock is
delivered to a conscious patient), devices typically employ a combination of com-
plementary detection techniques which examine such variables as rate, mor-
phology, onset, regularity, and relationship of atrial and ventricular activity. Ex-
tensive research into such electrocardiogram processing techniques has greatly
improved the accuracy of detection algorithms.

Once a tachyarrhythmia is detected, a suitable therapy must be delivered. The
first therapeutic modality is antitachycardia pacing, which applies one or more se-
ries of suprathreshold (but not large enough to be perceptible to the patient) stim-
uli. Antitachycardia pacing is typically attempted for ventricular tachyarrhythmias
exhibiting rates of up to 200–220 beats/minute [42] and aims to force a stimulated
wave into the reentrant circuit to collide with and extinguish the reentrant wave. It
was recently reported that antitachycardia pacing was effective in terminating 90%
of ventricular tachyarrhythmias on which it was attempted [52].

High-energy defibrillation shocks are delivered when antitachycardia pacing
fails or as primary therapy when arrhythmias such as ventricular fibrillation are
detected. The defibrillation discharge typically occurs along multiple vectors,
such as one defibrillation coil to another, or one defibrillation coil to the pulse
generator. This approach helps ensure adequate “coverage” of the fibrillating
myocardium.

Although ICDs are highly effective devices, they do have certain limitations.
Up to one-third of defibrillation shocks are given at inappropriate times [6, 19,
57]. These inappropriate shocks can cause intense pain and chronic anxiety. In
addition, the large shocks drain the battery of the ICD, thereby shortening the
device lifetime. Improved detection algorithms may prevent unnecessary shocks
from being delivered, but from the standpoint of survival, the results of a false-
positive detection are likely to be far less detrimental than the results of a false-
negative detection [34].

31.4.3
Ablation Therapy

Some arrhythmias can arise from a localized, abnormal region of cardiac tissue.
In addition, reentrant tachyarrhythmias may require one or more critical ana-
tomical regions of abnormal excitability or propagation to be sustained. Recog-
nizing this fact, ablation of viable tissue in such a region can be used to treat
some arrhythmias. With this technique, radiofrequency energy destroys tissue
by resistive heating that creates a nonviable lesion.

Perhaps the most difficult aspect of radiofrequency catheter ablation is local-
ization of the correct ablation site. Furthermore, especially for reentrant tachyar-
rhythmias, it is often necessary to reposition the catheter multiple times near
the site to achieve an adequate scar, as radiofrequency lesions are relatively
small in diameter and depth. The lack of depth also makes radiofrequency abla-
tion ineffective in those situations where the abnormal region is situated well
within the myocardium. This is more often the case in the ventricles than in
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the atria, because of the thickness of the ventricular wall. In contrast, the much
thinner atrial wall makes radiofrequency ablation useful for treatment of many
atrial arrhythmias.

31.5
Alternans Control

While the ICD has been highly successful in saving lives, it has some inherent
disadvantages, as discussed above. Antitachycardia pacing sometimes fails, in
which case the ICD reverts to its high-energy defibrillation mode. Furthermore,
defibrillation is not always successful. Hence, a preferable strategy would be a
device that prevents tachyarrhythmias from occurring in the first place, by rec-
ognizing and stopping precursor events using small amplitude electrical stim-
uli. Control of APD alternans is one such strategy currently under investigation.

31.5.1
Controlling Cellular Alternans

Recent research has suggested that control algorithms targeted at cardiac alter-
nans could potentially lead to an improvement in the therapeutic efficacy of im-
plantable devices such as ICDs.

Most of this work is based on model independent, adaptive control algo-
rithms, e.g., delayed-feedback control (DFC). In this method, which is based on
the Ott-Grebogi-Yorke (OGY) [44] technique for chaos control, small perturba-
tions are applied to the timing of the next excitation in an attempt to force the
state of the system toward the (unstable) period-1 fixed point. Unlike chaos con-
trol techniques, DFC algorithms do not require a learning stage (i.e., learning
the dynamics in the neighborhood of the unstable period-1 solution). This is
important, because during alternans, the dynamics evolve far from the period-1
dynamics (unless the alternans amplitude is very small). Delayed-feedback con-
trol (DFC) algorithms typically require (i) knowledge of the state of the system
for a very short time history, and (ii) a basic understanding of the system dy-
namics to ensure that the control perturbations are of the proper magnitude
and polarity. These two elements allow the periodic rhythm to be stabilized by
repeated adjustment of the stimulation time.

Let BCL (basic cycle length) be the time interval between two stimulations.
A typical DFC algorithm for alternans control is:

BCLn�1 � BCL� for �BCLn�1 � 0,
BCL� � �BCLn�1 for �BCLn�1 % 0,

�
�31�1�

with

�BCLn�1 � 	

2
�APDn�1 	 APDn�� �31�2�
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where 	 is the feedback gain and BCL� is the nominal BCL. The restriction that
a perturbation is only given to shorten, and not delay, the intrinsic rhythm re-
flects the fact that, in the heart, it is often not possible to delay the excitation: it
will occur naturally without stimulation. Thus, this algorithm is said to be re-
stricted. Both unrestricted DFC algorithms (which allow both lengthening and
shortening of the BCL during control) and restricted DFC algorithms have been
applied to cardiac rhythm disturbances.

An example of alternans control in a mathematical model is shown in
Fig. 31.5. Essentially, the restricted algorithm works by shortening the long DI
by giving a premature stimulation. This in turn shortens the long APD due to
restitution, as described in Section 31.2.1. Eventually, the unstable period-1 solu-
tion is stabilized and action potentials of constant duration are established. The
rate of convergence is controlled by the feedback gain.

DFC has been used experimentally to control APD alternans in small pieces
(i.e., sufficiently small to be point like) of bullfrog hearts [30]. Provided that the
feedback gain was within an appropriate range of values, the period-2 alternans
rhythm was successfully controlled to the underlying unstable period-1 rhythm.

DFC algorithms have also been used to control a related type of alternans (at-
rioventricular (AV) nodal conduction alternans; a beat-to-beat alternation in the
conduction time through the AV node) [12, 16, 32]. To date, AV node alternans
control is the only alternans control study performed on human subjects [16].

31.5.2
Control of Alternans in Tissue

While APD alternans could be successfully eliminated in a system that does not
have spatiotemporally varying repolarization and wave-propagation dynamics
(the frog sections in [30] were small enough that there were no apparent spatial
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Fig. 31.5 Action potential duration (APD) al-
ternans control in the Fox et al. model of the
canine ventricular action potential [23]. Alter-
nans is induced by rapid pacing at a basic
cycle length (BCL) of 180 ms. Delayed-feed-
back control (DFC) is turned on after the
first four action potentials. DFC works by

shortening the BCL of the cycles with short
APDs by delivering premature stimuli (ar-
rows), thereby shortening the recovery inter-
val and hence also shortening the subse-
quent APD. The value of the feedback gain
(	) is 1.0.



variation in dynamics), research on how to control APD alternans in spatially
extended systems (i.e., tissue rather than cells) is still in its infancy.

The utility of adaptive control algorithms for terminating potentially danger-
ous rhythms such as APD alternans will only become obvious once further re-
search is conducted into the effectiveness of such algorithms in controlling ar-
rhythmias spatially as well as temporally. Initial analytical work as well as com-
puter simulations of one-dimensional fibers suggest that only in the case of spa-
tially uniform APD alternans can alternans be terminated along the whole fiber.
In cases where concordant alternans show variation in space, as well as in the
more extreme cases of spatially discordant alternans, eliminating APD alternans
at one site will result in APD alternans being eliminated only up to a short dis-
tance away from this stimulation site [21, 49].

Recent experiments in canine Purkinje fibers qualitatively confirm these pre-
dictions [15]. Interestingly, these experiments also showed that APD alternans
of relatively small amplitude could be controlled over larger distances. Thus if
one can detect the early onset of small amplitude APD alternans, control should
be more easily achieved. In addition, these experiments showed that discordant
alternans could be converted to concordant alternans. Since discordant alternans
pose a larger risk of inducing tachyarrhythmias than concordant alternans, this
finding is quite intriguing.

To date, there have been no experimental studies of the actual distance over
which DFC control algorithms suppress alternans in ventricular tissue. If the
distance is short, such that multiple stimulation sites are necessary in order to
simultaneously suppress APD alternans in different regions of the heart, a car-
diac device that fits snugly around the ventricles, perhaps similar to one (the
CorCapTMCardiac Support Device, by Acorn Cardiovascular) that is now in clini-
cal trials as a therapy for heart failure [45] could potentially be developed.

Another concern regarding APD alternans control in ventricular tissue is ion-
ic heterogeneity. There are intrinsic differences in ionic properties, such as ion
channel densities, in different regions of the ventricles, e.g., across the ventricu-
lar wall, between the apex and the base, between the left and the right ventricle,
and between the posterior and the septal wall of the left ventricle [62]. At pres-
ent, it is not known how this may affect the ability to control APD alternans in
the ventricles. One thing to keep in mind, though, is that from a clinical point
of view it would be beneficial to simply turn discordant alternans into concor-
dant alternans, or to reduce the alternans amplitude. Complete elimination of
alternans everywhere in the tissue may not be necessary in order to significantly
reduce the risk of tachyarrhythmias.

31.5.3
Limitations of the DFC Algorithm in Alternans Control

In addition to the afore-mentioned complications in tissue, the DFC algorithm
has certain more fundamental limitations. When DFC algorithms are used to
control periodic rhythms, rapid convergence to the period-1 rhythm is achiev-
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able only if the feedback gain (	) is at or near its optimal value. The optimal val-
ue of the feedback constant is a function of the degree of instability of the fixed
point [27]. Because estimation of the instability of the fixed point requires that
the system state point visit the neighborhood of the fixed point, determination
of the optimal feedback constant value during periodic rhythms is difficult.
(Algorithms that utilize external perturbations to explore the neighborhood of
the period-1 fixed point can sometimes be used to estimate this optimal value
[11].) Additionally, not only does convergence rate decrease with increasing dis-
tance from the optimal proportionality constant value, but control fails when
the proportionality constant lies outside an acceptable range of values. While al-
gorithms that iteratively adapt the feedback constant to achieve control do exist
[14, 31], such algorithms can be sensitive to the noise and nonstationarities that
are typically present in experiments.

31.5.4
Adaptive DI Control

Although the DFC algorithms have proved effective for controlling APD alter-
nans, an alternative approach that is based solely on cardiac electrophysiological
principles has also been developed [36, 47]. This cardiac-specific control algo-
rithm exploits the restitution properties of cardiac tissue to control both periodic
and aperiodic rhythm disturbances to a period-1 rhythm, and does not require
the dynamics of the system to be learned.

Consider the APD alternans occurring at a basic cycle length BCL� shown in
Fig. 31.6. The AP alternates between points A and B on a beat-to-beat basis. Be-
cause APDn �DIn � BCL�, DIn alternates as well. In DI control, alternans can
be suppressed by perturbing BCL� on a beat-to-beat basis such that DIn is kept
at a constant target value. Due to the functional dependence of APDn�1 on DIn

characterized by the restitution curve, stimulation such that consecutive DIs are
identical causes each subsequent AP to converge to a constant repeating mor-
phology.

Similarly to the feedback gain (	) in the DFC algorithm, the adaptive DI con-
trol method makes progressively smaller perturbations to the cycle length. This
adaptive DI (ADI) control technique involves selecting an initial target DI and
then adjusting this value on a beat-to-beat basis until the sum of the target DI
and subsequent APD is equal to the original basic cycle length BCL� (i.e.,
DIn � APDn�1 � BCL�). The target DI is adaptively lengthened on a beat-to-beat
basis according to the control rule

DIn�1 � ��BCL� 	 BCLn� �DIn� �31�3�

where � is a constant between 0 and 1 that controls the rate at which DIn

changes. During ADI control, the difference between the present cycle length
(BCLn) and the original cycle length (BCL�) is therefore reduced until
BCLn � BCL�, and the period-1 rhythm will have been established at the origi-
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nal cycle length BCL�. This period-1 rhythm is the same as the unstable period-
1 fixed point obtained by existing DFC algorithms. However, as Eq. (31.3) indi-
cates, the ADI control approach is fundamentally different from DFC.

Adaptive DI control has been successful in obtaining control in numerical si-
mulations [36]. However, there are certain limitations to the method. One con-
cern is that DI control is based on the assumption that the AP dynamics is cap-
tured by a one-dimensional map. Recent studies have shown that intracellular
calcium dynamics contributes to the development of alternans, adding to the
complexity of the problem. Indeed, APD alternans may occur even when DI is
fixed [17, 63]. Still, the extent to which the restitution assumption fails is under
investigation and is likely to vary between cell types and species.

31.6
Control of Ventricular Tachyarrhythmias

Due to its inherent disorganization, ventricular fibrillation is much more diffi-
cult to tame with control algorithms than ventricular tachycardia or alternans.
Both because antitachycardia pacing (and perhaps alternans control in future
devices) sometimes fails, and because fibrillation sometimes occurs directly
from sinus rhythm with no apparent warning or trigger, it is critically important
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Fig. 31.6 Schematic representation of the DI
and adaptive DI (ADI) control schemes.
APD initially alternates between points A
and B on the restitution curve during stimu-
lation at the basic cycle length BCL�. The in-
set illustrates the voltage profile of this alter-
nans rhythm prior to the onset of control.
Initiation of DI control when DIn � DIB

makes every subsequent DI equal to DIB,

and hence each subsequent APD will be
equal to APDB. Alternatively, ADI control
may also be initiated with the target DI set
to DIB, as DIB � APDB � BCL�. The target
DI is then lengthened according to the con-
trol rule of Eq. (31.3), such that each succes-
sive APD climbs up the restitution curve un-
til the cycle length (DIn � APDn�1) is again
equal to BCL�.



for devices to be able to defibrillate the heart. Much of the work in defibrillation
research focuses on reducing the energy requirements for successful defibrilla-
tion. Smaller shocks both drain the device battery less and are less painful for
the patient.

Since the dynamics of ventricular fibrillation are aperiodic, and perhaps chaot-
ic, one way of reducing the necessary shock strength may be to apply chaos
control methods. In pioneering studies, Garfinkel et al. applied OGY-type con-
trol algorithms to rabbit ventricle preparations exhibiting aperiodic, possibly
chaotic, dynamics [26]. The rhythm was controlled, but to a period-3 rhythm,
rather than the desired period-1 rhythm. A later mathematical study demon-
strated that such control results may have resulted from mis-estimation of the
period-1 rhythm [13]. In another study of aperiodic dynamics, a cardiac-specific
control algorithm applied to a simulated chaotic action potential duration time
series was successful in controlling the unstable period-1 rhythm at certain exci-
tation rates [61]. Clinical realizations of these defibrillation methods are still
speculative, but would almost certainly involve multiple sites for recording and
stimulation.

In the remainder of this section, we will focus on termination of ventricular
tachycardia. Please refer to the chapter by S. Sinha and S. Sridhar in this vol-
ume for defibrillation approaches.

31.6.1
Suppression of Spiral Waves

Because spiral waves are associated with ventricular tachycardia, several meth-
ods have been proposed for terminating spiral waves. Some of the methods are
aimed at driving the spiral wave out of the tissue by local external forcing [8,
39, 41]. In the heart, the spiral would have to be forced into some nonconduc-
tive region.

Other methods have been based on feedback control. In one such simulation
study, small stimuli delivered during the repolarization phase of the action po-
tential were effective in preventing a spiral wave with alternans dynamics from
breaking up into fibrillatory-like activity [49]. In other simulations, alternans-in-
duced spiral breakup has been prevented by applying a single, well-timed stimu-
lus during the repolarizing phase using a special algorithm based on the eigen-
modes of the model equations [3].

The extent to which some of these methods for spiral wave control are feasi-
ble as therapeutic strategies remains unclear and requires further study.

31.6.2
Antitachycardia Pacing

As described in Section 31.4.2, the antitachycardia pacing modality of the ICD
works quite well in many cases. The ICD is usually programmed to give either
a burst of 8–10 electrical stimuli of constant frequency (faster than the reen-
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trant rhythm), or a train of 8–10 stimuli with increasing frequency. Since the
stimulating electrode is not necessarily situated inside the reentrant loop, it is
thought that the earlier stimuli “peel back” refractoriness to allow the sub-
sequent stimuli to enter the reentrant loop and terminate the tachycardia. How-
ever, there is no known clear physical mechanism explaining how antitachycar-
dia pacing works in the heart.

A simple model of ventricular tachycardia is a reentrant wave traveling
around a one-dimensional ring. In this model, where the stimulus site is neces-
sarily in the reentrant circuit, it is well known how even a single stimulus may
terminate the reentrant dynamics. Consider the situation in Fig. 31.7 (A), where
reentrant wave is traveling around the ring. If the stimulus is given too soon
after the passing of the previous wave when the tissue at the stimulus site is
still refractory, the stimulus cannot induce a full action potential and has only
very little effect on the reentrant wave (Fig. 31.7 (A)). On the other hand, if the
stimulus is given after some delay since the passing of the previous wave, a pair
of waves are generated, traveling in opposite directions away from the stimulus
site (Fig. 31.7 (C)). The wave traveling in the retrograde direction to the original
reentrant wave will collide with and annihilate the original wave. However, the
wave traveling in the anterograde direction will continue to circulate, replacing
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Fig. 31.7 Pacing-induced termination of re-
entry in a one-dimensional loop of length
100 space units (s.u.). The figure was gener-
ated using the Aliev-Panfilov version of the
FitzHugh-Nagumo model [2]. The timing of
the stimulus (ts) is varied between the three
panels: ts � 99 time units (t.u.) (A), ts � 101
t.u. (B), and ts � 104 t.u. (C). When the
stimulus is given too early, it does not gen-
erate new waves (A). If the stimulus is given

later, two waves are induced traveling in op-
posite directions on the ring. One wave ter-
minates the original reentry, but the other
wave persists, such that a reentry remains
(C). In contrast, if the stimulus is given with-
in the so-called vulnerable window, the stim-
ulus-induced wave is unidirectionally blocked
and propagates in the retrograde direction
only, where it will terminate the original re-
entry (B).



the original wave. Hence, termination was not successful. Based on continuity
arguments, however, there must be an intermediate timing of the stimulus for
which the reentry is terminated [28]. This happens when a well-timed stimulus
causes the induced wave to be blocked unidirectionally and travel in the retro-
grade direction only, while the tissue in the anterograde direction is still refrac-
tory and does not allow for propagation. The wave induced by the stimulus col-
lides with and terminates the original reentrant wave and termination is suc-
cessful (Fig. 31.7 (B)).

There are several problems in terms of extrapolating this simple model to the
heart. The stimulus has to fall into a narrow time interval (typically a few milli-
seconds), called the vulnerable window, in order for termination to be success-
ful. In addition, the vulnerable window effectively disappears when the stimulus
site is located at some distance away from the ring [55]. Finally, the heart is
three dimensional, which gives additional complexities.

Still, promising work is being done in this area. Simulation studies have
shown how using a pair, rather than single, stimuli increases the vulnerable
window from a few milliseconds to tens of milliseconds by mechanisms other
than unidirectional block [18]. Other simulation studies have shown how burst
pacing with � 12 stimuli may lead to termination even when the stimulus site
is located at some distance from the reentrant loop [9].

Further studies are needed to give a clear physical understanding of the
mechanisms of antitachycardia pacing. It is entirely possible that such explana-
tions will point toward new methods for improving therapy.

31.6.3
Unpinning Spiral Waves

Spiral waves associated with ventricular tachycardia are often anchored or
pinned to anatomical obstacles in the heart. When pinned, the spiral wave can
be very stable and would expected to be difficult to force out of the heart using
the methods described in Section 31.6.1.

Simulations studies have shown that it is possible to unpin a spiral from a
small obstacle using burst pacing [25]. However, for larger obstacles where the
“force of attraction” between the spiral core and the obstacle is greater, it may
be necessary to give a stimulus at the obstacle to unpin the spiral. In clinical sit-
uations, however, the stimulus electrode is most likely not situated exactly at
the obstacle.

One potential way of circumventing this problem is the following: when an
electrical field is applied to tissue with an inexcitable obstacle, a so-called virtual
electrode is formed, where a region of tissue neighboring one side of the obsta-
cle is depolarized, while a region of tissue neighboring the opposite side is hy-
perpolarized. If the timing is right, and the depolarization is of sufficient ampli-
tude, a new wave is generated at the obstacle and thus inside the reentrant cir-
cuit, and the spiral is unpinned [58]. This method has been tested in prepara-
tions from rabbit hearts, where it may be even more effective than classic
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antitachycardia pacing [50]. One possible limitation of this method is that the
spiral may repin to the same obstacle or a different obstacle.

31.7
Conclusions and Prospects

The concept of using nonlinear dynamical control methods to control aperiodic
electrical activity in animal cardiac tissue preparations was shown to be effective
a decade and a half ago [26]. However, successful application of such
approaches to terminate ventricular fibrillation in human hearts is still lacking.
Given that there may be many spiral waves present in the ventricles during
fibrillation, control methods based on application of local stimuli would likely
require multiple recording and stimulation sites. While this is less practical
than having a single site, it may still be possible to implement in implantable
devices. Another difficulty in controlling ventricular fibrillation in vivo lies in
the fact that cardiac tissue rapidly becomes ischemic during ventricular fibrilla-
tion due to lack of pumping of blood. A control algorithm would either have to
rapidly terminate ventricular fibrillation, or be able to integrate the nonstatio-
nary dynamics.

Because of difficulties in controlling ventricular fibrillation, we believe that
other strategies may lead to faster improvement in preventing sudden cardiac
death. One approach is to attempt controlling arrhythmia precursor events such
as electrical alternans. However, more research is necessary in order to deter-
mine the tissue volume over which a single electrode can control alternans. As
mentioned, in contrast to fibrillation, which must be terminated in order to pre-
vent a patient from dying, alternans need not necessarily be annihilated; a de-
crease in the alternans amplitude may reduce the risk of onset of ventricular ta-
chyarrhythmias.

Another strategy to prevent sudden cardiac death is to improve antitachycar-
dia pacing. The first step in this direction could be to determine the exact
mechanisms of success versus failure of antitachycardia pacing. Utilizing such
understanding might lead to the design of more effective pacing algorithms.

Because cardiac arrhythmias are characterized by complex nonlinear dy-
namics, tools and approaches from mathematics and physics have made, and
are likely to continue making, important impacts on mechanistic understanding
and therapy innovations.
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Sitabhra Sinha and S. Sridhar

32.1
Introduction

Excitable media denotes a class of systems that share a set of features which
make their dynamical behavior qualitatively similar. These features include (i)
the existence of two characteristic dynamical states, comprising a stable resting
state and a metastable excited state, (ii) a threshold value associated with one of
the dynamical variables characterizing the system, on exceeding which, the sys-
tem switches from the resting state to the excited state, and (iii) a recovery period
following an excitation, during which the response of the system to a supra-
threshold stimulus is diminished, if not completely absent [1]. Natural systems
which exhibit such features include, in biology, cells such as neurons, cardiac
myocytes and pancreatic 
 cells, all of which are vital to the function of a com-
plex living organism. Other examples of dynamical phenomena associated with
excitable media include cAMP waves observed during aggregation of slime
mold, calcium waves observed in Xenopus oocytes, muscle contractions during
childbirth in uterine tissue, chemical waves observed in the Belusov-Zhabotins-
ky reaction and concentration patterns in CO-oxidation reaction on Pt(110) sur-
face. Excitation in such systems is observed as the characteristic action potential,
where a variable associated with the system (e.g., membrane potential, in the
case of biological cells) increases very fast from its resting value to the peak val-
ue corresponding to the excited state, followed by a slower process during which
it gradually returns to the resting state.

The simplest model system capable of exhibiting all these features is the gen-
eric FitzHugh-Nagumo set of coupled differential equations:

de�dt � e�1	 e��e	 b� 	 g� dg�dt � ��ke	 g�� �32�1�

which, having only two variables, is obviously incapable of exhibiting chaos.
However, when several such sets are coupled together diffusively to simulate a
spatially extended media (e.g., a piece of biological tissue made up of a large
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number of cells), the resulting high-dimensional dynamical system can display
chaotic behavior. The genesis of this spatiotemporal chaos lies in the distinct
property of interacting waves in excitable media, which mutually annihilate on
colliding. This is a result of the fact that an excitation wavefront is followed by
a region, all of whose cells are in the recovery period, and which therefore can-
not be stimulated by another excitation wavefront when two waves cross each
other. 1) Interaction between such waves results in the creation of spatial pat-
terns, referred to variously as reentrant excitations (in 1D), vortices or spiral waves
(in 2D) and scroll waves (in 3D), which form when an excitation wavefront is
broken as the wave propagates across partially recovered tissue or encounters
an inexcitable obstacle [2]. The free ends of the wavefront gradually curl around
to form spiral waves. Once formed, such waves become self-sustained sources
of high-frequency excitation in the medium, and usually can only be terminated
through external intervention. Spiral waves are associated with periodic or
quasiperiodic patterns of temporal activity. As our focus is on controlling spatio-
temporally chaotic activity, we shall not be discussing the many schemes pro-
posed to terminate single spiral waves. The existence of nonlinear properties of
wave propagation in several excitable media can lead to complex nonchaotic spa-
tiotemporal rhythms. For more details on controlling such dynamical behavior
refer to the chapter by Krogh-Madsen, Jordan, and Christini.

Here, we shall focus on the control of spatiotemporally chaotic patterns seen
in excitable media (in 2 or 3 dimensions), that occur when under certain condi-
tions, spiral or scroll waves become unstable and break up. Various mecha-
nisms of such breakup have been identified, 2) including meandering of the spi-
ral focus. If the meandering is sufficiently high, the spiral wave can collide with
itself and break up spontaneously, resulting in the creation of multiple smaller
spirals (Fig. 32.1). The process continues until the spatial extent of the system
is spanned by several coexisting spiral waves that activate different regions with-
out any degree of coherence. This state of spiral turbulence marks the onset of
spatiotemporal chaos, as indicated by the Lyapunov spectrum and Kaplan-Yorke
dimension [5].

Controlling spatiotemporal chaos in excitable media has certain special fea-
tures. Unlike other chaotic systems, response to a control signal is not propor-
tional to the signal strength because of the existence of a threshold. As a result,
an excitable system shows discontinuous response to control as regions, which
have not yet recovered from a previous excitation or where the control signal is
below the threshold, will not be affected by the control algorithm at all. Also,
the focus of control in excitable media is to eliminate all activity rather than to
stabilize unstable periodic behavior. This is because the problem of chaos termi-
nation has great practical importance in the clinical context, as the spatiotempo-
rally chaotic state has been associated with the cardiac problem of ventricular fi-
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brillation (VF). VF involves incoherent activation of the heart that results in the
cessation of pumping of blood, and is fatal within minutes in the absence of ex-
ternal intervention. At present, the only effective treatment is electrical defibril-
lation, which involves applying very strong electrical shocks across the heart
muscles, either externally using a defibrillator or internally through implanted
devices. The principle of operation for such devices is to overwhelm the natural
cardiac dynamics, so as to drive all the different regions of the heart to rest si-
multaneously, at which time the cardiac pacemaker can take over once again.
Although the exact mechanism by which this is achieved is still not completely
understood, the danger of using such large amplitude control (involving � kV
externally and � 100 V internally) is that, not only is it excruciatingly painful to
the patient, but by causing damage to portions of cardiac tissue which subse-
quently result in scars, it can potentially increase the likelihood of future ar-
rhythmias (i.e., disturbances of the heart’s natural rhythm). Therefore, devising
a low-power control method for spatiotemporal chaos in excitable media prom-
ises a safer treatment for people at risk from potentially fatal cardiac arrhyth-
mias.

In this chapter, we have discussed most of the recent control methods that
have been proposed for terminating spatiotemporal chaos in excitable media. 3)

These methods are also often applicable to the related class of systems known
as oscillatory media, described by complex Landau-Ginzburg equation [7], which
also exhibit spiral waves and spatiotemporal chaos through spiral breakup. We
have broadly classified all control schemes into three types, depending on the
nature of application of the control signal. If every region of the media is sub-
jected to the signal (which, in general, can differ from region to region) it is
termed as global control; on the other hand, if the control signal is applied only
at a small, localized region from which its effects spread throughout the media,
this is called local control. Between these two extremes lie control schemes
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Fig. 32.1 Onset of spatiotemporal chaos in
the two-dimensional Panfilov model of linear
dimension L � 256. The initial condition is a
broken plane wave that is allowed to curl
around into a spiral wave (left). Meandering

of the spiral focus causes wave breaks to oc-
cur (center) that eventually result in spiral
turbulence, with multiple independent
sources of high-frequency excitation (right).

3) An earlier review, discussing methods proposed till 2002, can be found in [6].



where perturbations are applied simultaneously to a number of spatially distant
regions. We have termed these methods as nonglobal, spatially extended control.
While global control may be the easiest to understand, involving as it does the
principle of synchronizing the activity of all regions, it is also the most difficult
to implement in any practical situation. On the other hand, local control (as it
can be implemented using a single control point) will be the easiest to imple-
ment but hardest to achieve.

In the next section we describe a few of the more commonly used models for
studying control of spatiotemporal chaos in excitable media. Section 32.3 dis-
cusses proposed methods of global control, while Section 32.4 discusses other
spatially extended schemes. The next section deals with local control methods,
and we conclude with a brief section containing general discussions about
chaos control and its implications.

32.2
Models of Spatiotemporal Chaos in Excitable Media

The generic FitzHugh-Nagumo model for excitable media (Eq. (32.1)) exhibits a
structure that is common to most models used in the papers discussed here.
Typically, the dynamics is described by a fast variable, e��� t�, and a slow vari-
able, g��� t�, the ratio of timescales being given by �. The resulting phase space
behavior is shown in Fig. 32.2 (top). For biological cells, the fast variable is often
associated with the transmembrane potential, while the slow (recovery) variable
represents an effective membrane conductance that replaces the complexity of
several different types of ion channels. For the spatially extended system, the
fast variable of neighboring cells is coupled diffusively. There are several models
belonging to this general class of excitable media which display breakup of spi-
ral waves (in 2D) and scroll waves (in 3D), including the one proposed by
Panfilov [8, 9].

�e��t � )2e	 f �e� 	 g� �g��t � ��e� g��ke	 g�� �32�2�

For details of the functional form of f �e� and relevant parameter values, see [9].
Simpler variants that also display spiral wave breakup in 2D include (i) the

Barkley model [10]:

�e��t � )2e� �	1e�1	 e� e	 g � b
a

 �
� �g��t � e	 g� �32�3�

the appropriate parameter values being given in [11], and (ii) the Bär-Eiswirth
model [12], which differs from (32.3) only in having �g��t � f �e� 	 g, the func-
tional form of f �e� and parameter values being as in [13]. The Aliev-Panfilov
model [14] is a modified form of the Panfilov model, that takes into account
nonlinear effects such as the dependence of the action potential duration on the
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distance of the wavefront to the preceding waveback. It has been used for con-
trol in [15, 16].

All the preceding models tend to disregard several complex features of actual
biological cells, e.g., different types of ion channels. There exists a class of mod-
els inspired by the Hodgkin-Huxley formulation of a model describing action
potential in the squid giant axon, that explicitly takes such details into account.
While the models described above do reproduce generic features of several excit-
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Fig. 32.2 (Top) Dynamics in the phase-space
of the FitzHugh-Nagumo model, with the
resulting time evolution of the action poten-
tial shown in the inset. The resting state cor-
responds to e � 0� g � 0. (Bottom) The re-
sult of applying a positive (“+”) or negative
(“	”) additive perturbation of the same
duration to the e variable: “+” control

decreases the threshold and makes excita-
tion more likely, while “	” control decreases
the duration of the action potential and al-
lows the system to recover faster. For the
duration of the control signal, the e-nullcline
shifts upward (downward) for positive (nega-
tive) perturbation as indicated by the dashed
(dash-dotted) curve.



able media seen in nature, these more realistic models describe many proper-
ties of specific systems, e.g., ventricular tissue. The general form of such mod-
els is described by a partial differential equation for the transmembrane poten-
tial V , �V

�t � Iion
C � D)2V � where C is the membrane capacitance density and D

is the diffusion constant, which, if the medium is isotropic, is a scalar. Iion is
the instantaneous total ionic-current density, and different realistic models es-
sentially differ in its formulation. For example, in the Luo-Rudy I model [18] of
guinea pig ventricular cells, Iion is assumed to be composed of six different ion-
ic current densities, which are themselves determined by several time-depen-
dent ion-channel gating variables whose time-evolution is governed by ordinary
differential equations of the form d�

dt � ��	�
��

� Here, �� � ������ � 
�� is the
steady state value of � and �� � 1

���
� is its time constant. The voltage-dependent
rate constants, �� and 
�, are complicated functions of V obtained by fitting ex-
perimental data.

32.3
Global Control

The first attempt at controlling chaotic activity in excitable media dates back al-
most to the beginning of the field of chaos control itself, when proportional per-
turbation feedback (PPF) control was used to stabilize cardiac arrhythmia in a
piece of tissue from rabbit heart [19]. This method applied small electrical stim-
uli, at intervals calculated using a feedback protocol, to stabilize an unstable per-
iodic rhythm. Unlike in the original proposal for controlling chaos [20], where
the location of the stable manifold of the desired unstable periodic orbit (UPO)
was moved using small perturbations, in the PPF method, it is the state of the
system that is moved onto the stable manifold. However, it has been later
pointed out that PPF does not necessarily require the existence of UPOs (and,
by extension, deterministic chaos) and can be used even in systems with sto-
chastic dynamics [21]. Later, PPF method was used to control atrial fibrillation
in human heart [22]. However, the effectiveness of such control in suppressing
spatiotemporal chaos, when applied only at a local region, has been questioned,
especially as other experimental attempts in feedback control have not been able
to terminate fibrillation by applying control stimuli at a single spatial location
[6].

More successful, at least in numerical simulations, have been schemes where
control stimuli is applied throughout the system. Such global control schemes
either apply small perturbations to the dynamical variables (e or g) or one of the
parameters (usually the excitation threshold). The general scheme involves in-
troducing an external control signal A into the model equations, e.g., in the
Panfilov model (Eq. (32.2)): �e��t � )2e	 f �e� 	 g � A, for a control duration
�. If A is a small, positive perturbation, added to the fast variable, the result is
an effective reduction of the threshold (Fig. 32.2, bottom), thereby making si-
multaneous excitation of different regions more likely. In general, A can be per-
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iodic, consisting of a sequence of pulses. Figure 32.3 shows the results of apply-
ing a pulse of fixed amplitude but varying durations. While in general, increas-
ing the amplitude, or the duration, increases the likelihood of suppressing spa-
tiotemporal chaos, it is not a simple, monotonic relationship. Depending on the
initial state at which the control signal is applied, even a high amplitude (or
long duration) control signal may not be able to uniformly excite all regions si-
multaneously. As a result, when the control signal is withdrawn, the inhomoge-
neous activation results in a few regions becoming active again and restarting
the spatiotemporal chaotic behavior.

Most global control schemes are variations or modifications of the above
scheme. Osipov and Collins [23] have shown that a low-amplitude signal used
to change the value of the slow variable at the front and back of an excitation
wave can result in different wavefront and waveback velocities which destabi-
lizes the traveling wave, eventually terminating all activity, and, hence, spatio-
temporal chaos. Gray [24] has investigated the termination of spiral wave break-
up by using both short- and long-duration pulses applied on the fast variable, in
2D and 3D systems. This study concluded that while short duration pulses af-
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Fig. 32.3 Global control of the two-dimen-
sional Panfilov model with L � 256 starting
from a spatiotemporally chaotic state (top
left). Pseudo-gray-scale plots of excitability e
show the result of applying a pulse of ampli-
tude A � 0�833 between t � 11 ms and 27.5
ms (top center) that eventually leads to

elimination of all activity (top right). Apply-
ing the pulse between t � 11 ms and 33 ms
(bottom left) results in some regions becom-
ing active again after the control pulse ends
(bottom center) eventually reinitiating spiral
waves (bottom right).



fected only the fast variable, long duration pulses affected both fast and slow
variables and that the latter is more efficient (using less power) in terminating
spatiotemporal chaos. The external control signal can also be periodic
(A � F sin��t�), in which case the critical amplitude Fc required for terminating
activity has been found to be a function of the signal frequency � [15].

Other schemes have proposed applying perturbations to the parameter con-
trolling the excitation threshold, b. Applying a control pulse on this parameter
(b � bf , during duration of control pulse; b � b0, otherwise) has been shown to
cause splitting of an excitation wave into a pair of forward and backward mov-
ing waves [13]. Splitting of a spiral wave causes the two newly created spirals to
annihilate each other on collision. For a spatiotemporally chaotic state, a se-
quence of such pulses may cause termination of all excitation, there being an
optimal time interval between pulses that results in fastest control. Another
control scheme that also applies perturbation to the threshold parameter is the
uniform periodic forcing method suggested by Alonso et al. [11, 25] for control-
ling scroll wave turbulence in three-dimensional excitable media. Such turbu-
lence results from negative tension between scroll wave filaments, i.e., the line
joining the phase singularities about which the scroll wave rotates. In this con-
trol method, the threshold is varied in periodic manner [b � b0 � bf cos��t�]
and the result depends on the relation between the control frequency � and the
spiral rotation frequency. If the former is higher than the latter, sufficiently
strong forcing is seen to eliminate turbulence; otherwise, turbulence suppres-
sion is not achieved. The mechanism underlying termination has been sug-
gested to be the effective increase of filament tension due to rapid forcing, such
that the originally negative tension between scroll wave filaments is changed to
positive tension. This results in expanding scroll wave filaments to instead
shrink and collapse, eliminating spatiotemporal chaotic activity. In a variant
method, the threshold parameter has been perturbed by spatially uncorrelated
Gaussian noise, rather than a periodic signal, which also results in suppression
of scroll wave turbulence [26].

As already mentioned, global control, although easy to understand, is difficult
to achieve in experimental systems. A few cases in which such control could be
implemented include the case of eliminating spiral wave patterns in popula-
tions of the Dictyostelium amoebae by spraying a fine mist of cAMP onto the
agar surface over which the amoebae cells grow [27]. Another experimental sys-
tem where global control has been implemented is the photosensitive Belusov-
Zhabotinsky reaction, where a light pulse shining over the entire system is used
as a control signal [28]. Indeed, conventional defibrillation can be thought of as
a kind of global control, where a large amplitude control signal is used to syn-
chronize the phase of activity at all points by either exciting a previously unex-
cited region (advancing the phase) or slowing the recovery of an already excited
region (delaying the phase) [29].
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32.4
Nonglobal Spatially Extended Control

The control methods discussed so far apply control signal to all points in the
system. As the chaotic activity is spatially extended, one may naively expect that
any control scheme also has to be global. However, we will now discuss some
schemes that, while being spatially extended, does not require the application of
control to all points of the system.

32.4.1
Applying Control Over a Mesh

The control method of Sinha et al. [30] involving suprathreshold stimulation
along a grid of points, is based on the observation that spatiotemporal chaos in
excitable media is a long-lived transient that lasts long enough to establish a
nonequilibrium statistical steady state displaying spiral turbulence. The lifetime
of this transient, �L, increases rapidly with linear size of the system, L, e.g., in-
creasing from 850 to 3200 ms as L increases from 100 to 128 in the two-dimen-
sional Panfilov model. This accords with the well-known observation that small
mammals do not get life-threatening VF spontaneously whereas large mammals
do [31] and has been experimentally verified by trying to initiate VF in swine
ventricular tissue while gradually reducing its mass [32]. A related observation
is that nonconducting boundaries tend to absorb spiral excitations, which re-
sults in spiral waves not lasting for appreciable periods in small systems.

The essential idea of the control scheme is that a domain can be divided into
electrically disconnected regions by creating boundaries composed of recovering
cells between them. These boundaries can be created by triggering excitation
across a thin strip. For two-dimensional media, the simulation domain (of size
L� L) is divided into K2 smaller blocks by a network of lines with the block
size (L�K � L�K) small enough so that spiral waves cannot form. For control in
a 3D system, the mesh is used only on one of the faces of the simulation box.
Control is achieved by applying a suprathreshold stimulation via the mesh for a
duration �. A network of excited and subsequently recovering cells then divides
the simulation domain into square blocks whose length in each direction is
fixed at a constant value L�K for the duration of control. The network effectively
simulates nonconducting boundary conditions (for the block bounded by the
mesh) for the duration of its recovery period, in so far as it absorbs spirals
formed inside this block. Note that � need not be large at all because the indi-
vidual blocks into which the mesh divides the system (of linear size L�K) are so
small that they do not sustain long spatiotemporally chaotic transients. Nor
does K , which is related to the mesh density, have to be very large since the
transient lifetime, �L, decreases rapidly with decreasing L. The method has been
applied to multiple excitable models, including the Panfilov and Luo-Rudy mod-
els (Fig. 32.4).
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Fig. 32.4 Spatiotemporal chaos (top two
rows) and its control (bottom two rows) in
the two-dimensional Luo–Rudy I model with
L � 90 mm. Pseudo-gray-scale plots of the
transmembrane potential V show the evolu-
tion of spiral turbulence at times T � 30 ms,
90 ms, 150 ms and 210 ms (left to right, top
to bottom). Control is achieved by applying an
external current density I � 150 �A�cm2 for

� � 2.5 ms over a square mesh with each
block of linear dimension L�K � 1�35 cm.
Within 210 ms of applying control, most of
the simulation domain has reached a trans-
membrane potential close to the resting state
value; moreover, the entire domain is much
below the excitation threshold. The corre-
sponding uncontrolled case shows spatio-
temporal chaos across the entire domain.



An alternative method [16] for controlling spiral turbulence that also uses a
grid of control points has been demonstrated for the Aliev-Panfilov model. Two
layers of excitable media are considered, where the first layer represents the
two-dimensional excitable media exhibiting spatiotemporal chaos that is to be
controlled, and the second layer is a grid structure also made up of excitable
media. The two layers are coupled using the fast variable but with asymmetric
coupling constants, with excitation pulses traveling

����
D

"
times faster in the sec-

ond layer compared to the first. As the second layer consists only of grid lines,
it is incapable of exhibiting chaotic behavior in the uncoupled state. If the cou-
pling from the second layer to the first layer is sufficiently stronger than the
other way round, the stable dynamics of the second layer (manifested as a sin-
gle rotating spiral) overcomes the spiral chaos in the first layer, and drives it to
an ordered state characterized by mutually synchronized spiral waves.

32.4.2
Applying Control Over an Array of Points

An alternative method of spatially extended control is to apply perturbations at
a series of points arranged in a regular array. Rappel et al. [33] had proposed
using such an arrangement for applying a time delayed feedback control
scheme. However, this scheme does not control spatiotemporal chaos and is
outside the scope of this review.

More recently, the authors [34] have used an array of control points to termi-
nate spatiotemporal chaos in the Panfilov model. Figure 32.5 shows the result
of applying a spatially nonuniform control scheme, which simulates an excita-
tion wave traveling over the system, with the same wavefront velocity as in the
actual medium. The control points are placed distance d apart along a regular
array. At certain times, the control points at one corner of the system is stimu-
lated, followed by the successive stimulation of the neighboring control points,
such that a wave of stimulation is seen to move radially away from the site of
original stimulation. This process is repeated after suitable intervals. Note that
simulating a traveling wave using the array is much more effective at control-
ling spatiotemporal chaos than the simultaneous activation of all control points.
Using a traveling wave allows the control signal to engage all high-frequency
sources of excitation in the spiral turbulence regime, ultimately resulting in
complete elimination of chaos. If, however, the control had only been applied lo-
cally the resulting wave could only have interacted with neighboring spiral
waves and the effects of such control would not have been felt throughout the
system. The efficacy of the control scheme depends upon the spacing between
the points at which stimulation is applied, as well as the number of waves sent
through. Traveling waves have previously been used in [35] to control spatiotem-
poral chaos, although in the global control context with a spatiotemporally peri-
odic signal being applied continuously for a certain duration, over the entire
system.
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32.5
Local Control of Spatiotemporal Chaos

We now turn to the possibility of controlling spatiotemporal chaos by applying
control at only a small localized region of the spatially extended system. Vir-
tually all the proposed local control methods use overdrive pacing, generating a
series of waves with frequency higher than any of the existing excitations in the
spiral turbulent state. As low-frequency activity is progressively invaded by faster
excitation, the waves generated by the control stimulation gradually sweep the
chaotic activity to the system boundary where they are absorbed. Although we
cannot speak of a single frequency source in the case of chaos, the relevant
timescale is that of spiral waves which is limited by the recovery period of the
medium. Control is manifested as a gradually growing region in which the
waves generated by the control signal dominate, until the region expands to en-
compass the entire system. The time required to achieve termination depends
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Fig. 32.5 Control of the two-dimensional
Panfilov model (L � 256) using an array of
control points with spacing d � 6 and
strength of control stimulus A � 2�5. Stimu-
lation is started at the top left corner (T � 0
ms) and lasts at each control point, as the

wave reaches that point, for 17.9 ms. By 200
ms, the spatiotemporal chaos has disap-
peared and only the wave stimulated by the
control points can be observed. When this
wave reaches the system boundary, all excita-
tion is terminated.



on the frequency difference between the control stimulation and that of the
chaotic activity, with control being achieved faster, the greater the difference.

Stamp et al. [36] has looked at the possibility of using low-amplitude, high-fre-
quency pacing using a series of pulses to terminate spiral turbulence. However,
using a series of pulses (having various waveform shapes) has met with only
limited success in suppressing spatiotemporal chaos. By contrast, a periodic
stimulation protocol [37] has successfully controlled chaos in the 2D Panfilov
model, as well as other models. 4) The key mechanism underlying such control
is the periodic alternation between positive and negative stimulation. A more
general control scheme proposed in [39] uses biphasic pacing, i.e., applying a se-
ries of positive and negative pulses, that shortens the recovery period around
the region of control stimulation, and thus allows the generation of very high-
frequency waves than would have been possible using positive stimulation
alone. A simple argument shows why a negative rectangular pulse decreases
the recovery period for an excitable system. The stimulation vertically displaces
the e-nullcline and therefore, the maximum value of g that can be attained is re-
duced. Consequently, the system will recover faster from the recovery period
(Fig. 32.6, bottom).

To understand how negative stimulation affects the response behavior of the
spatially extended system, we can use pacing response diagrams indicating the re-
lation between the control stimulation frequency f and the effective frequency
feff , measured by applying a series of pulses at one site and then recording the
number of pulses that reach another site located at a distance without being
blocked by a region in the recovery period. Depending on the relative value of
f 	1 and the recovery period, we observe instances of n 
 m response, i.e., m re-
sponses evoked by n stimuli. If, for any range of f , the corresponding feff is sig-
nificantly higher than the effective frequency of spatiotemporal chaos, then ter-
mination of spiral turbulence is possible. As shown in [39], there are indeed
ranges of stimulation frequencies that give rise to effective frequencies that
dominate chaotic activity. As a result, the periodic waves emerging from the
stimulation region gradually impose control over the regions exhibiting chaos.
Note that there is a tradeoff involved here. If feff is only slightly higher than the
chaos frequency, control takes too long; if it is too high the waves suffer conduc-
tion block at inhomogeneities produced by chaotic activity that reduces the ef-
fective frequency, and control fails.

Recently, another local control scheme has been proposed [40] that periodi-
cally perturbs the model parameter governing the threshold. In fact, it is the lo-
cal control analog of the global control scheme proposed by Alonso et al. [11]
discussed in Section 32.3. As in the other methods discussed here, the local
stimulation generates high-frequency waves that propagate into the medium
and suppress spiral or scroll waves. Unlike the global control scheme, bf �� b0,
so that the threshold can be negative for a part of the time. This means that the
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4) A related case of this control scheme is that proposed in [38], where the high-frequency periodic
signal is applied from the boundaries.



regions in resting state can become spontaneously excited, which allow very
high-frequency waves to be generated.

32.6
Discussion

Most of the methods proposed for controlling spatiotemporal chaos in excitable
media involve applying perturbations either globally or over a spatially extended
system of control points covering a significant proportion of the entire system.
However, in most practical situations this may not be a feasible option, either
for issues of implementation, or because of the high power for the control sig-
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Fig. 32.6 (Top) Pacing-response diagram for
the 2D Panfilov model (L � 26) showing rel-
ative performance of different waveforms.
The dash-dotted line represents a sine wave
and the solid curve represents a wave of bi-
phasic rectangular pulses, such that they
have the same total energy. Successful con-
trol occurs if the effective frequency lies
above the broken line representing the effec-

tive frequency of chaos (fc), as seen for a
larger system (L � 500) at times T � 1000
(bottom left) and T � 3800 (bottom right)
time units, where the control signal is ap-
plied only at the center of the simulation do-
main. The excitation wavefronts are shown
in white, black marks the recovered regions
ready to be excited, while the shaded regions
indicate different stages of recovery.



nal such methods would need. Moreover, if one is using such methods in the
clinical context, e.g., terminating fibrillation, a local control scheme has the ad-
vantage that it can be readily implemented with existing hardware of the im-
plantable cardioverter defibrillator (ICD). This is a device implanted into pa-
tients at high risk from fibrillation that monitors the heart rhythm and applies
electrical treatment when necessary through electrodes placed on the heart wall.
A low-energy control method involving ICDs should therefore aim towards
achieving control of spatiotemporal chaos by applying small perturbations from
a few local sources.

However, the problem with most local control schemes proposed so far is that
they use very high-frequency waves to overdrive chaos. Such waves are them-
selves unstable and may breakup during propagation, resulting in reinitiation of
spiral waves after the original chaotic activity has been terminated. The problem
is compounded by the existence of inhomogeneities in real excitable media. Re-
cently, Shajahan et al. [41] have found complicated dependence of spatiotempo-
ral chaos on the presence of nonconducting regions and other types of inhomo-
geneities in an excitable system. Such inhomogeneities make the proposed local
control schemes more vulnerable, as it is known that high-frequency pacing in-
teracting with, e.g., nonconducting obstacles, results in wave breaks and subse-
quent genesis of spatiotemporal chaos [42].

The search is still on for a control algorithm for terminating spatiotemporal
chaos in excitable media, that can be implemented using low power, or, that
need be applied in only a small, local region of the system, and which will yet
be robust, capable of terminating spiral turbulence without the control stimula-
tion itself breaking up subsequently. The payoffs for coming up with such a
method are enormous, as the potential benefits include an efficient device for
cardiac defibrillation.
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33.1
Introduction

Since their birth, in respectively, the work by Ott, Grebogi, and Yorke [15] and
Pecora and Carroll [16], “control of chaos” and “chaos synchronization” have re-
ceived an enormous interest in both theoretical and experimental studies. In
both subjects the systems under consideration are characterized by the presence
of nonstandard limit sets and essentially nonlinear dynamics. As a consequence
control of chaotic dynamics and chaos synchronization naturally demand the
application of nonlinear control techniques.

The purpose of this chapter is to present, in a tutorial way, some of the more
basic tools from nonlinear geometric control as applied to the study of chaos
control and synchronization. For further reading on nonlinear control we refer
to, e.g., the text books [6, 8, 13, 19]. Applications of nonlinear control techniques
to the study of chaos control and synchronization can be found in, e.g., [1, 4, 5,
9, 14].

This chapter is organized as follows. Section 33.2 first introduces some of the
basic differential geometric concepts that are needed in nonlinear geometric
control. After that, we introduce nonlinear controllability, which is one of the
most fundamental concepts in nonlinear control theory. We then introduce the
control methods of feedback linearization and input–output linearization, and
apply them to the control of chaotic systems. In Section 33.3, we introduce Lya-
punov stability theory for nonlinear dynamical systems, and illustrate how this
theory can be used in the control and synchronization of chaotic systems.

33.2
Nonlinear Geometric Control

In this section we introduce and discuss a few of the main concepts and meth-
ods from the theory of nonlinear geometric control and apply them to the con-
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trol of chaotic systems. We will restrict ourselves to local results and definitions
on �

n. For global results on general manifolds, see, e.g., [6, 13, 18].

33.2.1
Some Differential Geometric Concepts

For x � �
n, the tangent space Tx�

n at x is the set of tangent vectors to �
n at x.

It may be shown that this implies that Tx�
n is isomorphic to �

n for every
x � �

n. A vector field on �
n is a mapping X that assigns to each x � �

n a tan-
gent vector X�x� � Tx�

n. Given Cartesian coordinates x1� � � � � xn on �
n, we de-

note by �
�xi

���
x
�i � �1� � � � � n�� the vector field that is tangent to the straight line

�i � �x � �
n � xj � xj�j �� i�� for every x � �

n. A vector field X on �
n is called a

smooth vector field if for every x � �
n there exist a neighborhood V of x and

smooth functions X1� � � � �Xn 
 V � � such that for all x � V we have
X�x� �$n

i�1 Xi�x� �
�xi

���
x
.

Given smooth vector fields X �Y on �
n, the Lie bracket of X and Y , which is

denoted by X �Y �, is defined by

X �Y ��x� 
� �Y
�x
�x�X�x� 	 �X

�x
�x�Y�x�� �33�1�

where

�X
�x
�x� 
�

�X1
�x1

� � � � � � �X1
�xn

��
� ��

�

��
� ��

�

�Xn
�x1

� � � � � � �Xn
�xn

�%%%%�
�&&&& �x�

and �Y
�x �x� is defined analogously.

For smooth vector fields X �Y , and k � �, we define the vector field adk
X Y re-

cursively by ad0
X Y � Y, adk

X Y � X � adk	1
X Y �.

Given a smooth vector field X and a smooth function � 
 �n � �, the Lie de-
rivative of � along X , which is denoted by /X�, is a smooth real-valued function
on �

n, which is given by

/X��x� 
�
�n

i�1

Xi�x� ��
�xi
�x�� �33�2�

A distribution � on �
n is a mapping that assigns to each x � �

n a linear sub-
space of Tx�

n. � is called a smooth distribution if for each x � �
n there exist a

neighborhood V of x and a set of smooth vector fields Xi, i � B , where B is
some (possible infinite) index set, such that ��x� � span

�
�Xi�x� � i � B� for

every x � V. If �Xi � i � B� is a set of smooth vector fields on �
n, then their

span is the distribution defined by
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span �Xi � i � B� 
 x C� span
�
�Xi�x� � i � B�� �33�3�

The dimension of a distribution � at x � �
n is the dimension of the linear sub-

space ��x�. A distribution is called constant dimensional if the dimension of
��x� does not depend on the point x � �

n. A distribution � is called involutive
if X �Y � � �, whenever X �Y � �.

33.2.2
Nonlinear Controllability

We consider a nonlinear control system of the form

�x � f �x� �$m
i�1

uigi�x�
y � h�x�

�

�	
 �33�4�

where x � col�x1� x2� � � � � xn� � �
n are the states, u � col�u1� � � � � um� � �

m are
the controls, y � col�y1� � � � � yp� � �

p are the outputs, f � g1� � � � � gm are smooth
vector fields on �

n, and h � col�h1� � � � � hp� 
 �n � �
p is a smooth function. The

vector field f is called the drift vector field and the vector fields g1� � � � � gm are
called the control vector fields. It is assumed that the uncontrolled system (i.e.,
the system (33.4) with u � 0) is chaotic, and that the controls u are such that
for any initial condition x�0� � x0 the solution of (33.4) is defined on 0����
and is unique. This solution will be denoted by x�t� x0� u�, while the resulting
output at time t � 0 will be denoted by y�t� x0� u�.

We will call the system (33.4) linear in the coordinates x if f �x� � Ax,
gi�x� � bi �i � 1� � � � �m�, h�x� � Cx, where A� bi�C are constant matrices with
appropriate dimensions. Note that a system that is linear in one set of coordi-
nates does not necessarily need to be linear in a different set of coordinates,
see, e.g., Example 33.8 for an illustration.

The system (33.4) is called (globally) controllable if for every x0� x1 � �
n there

exist 0 � T � �� and u�t� defined on 0�T � such that x1 � x�T � x0� u�, i.e., if
one can steer from any initial position x0 to any final position x1 in finite time.

It is well known (see, e.g., [3]) that a linear system is globally controllable if
and only if it satisfies the so-called Kalman rank condition ([7]):

rank B AB � � � An	1B
� � � n� �33�5�

Starting in the early 1970s research has also been directed toward nonlinear
controllability, where the aim was to develop similar results as there are avail-
able in the linear (time-invariant) setting. However, it soon turned out that this
program might be too ambitious, in that apart from a few particular generaliza-
tions, a completely parallel theory on nonlinear controllability is not feasible.
Therefore, various weaker notions of nonlinear controllability have been devel-
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oped in the 1970s and 1980s, all with an emphasis on computational characteri-
zations and their implications on the system structure.

We will first define (local) nonlinear controllability.

Definition 33.1 (Local controllability)
Consider the nonlinear control system (33.4), and let x0 � �

n be given. Let V
be a neighborhood of x0. Let RV �x0�T� denote the set of all points that can be
reached from x0 at time T � 0, following trajectories which remain in V for
0 % t % T :

RV �x0�T� � �x � �
n � Du 
 x�t� x0� u� � V�0 % t % T� and x�T � x0� u� � x��

�33�6�

Further, define the V-reachable set at time T by

RV
T �x0� �

C
�%T

RV �x0� ��� �33�7�

Then the system (33.4) is called locally controllable from x0 if for every neighbor-
hood V of x0 and every T � 0 one has that RV

T �x0� contains a neighborhood of
x0.

It will turn out that in characterizing nonlinear controllability, the Lie bracket of
vector fields will play a pivotal role. To motivate this, we first consider an exam-
ple.

Example 33.2 Consider the system

�x � u1g1�x� � u2g2�x�� �33�8�

where

g1�x� � Ax�A �
0 	1 	1

1 0�4 0

0 0 0

�%�
�& � g2�x� �

0

0

2� �x1 	 4�x3

�%�
�& � �33�9�

Note that when u1 � u2 � 1, this system is a chaotic Rössler system. For this
system, we have
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g1� g2� � �g2

�x
g1 	 �g1

�x
g2 �

0 0 0

0 0 0

x3 0 x1 	 4

�%�
�& 	x2 	 x3

x1 � 0�4x2

0

�%�
�& 	

0 	1 	1

1 0�4 0

0 0 0

�%�
�& 0

0

2� �x1 	 4�x3

�%�
�& �

2� �x1 	 4�x3

0

	x3�x2 � x3�

�%�
�& �

�33�10�

Since there are two independent controls, we see that the system can move in-
stantaneously in only two independent directions, which does not result in con-
trollability. However, an extra direction can be produced by performing a “man-
euver” as follows. Choose 0 � �
 1, and choose the controls u1,u2 according
to: u1 � 1� u2 � 0 �0 � t % ��, u1 � 0� u2 � 1 �� � t % 2��, u1 � 	1� u2 � 0
�2� � t % 3��, u1 � 0� u2 � 	1 �3� � t % 4��. It is now straightforwardly shown
that for u1 � !1� u2 � 0 the solutions of (33.8) satisfy

x�t� � I � u1tA� 1
2

t2A2

 �
x�0� � h�o�t�� �33�11�

where “h.o.t.” stands for “higher order terms.” Also, it may be shown that for
u1 � 0� u2 � !1, the solutions of (33.8) satisfy

x1�t� � x1�0�� x2�t� � x2�0��
x3�t� � x3�0� �

x3�0� � 2
x1�0� 	 4

�
u2�x1�0� 	 4�t� 1

2
�x1�0� 	 4�2t2

�
� h�o�t�

�33�12�

Using (33.11) and (33.12), it may then be shown that when, e.g., x�0� �
col�0� 0� 1�, the maneuver described above results in (up to second-order terms
in �)
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x�0� �
0

0

1

�%�
�& � x��� �

	�
	0�5�2

1

�%�
�& � x�2�� �

	�
	0�5�2

3�2 	 2�� 1

�%�
�& �

x�3�� �
	2�2

0

3�2 	 2�� 1

�%�
�& � x�4�� �

	2�2

0

	�2 � 1

�%�
�& �

�33�13�

Comparing (33.10) and (33.13), we then see that we have

x�4�� � x�0� � �2g1� g2��x�0��� �33�14�

In fact it may be shown that for any pair of smooth input vector fields g1� g2 a
maneuver as described above will give (33.14). Hence we see the Lie bracket of
vector fields determines if and how by means of appropriate “maneuvers” new
directions of movement may be produced.

Based on the above example and on the interpretation of the Lie bracket there,
one might arrive at the following conjecture about (local) controllability of
(33.4). Define the distribution C consisting of all repeated Lie brackets of the
vector fields f � g1� � � � � gm:

C � span�Xik � � � � � Xi2 �Xi1 �� � � ��� � k � ��

Xi1 � � � � �Xik � �f � g1� � � � � gm���
�33�15�

Then the conjecture might be that (33.4) is locally controllable at x0 � �
n if

dim�C�x0�� � n. However, this conjecture is only true for the so-called driftless
systems, i.e., systems for which f � 0, under a technical assumption on the set
of input functions. The following example shows that the conjecture is not true
in general for systems with drift.

Example 33.3 Consider the single-input nonlinear system

�x � f �x� � g�x�u� �33�16�

where f �x� � g2�x� from Example 33.2 and g�x� � g1�x� from Example 33.2.
For this system, we find that

f � g� �
	2	 �x1 	 4�x3

0
x3�x2 � x3�

�� � � g� f � g�� �
2x2�x2 � x3�

2� �x1 	 4�x3

x3�x1 � 0�4x2��

�� � �33�17�

This gives that for x0 � � 
� �x � �
3 � x3 � 0�, we have
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dim�span�f �x0�� f � g��x0�� g� f � g���x0��� � 3

and hence dim�C�x0�� � 3 for every x0 � �. However, note that when x3 � 0,
we have that �x3 � 2 � 0, which implies that from points x0 � �, only points sa-
tisfying x3 � 0 can be reached. Thus, the system (33.1) is not controllable from
points x0 � � and hence the conjecture above is not true in general for systems
with drift.

The fact that our conjecture is not true is due to the special role played by the
drift vector field f in maneuvers: we cannot move “backward” along the vector
field f , while we can move “backward” along the vector field gi by choosing
ui � 0.

On the other hand, in terms of parts of the state space that can be reached,
there is an essential difference between systems for which dim�C� � n and sys-
tems for which dim�C� � n. This is illustrated by the following example.

Example 33.4 Consider an n-dimensional control system �x � f �x� � g�x�u,
where the uncontrolled dynamics is chaotic and possesses a strange attractor �

with fractal dimension 0 � d � n. Assume that the control vector field has the
form g�x� � ��x�f �x� for some function � 
 �n � �, which means that f �x�
and g�x� are linearly dependent. It is then straightforwardly shown that for any
x0 � � one has that dim�C�x0�� % 1, and hence (33.15) is not satisfied. Further-
more, we have for every x0 � � and every control function u the vector
f �x0� � ug�x0� is tangent to �, which means that � is an invariant set for the
controlled system for any control function u. This then implies that for any
x0 � � the reachable set is a set with dimension d % d � n.

It may be shown that the conclusion arrived in Example 33.4 holds in general:
when dim�C�x0�� � n, the reachable set from x0 is a set with empty interior (a
set with dimension d � n). On the other hand, it may be shown that when
dim�C�x0�� � n, the reachable set from x0 is a set with nonempty interior (an
n-dimensional set). This motivates the following definitions.

Definition 33.5 (Accessibility)
1. The system (33.4) is called locally accessible from x0 if RV

T �x0� contains a none-
mpty open subset of �n for all neighborhoods V of x0 and all T � 0.

2. If the condition in 1 holds for any x0 � �
n, then the system (33.4) is called lo-

cally accessible.
3. The system (33.4) is called locally strongly accessible from x0 if for any neighbor-

hood V of x0 the set RV �x0�T� contains a nonempty open subset of �
n for

any sufficiently small T � 0.

We then have the following result:
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Theorem 33.6 Consider the system (33.4) and define the following distribution:

C0 � span Xik � � � � � Xi2 �Xi1 �� � � ��� � k � �
)

Xi2 � � � � �Xik � �f � g1� � � � � gm��Xi1 � �g1� � � � � gm��
�33�18�

Then we have the following:
1. The system is locally accessible from x0 � �

n if dim�C�x0�� � n.
2. The system is locally strongly accessible from x0 � �

n if dim�C0�x0�� � n.

Remark 33.7 If the system (33.4) is linear, i.e., f �x� � Ax, where A is a con-
stant �n� n�-matrix, and gi�x� � bi � �

n, we have

gi� gj� � 0�i� j � 1� � � � �m� �33�19�

and

f � gi� � �bi

�x
Ax 	 ��Ax�

�x
bi � 	Abi �i � 1� � � � �m�� �33�20�

Continuing in this way, it may be shown that all repeated Lie brackets contain-
ing at least two gi’s are zero, and that

adk
f gi � �	1�kAkbi �k � �� i � 1� � � � �m�� �33�21�

Using the Cayley-Hamilton theorem (see, e.g., [3]), this then gives that

C0 � span��	1�kAkbi � k � �� i � 1� � � � �m� �
span�bi�Abi� � � � �A

n	1bi � i � 1� � � � �m� �
Im B AB � � � An	1B
� �

�

�33�22�

Thus, it follows from the Kalman rank condition (33.5) that for linear systems
(global) controllability is equivalent to strong accessibility.

33.2.3
Chaos Control Through Feedback Linearization

Example 33.8 For x � �
� � �

�, we consider the following nonlinear control sys-
tem:

�x1 � x1 ln x2�

�x2 � 	x2 ln x1 � x2u�

6
�33�23�

For this system, we define new coordinates z1 � ln x1, z2 � ln x2. Using the
Chain rule, we then find that in these new coordinates the system becomes
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�z1 � �x1

x1
� ln x2 � z2

�z2 � �x2

x2
� 	 ln x1 � u � 	z1 � u

���	��
 �33�24�

and thus using a state-space transformation reveals that our system is intrinsi-
cally a linear system.

Obviously, controlling a linear system is much easier than controlling a non-
linear system. Thus it might be interesting to know whether or not there exists
a state space transformation that transforms a nonlinear system into a linear
system. However, for chaotic systems the nonintegrability of the dynamics im-
plies that the answer to this question is always negative. On the other hand, be-
sides a state space transformation we also still have the freedom to apply a so-
called static-state feedback transformation to the system. For a system (33.4) and
x0 � �

n, a regular static-feedback transformation around x0 (or briefly a regular
static-state feedback around x0) is a control action of the form

u � ��x� � 
�x�v� �33�25�

where � 
 �n � �
m, 
 
 �n � �

m�m, det�
�x0�� �� 0 and v � �
m denotes new

controls.
As is illustrated by the following example, application of a state space trans-

formation and a static-feedback transformation may (locally) transform a chaotic
system into a linear system.

Example 33.9 Consider the following Lorenz system:

�x1 � �x2 	 x1��
�x2 � rx1 	 x2 	 x1x3

�x3 � x1x2 	 bx3�

��	�
 �33�26�

We will assume that the parameter b can be controlled around its “standard” value
of 8

3. Thus, we have b � 8
3� u, where u denotes the control. For this system we de-

fine new coordinates �1 � x1, �2 � �x2 	 x1�, �3 �  �rx1 	 x2 	 x1x3 	 

�x2 	 x1��. (It should be noted that these coordinates do not define a global set
of new coordinates: inversion gives x1 � �1, x2 � 1


�2 � �1, x3 � 1

�1�rx1 	 x2 	 �2 	 �3�, and hence there is a singularity at �1 � x1 � 0.) Further, on
� 
� �x � �

3 � x1x3 �� 0�, define a regular static-state feedback (33.25) with

��x� � 1
x1x3

�r 	 x3 � ��x2 	 x1�	�1� ��rx1 	 x2 	 x1x3�	x1�x1x2	 8
3

x3�
! "


�x� � 1
x1x3
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Then it may be shown that in the new coordinates � the closed-loop system on
� takes the form

��1 � �2

��2 � �3�

��3 � v�

���	��
 �33�27�

Thus we see that by means of appropriate state space and feedback transforma-
tions, the system (33.26) may be (locally) transformed into a linear system.

Remark 33.10 When applying the controller derived in Example 33.9 one
needs to take into account the singularities that have been introduced in the de-
sign of the controller. Namely, as already indicated, in the first place there is a
singularity associated with the new coordinates, and secondly there is a singu-
larity associated with the static-state feedback. Unlike in controller design for
linear control systems, it is very often difficult or even infeasible to avoid this
type of singularities in controller design for nonlinear control systems. As a
consequence, nonlinear control problems are often defined and solved locally
(i.e., away from singularities). Obviously, when applying such local controllers
globally, extra care needs to be taken, and often partial redesign and extra analy-
sis are necessary.

Based on Example 33.9 and Remark 33.10, we formulate the following problem.

Problem 1 State space and feedback transformation into a linear system
Consider a nonlinear system (33.4) with m � 1. Find, if possible, an open sub-
set V � �

n, new coordinates � � 	�x� on V , and a regular static-state feedback
u � ��x� � 
�x�v defined on V , such that in the new coordinates the closed-loop
system takes the form

�� � A�� Bv �33�28�

for � � 	�V�, where the system (33.28) is controllable.

A solution to this problem is given in the following result.

Theorem 33.11 Consider the system (33.4) with m � 1, and let x0 � �
n satisfy

f �x0� � 0. Then there exist a neighborhood V � �
n of x0, a coordinate transforma-

tion � � 	�x� on V and a regular static-state feedback u � ��x� � 
�x�v defined on
V such that � satisfies (33.28) for � � 	�V� if and only if

dim�span�g�x0�� adf g�x0�� � � � � adn	1
f g�x0��� � n �33�29�

and
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span�g� adf g� � � � � adn	2
f g� is involutive around x0� �33�30�

Moreover, if (33.29) and (33.30) hold, there exist a function � satisfying ��x0� � 0
and a neighborhood V of x0 such that

/adk
f g��x� � 0 �k � 0� 1� � � � � n	 2� �x � V� �33�31�

and

/adn	1
f g��x0� �� 0� �33�32�

Given �, a solution to Problem 1 around x0 is then given by

�i � /i	1
f � �i � 1� � � � � n�

��x� � 	 /g/n	1
f ��x�

� �	1
/n

f ��x�


�x� � /g/n	1
f ��x�

� �	1

�

�����	����
 �33�33�

Remark 33.12
1. If f �x0� �� 0, the conditions of Theorem 33.11 are equivalent to the existence

of a coordinate transformation � � 	�x� and a static-state feedback
u � ��x� � 
�x�v such that the closed-loop system in the coordinates � has
the form �� � f �x0� � A�� Bv.

2. Problem 1 and its solution can, mutatis mutandis, also be formulated for sys-
tems for which m � 1 (see e.g., [6, 13]).

Example 33.13 Consider again the Lorenz system (33.26) with b � 8
3� u. For

this system, we have that

f �x� �
�x2 	 x1�

rx1 	 x2 	 x1x3

x1x2 	 8
3 x3

�� � � g�x� �
0
0
	x3

�� � � �33�34�

The uncontrolled system then has an unstable equilibrium at the origin, and
two unstable equilibria at x! � �!x1�!x1� r 	 1�, where x1 �

�����������������
8
3 �r 	 1�

�
. We

will now show how to use the result of Theorem 33.11 to design a controller
that stabilizes the equilibrium point x�. From (33.34) it follows that
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adf g � �g
�x

f 	 �f
�x

g �
0 0 0

0 0 0

0 0 	1

�%�
�& �x2 	 x1�

rx1 	 x2 	 x1x3

x1x2 	 8
3 x3

�%�
�& 	

�33�35�
	  0

r 	 x3 	1 	x1

x2 x1 	 8
3

�� � 0
0
	x3

�� � � 0
	x1x3

	x1x2

�� � 
and similarly,

ad2
f g �

x1x3

	x3�x2 	 x1� 	 x1�2x1x2 	 5
3 x3�

	x2�x2 	 x1� 	 x1�rx1 � 5
3 x2 	 2x1x3�

�� � � �33�36�

Due to the triangular structure of g� adf g� ad2
f g, it is straightforward to see that

(33.29) holds at x�. We further have that

g� adf g� �
0

x1x3

	x1x2

�� � � 2x1x2

x3
g 	 adf g �33�37�

and thus also (33.30) holds.
It now follows from (33.34) and (33.35) that a function � satisfies the condi-

tions of Theorem 33.11 if and only if ��0� � 0 and � is a nonconstant function
of x1 only. If we take �1 � ��x� � x1, it may then be shown that the new coordi-
nates �2� �3 and the static-state feedback as suggested by (33.33) are the same as
in Example 33.9.

Note that it follows from the definition of � that � � �x1� 0� 0� if and only if
x � x�. This means that stabilization of �x1� 0� 0� for (33.27) will result in stabi-
lization of x� for (33.26). It is easily checked that if we choose k0� k1� k2 such
that the roots of the polynomial s3 � k2s2 � k1s� k0 are in the open left half
plane, we have the static-state feedback v � 	k2�3 	 k1�2 	 k0��1 	 x1� will in-
deed stabilize the point �x1� 0� 0� for (33.27).

33.2.4
Chaos Control Through Input–Output Linearization

Consider the system (33.4) with m � p. We will call the system input–output de-
coupled if, after a possible permutation of the controls, the following properties
hold:
1. for each i � �1� � � � �m� the output yi is not affected by the controls uj �j �� i�,
2. the output yi is affected by the control ui �i � 1� � � � �m�.

If the system (33.4) is not input–output decoupled, one may try to achieve this
by means of a feedback u � ��x� � 
�x�v, where v � �

m denotes the new con-
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trols. In order to express conditions under which this is possible, we define the
relative degree ri of the ith output yi as the smallest integer such that

/gj/k
f hi�x� � 0 �x � �

n� j � �1� � � � �m�� k � �0� � � � � ri 	 2�
/gj/ri	1

f hi�x� �� 0 for some x � �
n� and some j � �1� � � � �m��

6
�33�38�

It may then be shown that the time derivatives of the outputs yi �i � 1� � � � �m�
satisfy

y�k�i � /k
f hi�x� �k � 0� � � � � ri 	 1�

y�ri�
i � /ri

f hi�x� �
�m
j�1

uj/gj/ri	1
f hi�x�

� �33�39�

The relative degrees have the property that either ri � �1� � � � � n� or ri � ��. If
all relative degrees of (33.4) are finite, we let A�x� be the �m�m�-matrix with en-
tries

aij�x� � /gj/ri	1
f hi�x� �i� j � 1� � � � �m�� �33�40�

The matrix A�x� is called the decoupling matrix of (33.4). Define

�Y �
y�r1�

1

y�r2�
2

��
�

y�rm�
m

�%%%%�
�&&&& � b�x� �

/r1
f h1�x�
/r2

f h2�x�
��
�

/rm
f hm�x�

�%%%%�
�&&&& � �33�41�

It then follows from (33.39)–(33.41) that we have

�Y � b�x� � A�x�u� �33�42�

Now assume that there exists x0 � �
n such that A�x0� is invertible. This implies

that there exists a neighborhood V of x0 such that A�x� is invertible for all
x � V . Thus, on V the following state feedback is well defined:

u � A�x�	1�v	 b�x��� �33�43�

where v � �
m denotes the new controls. From (33.43) and (33.44) we then have

that application of this feedback to (4) results in

y�ri�
i � vi �i � 1� � � � �m� �33�44�

and thus the closed-loop systems (33.4) and (33.43) is input–output decoupled.
Hence we have shown that the following holds.
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Theorem 33.14 Consider the system (33.4) with m � p. Assume that there exists a
x0 � �

n such that A�x0� is invertible. Then there exists a neighborhood V of x0 and
a static-state feedback u � ��x� � 
�x�v such that the closed-loop system is input–out-
put decoupled on V.

Remark 33.15 For analytic systems, the condition given in Theorem 33.14 is
also a necessary condition for (local) solvability of the input–output decoupling
problem. However, this is not the case for nonanalytic systems (see e.g., [13] for
a counter example).

We first show that after (33.4) has been input–output decoupled using the stat-
ic-state feedback (33.43), there exists a coordinate transformation that trans-
forms (33.4) into a so-called normal form.

It may be shown that if for x0 � �
n we have A�x0� is invertible, then there ex-

ists a neighborhood V of x0 such that the functions �ij � /j	1
f hi �i � 1� � � � �m�

j � 1� � � � � ri� are independent. Denote

� � col �ij � i � 1� � � � �m� j � 1� � � � � ri
� �

Defining d 
� n	$m
i�1 ri, there then exists a function z 
 V � �

d such that
��� z� forms a new set of coordinates for (33.4) on V . Using (33.39) and (33.44),
and denoting 	�x� � ���x�� z�x��, it then follows that in the coordinates ��� z�
the closed-loop dynamics are given by:

��i1 � �i2

��
� �i � 1� � � � �m�

��iri	1 � �iri

��iri
� vi

�z � f ��� z� � g��� z�v
yi � �i1 �i � 1� � � � �m��

������������	�����������

�33�45�

where

f ��� z� � /f z�x� 	 /g1 z � � � /gm z
� ��x�A�x�	1b�x�

� �
x�		1���z�

g��� z� � /g1 z � � � /gm z
� ��x�A�x�	1
� �

x�		1���z�
�

We next show how the result of Theorem 33.14 can be used to solve the so-
called output tracking problem. To this end, assume that sufficiently smooth de-
sired output trajectories yd1�t�� � � � � ydm�t� �t � 0� are given, and that we wish to
design a controller such that

lim
t�� �yi�t� 	 ydi�t�� � 0 �i � 1� � � � �m�� �33�46�
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Assume that the decoupling matrix of the system is invertible, and that the stat-
ic-state feedback (33.43) has been applied to the system. We then choose kij � �

such that all roots of the polynomials sri �$ri	1
j�0 kijsj are in the open right-half

plane, and let vi in (33.44) be given by

vi � y�ri�
di 	

�ri	1

j�0

kij�y�j�i 	 y�j�di � �i � 1� � � � �m�� �33�47�

Defining error signals ei � ydi 	 yi �i � 1� � � � �m�, it then follows from (33.44)
and (33.47) that

e�ri�
i �

�ri	1

j�0

kije
�j� � 0� �33�48�

By the choice of the kij’s this gives that ei�t� � 0 as t �� �i � 1� � � � �m�, and
hence (33.46) holds.

This apparently solves the output tracking problem for our system. However,
there is still a matter that needs to be taken into account, as is illustrated by the
following example.

Example 33.16 Consider the system (33.26) with b � 8
3� u and y � x3. We

then have

�y � �x3 � x1x2 	 8
3

x3 	 ux3 �33�49�

and hence the relative degree of y equals 1, while the decoupling “matrix” is giv-
en by A�x� � 	x3, and b�x� � x1x2 	 8

3 x3. Note then that we can choose � � x3,
z � col�x1� x2�. Assume that we want the output to track a constant reference,
i.e., we have yd�t� � y � �. Choosing u� v as suggested by (33.43) and (33.47),
we then obtain the following closed-loop system:

�� � 	k��	 y��k � 0��
�z1 � �z2 	 z1��
�z2 � rz1 	 z2 	 z1��

y � ��

�����	����
 �33�50�

It is clear from the differential equation for � that ��t� � y exponentially as
t � ��. It then follows (see, e.g., [8]) that the overall stability properties of the
system (33.50) are determined by the stability properties of the linear time-invar-
iant system

�z � 	 
r 	 y 	1

 �
z� �33�51�
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This system is stable if and only if y � r 	 1. Thus, if y � r 	 1, the proposed
controller does solve the output tracking problem, but is still useless because it
leads to instability of the overall closed-loop system.

Example 33.16 illustrates that when solving the output tracking problem, one
needs to take into account the stability or boundedness of some internal dy-
namics. For constant reference trajectories these dynamics are normally called
the zero dynamics of the system, while for nonconstant reference trajectories
these dynamics are called the tracking dynamics of the system. Since the closed-
loop systems (33.45) and (33.47) has the property that �ij�t� 	 y�j	1�

di �t� � 0 as
t � �� exponentially, it again follows (see, e.g., [8]) that the stability properties
of the closed-loop system are determined by the stability properties of the track-
ing dynamics, which are given by

�z � f ��Yd�t�� z� � g��Yd�t�� z�Yd�t�� �33�52�

where

�Yd�t� � col y�j�di �t� � i � 1� � � � �m� j � 0� � � � � ri 	 1
� �

and

Yd�t� � col y�r1�
1d �t�� � � � � y�rm�

md �t�
� �

�

Example 33.17 Consider a controlled Lorenz system of the form �x � f �x��
g�x�u� y � h�x�, with f �x� as (33.34), g�x� � col�0� 1� 0� and h�x� � x1. For this
system, we have

�y � 10�x2 	 x1��
�y � 380x1 	 110x2 	 10x1x3 � 10u�

6
�33�53�

Thus we see that the relative degree of the system equals 2. We then have
� � col�x1� 10�x2 	 x1�� and we can take z � x3, which gives that after the feedback
u � 1

10 v	 38x1 � 11x2 � x1x3 the system in the coordinates ��� z� takes the form

��1 � �2�

��2 � v�

�z � �1 �1 �
1

10
�2

 �
	 8

3
z�

y � �1�

�������	������

�33�54�

Next assume that a desired output yd�t� is given. Then according to (33.47), ap-
plying the controller
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v � �yd�t� 	 k1��2 	 �yd�t�� 	 k0��1 	 yd�t��� k0� k1 � 0 �33�55�

will result in �y�t� 	 yd�t�� � 0 as t � ��. According to (33.52), the tracking
dynamics of the system are then given by

�z � 	 8
3

z� ��t�� ��t� � yd�t� yd�t� � 1
10

�yd�t�
 �

� �33�56�

The solutions of (33.56) are given by

z�t� � exp 	 8
3

t

 �
z�0� �

3 t

0

exp 	 8
3
�t	 ��

 �
����d�� �33�57�

This gives that the tracking dynamics of the system are bounded as long as
yd�t� and �yd�t� are bounded. Moreover, we further see that, whatever the initial
conditions of the system are, the solution z�t� of the tracking dynamics will al-
ways converge to the steady state solution

zss�t� �
3 t

0

exp 	 8
3
�t	 ��

 �
����d�� �33�58�

For example, for yd�t� � sin�t, one finds the steady state solution

zss�t� �
3� 27

16�
2 	 3 cos 2�t� � 	 39

20� sin 2�t� � 	 9
40�

2 cos 2�t� �
16� 9�2 �33�59�

33.3
Lyapunov Design

33.3.1
Lyapunov Stability and Lyapunov’s First Method

Consider an n-dimensional dynamic system of the form

�x � f �x�� x � �
n� �33�60�

where the vector field f is assumed to be smooth. Given x0 � �
n, we denote by

x�t� x0� the solution of (33.60) at time t � � that satisfies x�0� x0� � x0. A point
x � �

n is called an equilibrium point (or steady state) of (33.60) if the system is at
rest at x, i.e., if f �x� � 0. Note that this implies that x�t� x� � x for all t � �.
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In many practical situations, equilibrium points represent desirable operating
conditions, and due to disturbances systems will often inevitably deviate from
the operating conditions. Intuitively speaking, stability of the equilibrium point
then means that when initial deviations are small enough, the deviations will
remain small, while asymptotic stability means that in addition the system will
asymptotically return to the equilibrium point when initial deviations are small
enough. To formalize these intuitive concepts, we define sets B��x� in the fol-
lowing way.

B��x� � �x � �
n � -x 	 x- � ��� �33�61�

where - � - denotes the Euclidean norm on �
n.

Definition 33.18 (Lyapunov stability)
1. An equilibrium point x � �

n for (33.60) is called stable if for every � � 0 there
exists a � � 0 such that for all x0 � B��x� and all t � 0 we have that
x�t� x0� � B��x�.

2. An equilibrium point x � �
n for (33.60) is called locally asymptotically stable if

it is stable and if there exists a � � 0 such that for all x0 � B��x� we have
limt��� -x�t� x0� 	 x- � 0.

3. An equilibrium point x � �
n for (33.60) is called globally asymptotically stable

if it is stable and if in 2. one can choose � � �.
4. An equilibrium point x � �

n for (33.60) is called unstable if it is not stable.

For linear systems, i.e., f �x� � Ax in (33.60) where A is a constant n� n-matrix,
we have the system either has a unique equilibrium x � 0 when A is invertible,
or it has an infinite number of equilibria when A is not invertible. Moreover,
when A is not invertible, it may be shown that the stability properties of all
equilibria are the same as the stability properties of the equilibrium at the orig-
in. The following result then gives conditions for (asymptotic) stability of the
origin for linear systems.

Theorem 33.19 Consider a linear system �x � Ax, where A is a constant n� n-matrix.
1. The origin is an asymptotically stable equilibrium point for the system if and only

if all eigenvalues of A are located in the open left-half plane.
2. The origin is a stable equilibrium point for the system if and only if all eigenvalues

of A are located in the closed left-half plane and the geometric and algebraic multi-
plicities of eigenvalues on the imaginary axis are the same.

Example 33.20 The simplest illustration of an unstable system with eigenval-
ues on the imaginary axis is a one-degree-of-freedom mechanical system exhibit-
ing rigid body motion, i.e., a particle with equation of motion given by �q � 0,
where q denotes the position of the particle. Defining x � col�q� �q�,
A � 0 1

0 0

 �
, the equation of motion may be rewritten as �x � Ax. We then
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have that A has an eigenvalue at zero with algebraic multiplicity equal to 2 and
geometric multiplicity equal to 1. Further, it is easily checked that the solution
to the equation of motion is q�t� � q�0� � �q�0�t, so indeed the origin is an un-
stable equilibrium point.

For checking stability of an equilibrium point, one normally first tries to apply
Lyapunov’s first method, which relies on the so-called Jacobian of f at x that is de-
fined by

Dxf �x� � �f
�x

 �
�x�� �33�62�

Notice that Dxf �x� is a constant n� n-matrix.

Theorem 33.21 Let x � �
n be an equilibrium point for (33.60). We then have the

following.
1. If all eigenvalues of Dxf �x� are located in the open left-half plane, then x is an

asymptotically stable equilibrium point of (33.60).
2. If Dxf �x� has an eigenvalue in the open right-half plane, then x is an unstable

equilibrium point of (33.60).

Note that if the eigenvalues of Dxf �x� are located in the closed left-half plane
and there is at least one eigenvalue on the imaginary axis, we cannot use Theo-
rem 33.21. In this case one needs to resort to Lyapunov’s direct method (or any
other method) to study the stability of equilibrium points. Lyapunov’s direct
method will be discussed in Section 33.3.2.

33.3.2
Lyapunov’s Direct Method

In Lyapunov’s direct method, one uses so-called Lyapunov functions to study
the stability of equilibrium points. A Lyapunov function can be interpreted as a
generalization of the concept of energy functions for mechanical systems. To
motivate this, we first consider a mechanical example.

Example 33.22 Consider a simple harmonic oscillator with position coordinate
x and velocity v, and assume that the oscillator is subjected to a hydrodynamic
force with magnitude v�v�. The equation of motion of the oscillator is then given
by

�x � v�

�v � 	x 	 v�v��

6
�33�63�

Consider the total energy E�x� v� of the oscillator:
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E�x� v� � 1
2

x2 � 1
2

v2� �33�64�

Using the Chain rule, we find that along a solution �x�t�� v�t�� of (33.63), the
time derivative of the total energy satisfies

d
dt

E�x�t�� v�t��� � � x�t� �x�t� � v�t��v�t� � 	v�t�2�v�t�� % 0� �33�65�

Since the time derivative in (33.65) is nonpositive, we conclude that the total en-
ergy cannot increase. Using the form of E and Definition 33.18, this then leads
to the conclusion that the origin is a stable equilibrium point for (33.63).

We will now generalize the approach in Example 33.22. For the system (33.60),
consider a differentiable function V 
 �n � �. Let x�t� be a solution of (33.60),
and consider the value V�x�t�� of V along this solution. We then have that the
time derivative of V�x�t�� satisfies

d
dt

V�x�t�� �
�n

i�1

�V
�xi
�x�t�� �xi�t� �

�n

i�1

�V
�xi
�x�t��fi�x�t�� � /f V�x�t��� �33�66�

Motivated by this equality, we define the function �V 
 �n � � by

�V�x� 
� /f V�x�� �33�67�

From (33.66) it then follows that the function �V keeps track of the increase/de-
crease of the function V along solutions of (33.60). As a consequence of this,
one can use appropriately chosen functions V and the associated function �V to
study the stability of equilibrium points of (33.60).

We will call a differentiable function V 
 �n � � a Lyapunov function for
(33.60) on � � �

n if �V % 0 on �. If �V � 0 on �, we will call V a strict Lyapunov
function on �. We further call a function V 
 �n � � radially unbounded if
V�x� � � as -x- � �.

We now have the following result.

Theorem 33.23 Consider the system (33.60), and let x � �
n be an equilibrium

point for the system.
1. x is a stable equilibrium point of (33.60) if there exist a neighborhood U of x and

a Lyapunov function V on U such that V�x� � 0 and V � 0 on UE�x�.
2. x is a locally asymptotically stable equilibrium point of (33.60) if there exist a

neighborhood U of x and a strict Lyapunov function V on UE�x� such that
V�x� � 0 and V � 0 on UE�x�.

3. x is a globally asymptotically stable equilibrium point of (33.60) if the conditions
of 2. are satisfied with U � �

n and a function V that is radially unbounded.
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Remark 33.24 It may be shown that in fact the conditions given in Theorem
33.23 are also necessary conditions (see e.g., [8]). Thus, one might hope that the
necessity part of the proof gives some clues as to how to construct appropriate
Lyapunov functions. However, the necessity part of the proof relies on the
knowledge of the solutions of the underlying differential equation. Obviously, in
most cases (like, e.g., for chaotic systems) the solutions cannot be determined
explicitly, so this does not help in the construction of a Lyapunov function.

33.3.3
LaSalle’s Invariance Principle

In many cases, it is easier to construct a nonstrict Lyapunov function than to
construct a strict Lyapunov function. However, in practice one is mostly inter-
ested in asymptotic stability rather than just stability, and we see from Theorem
33.23 that one cannot directly use the former type of function to prove asympto-
tic stability. However, this can be done by using the so-called LaSalle’s Invariance
Principle, which we will introduce in this subsection.

Theorem 33.25 (LaSalle’s Invariance Principle)
Consider the system (33.60). Assume that there exists a compact positively invariant
set � for (33.60) and a Lyapunov function V on �. Define the set

N � �x � �
n � �V�x� � 0� �33�68�

and let N� denote the largest positively invariant set in N. Then every solution of
(33.60) on � approaches N� as t � ��.

A specialization of Theorem 33.25 to the case of asymptotic stability of equilib-
rium points is the following result.

Theorem 33.26 Consider the system (33.60) with equilibrium point x � �
n. As-

sume that there exist a neighborhood U of x and a Lyapunov function V on U such
that V�x� � 0 and V � 0 on UE�x�. Define N as in (33.68) and let N� denote the
largest positively invariant set in N. If there exists a neighborhood �U � U of x such
that N� � �U � �x�, then x is a locally asymptotically stable equilibrium point for
(33.60). Moreover, if V is radially unbounded and we can take U � �U � �

n, then x
is a globally stable equilibrium point for (33.60).

The following result gives a generalization of Theorem 33.25 to the case where
� is not necessarily compact and positively invariant.

Theorem 33.27 Consider the system (33.60). Assume that there exists a set
� � �

n and a Lyapunov function V on � which is bounded from below on �. De-
fine the set N as in (33.68), and let N� denote the largest invariant set in N. Then
every bounded solution of (33.60) on � approaches N� as t ��.

We will apply Theorem 33.26 to the system from Example 33.22.
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Example 33.28 Consider again the system from Example 33.22 and the energy
function E defined in (33.65). We then have �E�x� v� � 	v�v�, and hence
N � ��x� v� � �

2 � �E�x� v� � 0� � ��x� v� � �
2 � v � 0�.

We next determine N�, the largest positively invariant set in N. Let
�x0� v0� � N�. Since N� � N, it follows from the definition of N that v0 � 0.
Further, invariance of N� implies that for every solution �x�t�� v�t�� � N� we
have that v�t� � 0 for all t � 0, and hence �v�t� � 0 for all t � 0. In particular we
then have for the solution x�t� �x0� v0�� that

0 � �v�0� �x0� v0�� � 	x0 	 v0�v0� � 	x0

which implies that N� � ��0� 0��. On the other hand, the fact that �0� 0� is an
equilibrium point gives that ��0� 0�� � N�, and hence N� � �0� 0�. Noting that
E is radially unbounded, this then gives with Theorem 33.26 the origin is a
globally stable equilibrium point for (33.63).

33.3.4
Examples

In this subsection we apply the results from Sections 33.3.2 and 33.3.3 to some
examples of chaotic systems. It should be noted that in some of the examples
we encounter nonautonomous dynamics, while the results developed in this
section only deal with autonomous dynamics. However, the examples have been
chosen in such a way that indeed using results for autonomous dynamics can
be justified. However, when dealing with nonautonomous dynamics in general,
one would need to use the parallel theory that exists for nonautonomous dy-
namics (see e.g., [8] for details).

Example 33.29 (Tracking control of a chaotic Duffing system [12])
Consider a controlled chaotic Duffing system of the form

�x1 � x2

�x2 � 	px2 	 p1x1 	 x3
1 � u� q cos�t�

6
�33�69�

where p� p1� q�� are parameters. Let a sufficiently smooth reference trajectory
xd1�t� for x1 be given and define error signals e1�t� � xd1�t� 	 x1�t�,
e2�t� � �xd1�t� 	 x2�t�. Consider the static-state feedback

u � �xd1 � p �xd1 � p1xd1 � x3
d1 	 q cos�t	 Kde2 	 Kpe1 � 3x1xd1e1� �33�70�

where the parameters Kp�Kd satisfy

Kp � 	p1�Kd � 	p� �33�71�

It is then straightforwardly shown that after (33.70) has been applied to (33.69),
the time-invariant error dynamics satisfy

33 Nonlinear Chaos Control and Synchronization742



�e1 � e2�

�e2 � 	�p1 � Kp�e1 	 �p� Kd�e2 	 e3
1�

6
�33�72�

We will now show that the origin is a globally asymptotically stable equilibrium
point for (33.72), and hence the static-state feedback (33.70) globally solves the
tracking problem for (33.69). Let � � � satisfy

0 � � � p� Kd �33�73�

and consider the function V given by

V�e� � 1
2
�e2 � �e1�2 � 1

2
�p1 � Kp� � ��p� Kd� 	 �2� �

e2
1 �

1
4

e4
1� �33�74�

Note that it then follows from (33.71) and (33.73) that V � 0 on �
2E�0� and

that V is radially unbounded. We now have

�V � �e2 � �e1���e2 � ��e1� �
�p1 � Kp� � ��p� Kd� 	 �2� �

e1 �e1 � e3
1 �e1 � � � � �

	 �p� Kd 	 ��e2
2 	 ��p1 � Kp�e2

1 	 �e4
1�

�33�75�

From (33.71) and (33.73) it then follows that �V � 0 on �
2E�0�. It then follows

from Theorem 33.23 that indeed u globally solves the tracking problem for
(33.69).

Example 33.30 Consider a transmitter system in the form of a Lorenz system

�x1 � �x2 	 x1�
�x2 � rx1 	 x2 	 x1x3 � p

�x3 � x1x2 	 bx3

y � x2�

����	���
 �33�76�

where y denotes the transmitted signal and � r� p� b � 0 are parameters. Also
consider a receiver system of the form

�z1 � �y	 z1��
�z2 � �z1 	 z2 	 z1z3 � ��

�z3 � z1z2 	 bz3�

��	�
 �33�77�

First assume that the parameter p in (33.76) is unknown, and that all other param-
eters are known. In (33.77) we then choose � � r, and define dynamics of � by

�� � y	 z2� �33�78�
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Define error signals ei � xi 	 zi �i � 1� 2� 3�, �1 � p	 �. The error dynamics are
then given by

�e1 � 	e1�

�e2 � re1 	 e2 	 x1x3 � z1z3 � �1�

�e3 � x1x2 	 z1z2 	 be3�

��1 � 	e2�

����	���
 �33�79�

The first differential equation in (33.79) implies that e1�t� � 0 exponentially as
t � ��. This means that the overall stability properties of (79) are determined
by the stability properties of the �e2� e3� �1�-dynamics in (33.79) with e1 � 0:

�e2 � 	e2 	 z1e3 � �1�

�e3 � z1e2 	 be3�

��1 � 	e2�

��	�
 �33�80�

Define the function V�e2� e3� �1� by

V�e2� e3� �1� � 1
2
�e2

2 � e2
3 � �2

1�� �33�81�

Then

�V � e2�	e2 	 z1e3 � �1� � e3�z1e2 	 be3� 	 �1e2 � 	e2
2 	 be2

3� �33�82�

This gives that V is a Lyapunov function for (33.80) on �
3 and hence all solu-

tions of (33.80) approach N � ��e2� e3� �1� � �V � 0� � ��e2� e3� �1� � e2 � e3 � 0�.
Since we have

�e2�e2�e3�0 � �1 �33�83�

this implies in a similar way to what has been done in Example 33.28 that also
�1�t� � 0 as t � ��. Hence we have shown that when the parameter p is un-
known, the systems (33.76)–(33.78) synchronize and the variable � approaches
p.

Next assume that besides p also the variable r is unknown. We again consider
the receiver systems (33.77) and (33.78) and add the following dynamics for �:

�� � �y	 z2�z1� �33�84�

Let the error signals ei �i � 1� 2� 3� and �1 be defined as above, and define
�2 � r 	 �. It can again be shown that e1�t� � 0 exponentially as t � ��, and
hence again the stability properties of the error dynamics are determined by the
stability properties of the �e2� e3� �1� �2�-dynamics for e1 � 0, which in this case
may be shown to be given by
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�e2 � �2z1 	 e2 	 z1e3 � �1�

�e3 � z1e2 	 be3�

��1 � 	e2�

��2 � 	e2z1�

����	���
 �33�85�

Now consider the function

W�e2� e3� �1� �2� � 1
2
�e2

2 � e2
3 � �2

1 � �2
2�� �33�86�

It may then be shown that

�W � 	e2
2 	 be2

3 �33�87�

and hence again we have e2�t�� e3�t� � 0 as t � ��, which together with the
fact that e1�t� � 0 gives that the systems (33.76) and (33.77) synchronize. We
now have

�e2�e2�e3�0 � �1 � �2z1� �33�88�

which gives that we also have

�1�t� � �2�t�z1�t� � 0�t � ���� �33�89�

Further, we have

d
dt

�1�t� � �2�t�z1�t�� �e2�e3�0 � �z1�t��2�t� �33�90�

and hence we have

�z1�t��2�t� � 0 �t � ���� �33�91�

Note that from (91) we can conclude that �2�t� � 0 (and hence by (33.89) also
�1�t� � 0) for t � �� only if �z1�t� �� 0. This means that even if the transmitter
system (33.76) is chaotic, there may exist initial conditions (for example, on the
stable manifold of one of the equilibria) such that � and � do not converge to r
and p.

Remark 33.31
1. In the above example, we encountered the situation where synchronization of

two systems in the presence of unknown parameters was guaranteed irrespec-
tive of whether or not the parameters could be estimated correctly, and parameter
convergence could only be guaranteed if a certain signal satisfied some extra
properties. This is a situation that is ubiquitous whenever one deals with con-
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trol or synchronization problems in the presence of unknown parameters.
The extra conditions guaranteeing correct parameter estimation are normally
stated in terms of certain signals having to be persistently exciting (see e.g.,
[11, 17] and the references therein). Roughly speaking, this means that the
signals should have a power spectrum that is not concentrated at too few
peaks (cf. [2]). Due to the fact that chaotic signals have a broad power spec-
trum, this condition is normally satisfied when dealing with synchronization
and control problems for chaotic systems, as long as the system is not initia-
lized at “nongeneric” initial conditions like (stable manifolds of) equilibrium
points.

2. The type of reasoning employed in the above example can be applied in a
more general context by applying what is known as Barbalat’s Lemma (see
e.g., [8]).

The following two examples illustrate that the ideas behind Lyapunov’s direct
method can also be used to tackle other types of problems.

Example 33.32 (No finite escape time in the Rössler system)
Consider a Rössler system of the form

�x1 � 	x2 	 x3

�x2 � x1 � ax2

�x3 � c � x3�x1 	 b��

��	�
 �33�92�

where a� b� c � 0. First note that when x3 � 0, we have �x3 � c � 0, which im-
plies that the set � � �x � �

3 � x3 � 0� is a positively invariant set for (33.92).
It is well known that for certain parameter values the Rössler system has a

bounded invariant set on which it displays complex dynamics. However, this set
is not an attractor, and in fact there are solutions of the system that escape to
infinity. In terms of well posedness of, e.g., synchronization or control problems
it is then of importance to know whether or not there are solutions with finite
escape time, i.e., whether or not there are solutions x�t� for which there exists a
0 � t0 � �� such that -x�t�- � � as t > t0.

To show that on � there are no solutions with finite escape time, we consider
the function

V�x� � x2
1 � x2

2 � x3� �33�93�

For this function, we then have on � that

�V � 2x1�	x2 	 x3� � 2x2�x1 � ax2� � 2�c � x3�x1 	 b�� �
2ax2

2 	 2bx3 � 2c % 2a�x2
1 � x2

2 � 2x3� � 2c � 2aV � 2c�
�33�94�

It may then be shown that this implies that V�t� % W�t�, where W�t� is the so-
lution of �W � 2aW � 2c, W�0� � V�0�, which is given by
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W�t� � e2at V�0� � c
a

� �
	 c

a
� �33�95�

This then immediately implies that V�t� is finite for every finite t � 0, which
gives that (33.92) does not have solutions with finite escape time.

Example 33.33 (Bounds on the solutions of the Lorenz system [10,20])

Consider the Lorenz system

�x1 � 10�x2 	 x1��
�x2 � 28x1 	 x2 	 x1x3�

�x3 � x1x2 	 8
3

x3�

���	��
 �33�96�

Using an appropriate Lyapunov function, we will first show that all solutions of
(33.96) are bounded. Consider the function V defined by

V�x� � 28x2
1 � 10x2

2 � 10�x3 	 56�2� �33�97�

For this function, we find that

�V � 560x1�x2 	 x1� � 20x2�28x1 	 x2 	 x1x3� �

20�x3 	 56� x1x2 	 8
3

x3

 �
�

	 20 28x2
1 � x2

2 �
8
3
�x3 	 28�2 	 6272

3

 �
�

�33�98�

Define the set

D � �x � �
3 � �V�x� � 0� �

x � �
3 � 28x2

1 � x2
2 �

8
3
�x3 	 28�2 % 6272

3

� (
�

�33�99�

Note that the boundary of D is an ellipsoid, and hence D is a compact set. This
means that we can define

c� � max�V�x� � x � D�� �33�100�

For c � 0, define sets �c by

�c � �x � �
3 � V�x� % c�� �33�101�

Since also the boundary of �c is an ellipsoid, we have that �c is a compact set
for every c � 0. First note that by definition of c� and �c� we have �V � 0 outside
�c� and �V % 0 on the boundary of �c� . This implies that �c� is a positively in-

33.3 Lyapunov Design 747



variant set for (33.96). Further, when x�0� � �
n is such that V�x�0�� � c�, we

have �V�x�0�� � 0, which means that outside �c� the value of V�x� is strictly de-
creasing. Due to compactness of �c, this implies that all solutions of (33.96) are
bounded.

Using the fact that all solutions are bounded, we can use Theorems 33.25
and 33.27 to derive further bounds on the solutions of (33.96). For example,
consider the function W defined by

W�x� � x2
1

20
	 x3� �33�102�

For this function, we have

�W � x1�x2 	 x1� 	 x1x2 � 8
3

x3 � 	 8
3

W 	 13
15

x2
1� �33�103�

Define the set

 � �x � �
3 � W�x� % 0�� �33�104�

First, note that for all x satisfying W�x� � 0 we then have �W�x� % 0, which im-
plies that  is a positively invariant set for (33.96). Next assume that there ex-
ists a solution x�t� for which x�t� ��  for all t � 0. Note that it follows from
(33.103) and (33.104) that we then have

x�t� � � 
� �x � �
3 � 0 � W�x�t�� % W�x�0��� �

�x � �
3 � �W�x� % 0���t � 0��

�33�105�

Since x�t� is bounded, it then follows from Theorem 33.27 that x�t� approaches
N�, the largest invariant set contained in the set N defined by

N � �x � �
3 � �W�x� � 0� � �x � �

3 � x1 � x3 � 0�� �33�106�

Similarly to what has been shown in Example 33.28, it may be shown that
N� � �0�. Since the origin is an unstable equilibrium point for (33.96), this
gives that we should have that x�0� is on the stable manifold of the origin.
Thus, we conclude that for almost all solutions x�t� of (33.96) there exists a
t0 � 0 such that x�t� �  for all t � t0 and that for all other solutions we have
x�t� �  as t � ��.
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Maciej Ogorzałek

34.1
Introduction

The last twenty years brought a wealth of research in the domain of nonlinear
dynamics. In many physical systems and their deterministic models it has been
confirmed that apart from typical behaviors such as convergence to constant,
periodic or quasiperiodic behaviors in some cases trajectories become aperiodic
(chaotic) if their parameters, internal variables, or external signals are chosen in
a specific way.

It is generally accepted that the following specific properties qualify dynami-
cal behavior as chaotic:
� in the time evolution the solutions exhibit sensitive dependence on initial

conditions. Sensitive dependence on initial conditions means that trajectories
of a chaotic system starting from nearly identical initial conditions will even-
tually separate and become uncorrelated but remain bounded in space;

� trajectory moves over a strange attractor – a geometric invariant object which
can possess fractal dimension. The trajectory passes arbitrarily close to any
point of the attractor set – in the mathematical sense the trajectory is dense
on the attractor or that the system is ergodic;

� chaotic behavior appears in the system as via a “route” to chaos which typical-
ly is associated with a sequence of bifurcations – qualitative changes of ob-
served behavior when varying one or more of the parameters;

� creation of trajectories that are observable in experiments (stable in mathe-
matical sense) via bifurcation is often accompanied by creation of unstable or-
bits which are invisible in experiments. Unstable orbits persist also within the
chaotic attractor – the property of existence of an infinite countable number
of unstable periodic orbits within an attractor is also specific for chaotic sys-
tems. Using software tools it is possible to detect some of such orbits in nu-
merical experiments (Fig. 34.1).
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Sensitive dependence on initial conditions has important practical conse-
quences. In real applications we can specify the initial conditions only with
some finite accuracy �. If two initial conditions are closer to each other than �

then they are not distinguishable in measurements. The trajectories of a chaotic
system starting from such initial conditions will after a finite time diverge and
become uncorrelated. Their behavior becomes unpredictable – the solutions
look virtually random despite the fact they are produced by a deterministic sys-
tem. One can notice that very small stimulus in the form of tiny change of pa-
rameters can have a very large effect for the system behavior. Furthermore, er-
godic properties guarantee that if we choose an initial condition and a small
ball of radius � around it, the trajectory will eventually pass through this ball
after a finite time (which might be however very long!).

These fundamental properties of chaotic systems are the basis of the chaos-
control techniques.

34.1.1
Chaos Control

Any chaotic system from the control engineer’s point of view is just as any
other nonlinear systems. One could apply any method from the control engi-
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Fig. 34.1 Two-dimensional projection of the Double scroll
attractor observed in Chua’s circuit (a) and some of the un-
stable periodic orbits uncovered from it (b)–(e). The shape of
these orbits resembles the overall structure of the attractor.



neers toolkit to solve one of the typical control problems such as stabilization or
tracking. The most common goal of control for chaotic systems is elimination
of chaotic behavior commonly considered as causing malfunctioning, disas-
trous, and thus unwanted in most applications. The specific goals vary depend-
ing on a particular application. The most common goal is to convert chaotic
motion into a stable periodic or constant one. We would like to avoid situations
like, e.g., fibrillation or arrhythmias in medicine or hurricanes and other atmo-
spheric disasters believed to be associated with large-scale chaotic behavior.

One can also consider conversion of unwanted chaotic behavior into another
kind of chaotic motion with prescribed properties. This is the goal of chaos syn-
chronization and many chaos-based signal transmission systems where specific
types of chaotic behaviors are required as carriers or spreading codes. Alterna-
tively one can put a requirement for changing periodic behavior into chaotic
motion (which might be the goal in the case of removal of epileptic seizures).
The last-mentioned type of control is often referred to as anticontrol of chaos.

In some cases of biomedical applications chaos is a desired state of operation.
We can imagine that mixing of components in a chemical reactor would be
much quicker in a chaotic state than in any other one, or chaotic signals could
be useful for hiding information. In such cases, however, we need a “wanted
kind” of chaotic behavior with precisely prescribed features and/or we need
techniques to switch between different kinds of behavior (chaos–order or chaos–
chaos).

Considering the implementation possibilities we can consider the four cases:
� variation of an existing accessible system parameter,
� change in the system design – modification of its internal structure,
� injection of an external signal(s),
� introduction of a controller (classical PI, PID, linear or nonlinear, neural, sto-

chastic etc.).

Due to very rich dynamic phenomena encountered in typical chaotic systems,
there exist a large variety of approaches to control such systems [2].

34.1.2
Fundamental Properties of Chaotic Systems and Goals of the Control

Chaotic systems possess specific properties not encountered in other nonlinear
dynamical systems usually considered in control textbooks.

Route to chaos via a sequence of bifurcations gives an insight into other ac-
cessible behaviors that can be obtained by changing parameters (this may be
used for redesigning the system); secondly, stable and unstable orbits that are
created or annihilated in bifurcations may still exist in the chaotic range and
constitute potential goals for control.

Two fundamental properties of chaotic signals and systems mentioned earlier
offer interesting issues for control not available in other classes of systems:
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� due to sensitive dependence on initial conditions it is possible to influence
the dynamics of the systems using very small perturbations; moreover, the re-
sponse of the system is very fast, and

� the existence of a countable infinity of unstable periodic orbits within the at-
tractor offers extreme flexibility and a wide choice of possible goal behaviors
for the same set of parameter values.

34.2
Requirements for Electronic Implementation of Chaos Controllers

During the last few years dozens of chaos-control techniques have been pro-
posed (see, e.g., [2, 20, 21]). Analyzing these techniques one can easily realize
that most of them are of purely academic interest – their implementation in
real systems would be extremely difficult if not impossible at all. There is a gen-
eral lack of easily implementable chaos-control approaches. Looking at possible
applications alone it becomes obvious that chaos-control techniques and their
possible implementations will greatly depend on the nature of the real process
under consideration. Such systems show differences in
� speed of the phenomenon (frequency spectrum of the signals)
� amplitudes of the signals
� existence of corrupting noises, their spectrum and amplitudes
� accessibility of the signals to measurement
� accessibility of the control (tuning) parameters and
� acceptable levels of control signals.

Looking for an implementation of a particular chaos controller we must first
look at the above system-induced limitations: How can we measure and process
signals from the system? Are there any accessible system variables and parame-
ters which could be used for the control task? How can we apply the control
signals/connect to the system? How to choose the ones that offer the best per-
formance for achieving control? At what speed do we need to compute and ap-
ply the control signals? What is the lowest acceptable precision of computation?
Can we achieve control in real time? A slow system like a bouncing magneto-
elastic ribbon (with eigenfrequencies below 1 Hz) is certainly not as demanding
as a telecommunication channel (running possibly at GHz) or a laser when it
comes to control.

Considering electronic implementations, one must look at several closely
linked areas: sensors (for measurement of signals from a chaotic process), elec-
tronic implementation of the controllers, numerical algorithms for calculating
control signals (implemented off-line using standard computers on using a mi-
croprocessor or DSP) and actuators (introducing control signals into the sys-
tem). External to the implementation (but directly involved in the control pro-
cess and usually fixed based on the measured signals) is finding of the goal of
the control.
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An obvious question arises at this point – why, despite a wealth of developed
methods, we have so few successful implementations and real applications ap-
peared?

In this chapter we try to answer at least partially this question by looking at
the two most appealing methods – namely the OGY technique and OPF con-
trol. Among the approaches and methodologies for chaos control described in
the literature [2, 19–21] these two approaches are of interest because they use
specific properties of chaotic systems [23]:
1. Firstly, a chaotic attractor contains an infinite number of unstable periodic or-

bits embedded within it;
2. Secondly, there exist dense orbits in the sense that a typical trajectory on the

attractor passes arbitrarily close to any point on it (it also passes arbitrarily
close to any of the unstable periodic orbits);

3. In addition, these methods require very small signals to achieve control and,
thus, are more realistic for implementation purposes.

From the implementation point of view these two methods are very different.
OGY works on the basis of measured signals and uses a computer to find the
goal of the control and make necessary calculations of the control signals – thus
all the signals used in calculations are discretized both in time and space. OPF
is purely analog, all operations are implemented in hardware. To consider the
implementation limitations, let us first look at the principles of operation of
both methods.

34.3
Short Description of the OGY Technique

The OGY control method developed by Ott, Grebogi, and Yorke [24, 25] in 1990
uses the two above-mentioned properties. The goal of control is to stabilize one
of the unstable periodic orbits by perturbing a chosen (accessible) system pa-
rameter over a small range about some nominal value.

To explain in some detail the action of the OGY method, let us assume for
simplicity that we have a three-dimensional continuous-time system of first-or-
der autonomous ordinary differential equations:

d�
dt
� ���� p�� �34�1�

where � � IR3 is the state and p � IR is a system parameter which we can
change. We also assume that parameter p can be modified within a small inter-
val around its nominal value p0 (p � p0 	 �pmax� p0 � �pmax�, where �pmax is the
maximum admissible change in the parameter p). We choose a two-dimensional
Poincaré surface � which defines a Poincaré map � (for � � �, we denote by
���� the point at which the trajectory starting from � intersects � for the first
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time). Since the vector field � depends on p, the Poincaré map � also depends
on this parameter p. Thus, we have

�
 IR2 � IR F ��� p� 	� ���� p� � IR2� �34�2�

Let us assume that � is differentiable. Say we have selected one of the unstable
periodic orbits embedded in the system’s attractor as a goal of our control be-
cause, for example, it offers an improvement in system performance over the
original chaotic behavior. This could be the case for example of a chaotic laser
intensity which is clearly an unwanted phenomenon and the effective power of
the laser beam can be enhanced using control to stabilize or eliminate chaotic
behavior [26]. Another example of unwanted chaotic behavior is fibrillation,
where the heart pumps blood in an inefficient manner. In this application, con-
trolling the heart beat into a nearly periodic regime is of paramount importance
[11]. For simplicity, we assume that this is a period-1 orbit (a fixed point of the
map �).

Let us denote by �F an unstable fixed point of � for p � p0 (���F� p0� � �F).
Let the first-order approximation of � in the neighborhood of ��F� p0� be of the
form

���� p� � ���F� p0� �� � ��	 �F� �	 � �p	 p0�� �34�3�

where � is a Jacobian matrix of ���� p0� at �F, and 	 � ��
�p ��F� p0� is the deriva-

tive of � with respect to the parameter p.
Stabilization of the fixed point is achieved by realizing feedback of the form

p��� � p0 � 
T��	 �F�� �34�4�

In the original description of the OGY method [24], the vector 
 is computed
using the expression


 � 	 �u

�T
u	

�T
u � �34�5�

where �u is the unstable eigenvalue and �u is the unstable contravariant corre-
sponding left eigenvector of �.

Thus the OGY method relies on a local linearization of the Poincaré map in
the neighborhood of the chosen unstable fixed point and local linear stabilizing
feedback.

An advantage of the OGY method is that all of the necessary calculations can
be performed off-line on the basis of measurements (e.g., finding the unstable
periodic orbits, fixing one of them as a goal of the control, computing the vari-
ables and parameters necessary for calculation of the control signal).

Once the goal of the control (unstable orbit to be stabilized) has been se-
lected, the control signal is applied only when the observed trajectory passes
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close to the fixed point (where the linearization is valid). The assumption about
the existence of a dense orbit guarantees that eventually the trajectory will enter
the control window. However, the time one has to wait before starting and
achieving control might be very long.

It should be mentioned here that Dressler and Nitsche [8] have proposed a
variant of the OGY method in which only one variable is measured in the sys-
tem and other variables needed for control are reconstructed using the delayed
coordinate method.

34.4
Implementation Problems for the OGY Method

When implementing the OGY method for a real-world application one has to
do the following series of elementary operations:
� data acquisition – measurement of a (usually scalar) signal from the chaotic

system under consideration. This operation should be performed in such a
way as not to disturb the existing dynamics. For further computerized pro-
cessing, measured signals must be sampled and digitalized (A/D conversion);

� selection of appropriate control parameter;
� finding unstable periodic orbits using experimental data (measured time

series) and fixing the goal of control;
� finding parameters and variables necessary for control (as described above);
� application of the control signal to the system – this step requires continuous

measurement of system dynamics in order to determine the moment at
which to apply the control signal, i.e., the moment when the actual trajectory
passes in a small vicinity of the chosen periodic orbit, and immediate reaction
of the controller (application of the control pulse) in such an event.

In computer experiments, it has been confirmed that all the above-mentioned
steps of OGY can be carried out successfully in a large variety of systems,
achieving stabilization of even long-period orbits.

There are several problems which arise when attempting to build an experi-
mental setup. Despite the fact that the variables and parameters can be calcu-
lated off-line, one has to consider that the signals measured from the system
are usually corrupted due to noise, several nonlinear operations associated with
the A/D conversion (possibly rounding, truncation, finite word-length, overflow
correction, etc.). Using corrupted signal values and the introduction of addi-
tional errors by the computer algorithms and linearization used for the control
calculation may result in a general failure of the method. Additionally there are
time delays in the feedback loop (e.g., waiting for reaction of the computer, in-
terrupts generated when sending and receiving data, etc.).
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34.4.1
Effects of Calculation Precision

In a simple example below, we consider the case of calculating control parame-
ters to stabilize a fixed point in the Lozi map and show how the A/D conversion
accuracy and the resulting calculations of limited precision affect the possibili-
ties for control. In the tests described below we consider the quality of computa-
tions alone, without looking at other problems like time delays in the control
loop.

To be able to compare the results of digital manipulations in [22] we first
computed the interesting parameters using analytical formulas and compared
the results with computations based on measured time series and finite preci-
sion calculations in the case of Henon map. Let us look at the three cases com-
pared below with the analytical results:

Reference case – analytically calculated parameters:
Coordinates of the fixed point: �0�88794� 0�88794�
Control vector g: 0�40389� 0�40389�; Jacobian eigenvalues: 	1�91322, 	0�15534
Stable direction: 0�15350� 0�98814�; Unstable direction: 0�88801�	0�45981�
Possibilities of control: successful
1. fixed point representation, 12-bit precision, rounding

Coordinates of the fixed point: �0�8831� 0�8810�
Control vector g: 0�4352� 0�4656�; Jacobian eigenvalues: 	1�9221, 	0�0315
Stable direction: 0�1156� 0�9933�; Unstable direction: 0�8829�	0�4696�
Possibilities of control: successful

2. fixed point representation, 10-bit precision, rounding
Coordinates of the fixed point: �0�883� 0�881�
Control vector g: 0�350� 0�362�; Jacobian eigenvalues: 	1�899, 	0�021
Stable direction: 0�137� 0�991�; Unstable direction: 0�891�	0�455�
Possibilities of control: often fails

3. fixed point representation, 8-bit precision, rounding
Coordinates of the fixed point: �0�89� 0�89�
Control vector g: 0�0� 0�0�; Jacobian eigenvalues: 0, 0
Stable and unstable directions: Impossible to determine
Possibilities of control: impossible

Comparing the results of computations summarized above we can easily see
that if we are able to achieve an accuracy of two to three decimal digits the cal-
culations are precise enough to ensure proper functioning of the OGY algo-
rithm in the case of the Lozi system. To have some safety margin and robust-
ness in the algorithm the acceptable A/D accuracy cannot be lower than 12 bit
and probably it would be best to apply 16-bit conversion. This kind of accuracy
is nowadays easily available using general purpose A/D converters even at
speeds in the MHz range. Implementing the algorithms, one must consider the
cost of implementation with growing precision and speed requirements, the
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cost grows exponentially. This issue might be a great limitation when it comes
to IC implementations.

34.4.2
Approximate Procedures for Finding Periodic Orbits

Another possible source of problems in the control procedure are errors intro-
duced by algorithms for finding periodic orbits (goals of the control). Using ex-
perimental data we can only find approximations to unstable periodic orbits [1,
18, 27].

Commonly used is a simple technique proposed by Lathrop and Kostelich
[18] for recovering unstable periodic orbits from an experimental time series.
This procedure assumes that we have a series of successive points �xi�,
i � 0� 1� � � � �N on the system trajectory and taking any of these points xm we
search forward for the smallest positive integer k, such that ��xm�k 	 xm�� � �,
where � is the specified accuracy. It is further claimed that the orbit detected in
this manner lies close to the unstable periodic orbit whose period is approxi-
mated by that of the detected sequence. Some new methods have been pro-
posed recently [30] which could possibly improve localization procedures for un-
stable periodic orbits. Particularly interesting are interval arithmetics methods
[9, 16] based on the interval Newton method which enable precise calculation of
periodic orbit’s position for systems with known mathematical models.

In laboratory experiments these orbits can either be calculated off-line using a
computer program or they can be localized using hardware window comparator.
In the latter case the choice is a matter of luck! the choice is just by trial-and-er-
ror.

In our experiments [23] we varied � between 0.000001 and 0.001 and fixed the
threshold for distinguishing between orbits at 0.001.

34.4.3
Effects of Time Delays

Several elements in the control loop may introduce time delays that can be det-
rimental to the functioning of the OGY method. Although all calculations may
be done off-line, two steps are of paramount importance:
1. detection of the moment when the trajectory passes the chosen Poincaré sec-

tion and
2. determination of the moment at which the control signal should be applied

(close neighborhood of chosen orbit).

When these two steps are carried out by a computer with a data acquisition
card, at least a few interrupts (and therefore a time delay) must be generated in
order to detect the Poincaré section, take the decision of being in the right
neighborhood, and to send the correct control signal.
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Most experiments with OGY control of electronic circuits have been able to
achieve control when the systems were running in the 10–100 Hz range. We
found out that for higher frequency systems time delays become a crucial point
in the whole procedure. The failure of control was mainly due to the late arrival
of the control pulse – the system was being controlled at a wrong point in state
space where the formulas used for calculations were probably no longer valid;
trajectory was already far away from the section plane when the control pulse
arrived.

To compensate for some of the delays, we have proposed a hardware solution
for a detector of the Poincaré section and vicinity detector. Block diagrams of
these two pieces of equipment are shown in Figs. 34.2 and 34.3. The Poincaré
section system here uses all (three in our application) state variables to simplify
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detection. To implement this function using just one variable, delay coordinates
must be introduced – realization in hardware would become much more com-
plicated in this case if possible at all (one could think of calculating suitable
time delay by a computer algorithm and saving the necessary time delayed sam-
ples in special-purpose registers).

34.5
Occasional Proportional Feedback (Hunt’s) Controller

The occasional proportional feedback (OPF) technique [14, 26] can be considered
as a one-dimensional version of the OGY method.

Let us describe the action of the OPF controller for the case of stabilizing a
fixed point of the Poincaré map.

In the OPF method, the control signal is computed using only one variable,
for example �1:

p��� � p0 � c��1 	 �F�� �34�6�

Adjusting the values of c for which �F is a stable fixed point of the system
� C� ���� p���� ensures proper functioning of the algorithm. In [10] we have de-
scribed some theoretical results concerning the choice of coefficients and possi-
bilities for successful OPF control. The best results can be obtained if the un-
stable eigenvector is parallel to the coordinate which is used to compute the
control signal, and the possibility of control using the OPF technique depends
on the form of the linear approximation of the system’s behavior in the neigh-
borhood of the periodic orbit.

A schematic of Hunt’s implementation of the OPF control method is shown
in Fig. 34.4. The window comparator, taking the input waveform, gives a logical
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high when the input waveform is inside the window. This is then ANDed with
the delayed output from the external frequency generator. This logical signal
drives the timing block which triggers the sample-and-hold and then the analog
gate. The output from the gate, which represents the error signal at the sam-
pling instant, is amplified and applied to the interface circuit which transforms
the control pulse into a perturbation of the parameter p. The frequency, delay,
control pulse width, window position, width and gain are all adjustable – they
fix the position of the section plane, values of p0 and c. The interface circuit de-
pends explicitly on the chaotic system under control.

One of the major advantages of Hunt’s controller over OGY is that the control
law depends on just one variable and does not require any complicated calcula-
tions (as was necessary in the case of the OGY scheme) in order to generate the
required control signal. All the operations can easily be performed by hardware
function blocks.

The disadvantage of the OPF method is that there is no systematic method
for finding the embedded unstable orbits (unlike OGY). For comparison with
the OGY method let us summarize the main features of the OPF controller:
� it uses just one system variable as input;
� uses the peaks of this system variable to generate a one-dimensional map;
� a window around a fixed level sets the region where control is applied;
� peaks are located by means of a synchronizing generator, the frequency of

which has to be adjusted by either a trial-and-error procedure or by consult-
ing, for example, measured power spectra of the signals.
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34.5.1
Improved Chaos Controller for Autonomous Circuits

Recently we have developed an improved chaos controller modifying the struc-
ture proposed by Hunt [10]. The modified controller uses Hunt’s method with-
out the need for an external synchronizing oscillator. Its circuit diagram is
shown in Fig. 34.5. In the modified controller, the derivative of the input signal
generates a pulse when it passes through zero. This pulse replaces the driving
pulses from the external oscillator as the “synch” pulse for our Poincaré map.
This obviates the need for the external generator and so makes the controller
simpler and cheaper to build.

The variable level window comparator is implemented using a window com-
parator around zero and a variable level shift. Two comparators and three logic
gates form the window around zero. The synchronizing generator used in
Hunt’s controller is replaced by an inverting differentiator and a comparator. A
rising edge in the comparator’s output corresponds to a peak in the input wave-
form. We use the rising edge of the comparator’s output to trigger a monostable
flip–flop. The falling edge of this monostable’s pulse triggers another mono-
stable, giving a delay. We use the monostable’s output pulse to indicate that the
input waveform peaked a fixed time earlier. If this pulse arrives when the out-
put from the window comparator is high then a monostable is triggered. The
output of this monostable triggers a sample-and-hold on its rising edge which
samples the error voltage; on its falling edge, it triggers another monostable.
This final monostable generates a pulse which opens the analog gate for a spe-
cific time (the control pulse width). The control pulse is then applied to the in-
terface circuit, which amplifies the control signal and converts it into a pertur-
bation of one of the system parameters, as required.
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The modified controller offers, in our opinion, the simplest and most reliable
implementation for chaos control. It has been tested successfully on Chua’s cir-
cuit and the Colpitts oscillator working in the kHz range [10] enabling stabiliza-
tion of unstable periodic orbits up to order 8. One can easily visualize adapting
the scheme for controlling very fast systems. The controller implementation is
cheap, simple and easy to build. IC implementation remains one of the possible
future issues.
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34.6
Experimental Chaos Control Systems

Any control method cannot be accepted as successful if computer simulation ex-
periments are not followed by further laboratory tests and physical implementa-
tions. Only very few results of such tests are known – among the exceptions
are: control of a green light laser [26], control of a magnetoelastic ribbon [5],
and a few other examples.

34.6.1
Control of a Magnetoelastic Ribbon

Already in 1990 soon after the publication of the OGY method scientists from
the Applied Chaos Laboratory at GeorgiaTech in Atlanta directed by Professor
William Ditto reported on one of the first laboratory-scale successful real imple-
mentation of a chaos-control system [5]. The experimental system (see Fig. 34.7)
consisted of a gravitationally buckled magnetoelastic ribbon fixed in a vertical
position (clamped at the bottom end) and placed in a time-varying magnetic
field having H � H0 �H1 cos�2�ft�. A sensor measured the curvature of the rib-
bon near its base – voltage measured by this sensor was further converted to
digital form and transferred to the computer carrying on the control task. H0

has been chosen as the control parameter. Using OGY technique principles H0

perturbations could be calculated to successfully stabilize the low-order oscilla-
tions of the beam out of its originally tuned chaotic behavior. Ditto, Rauseo,
and Spano demonstrated in this experiment that chaos could be controlled in a
real physical system using OGY method. It should be mentioned however that
the control setup was highly susceptible to noise and disturbances. To ensure
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proper functioning compensation of the Earth’s magnetic field had to be placed
using three pairs of mutually orthogonal Helmholtz coils. To increase the preci-
sion temperature stabilization was also very important. Successful implementa-
tion of chaos control in this particular case was possible because of very slow
oscillation frequencies of the system. The eigenfrequency of the ribbon was in
the range of 1 Hz !! In such a case all effects of time delays were negligible and
also computer calculations were fast enough for the continuous robust opera-
tion of the system at a low-order stabilized orbit.

34.6.2
Control of a Chaotic Laser

Roy and his co-workers [26] reported on very interesting results obtained in ex-
perimental control of chaotic lasers. The goal of control was here stabilization
of the chaotically varying light intensity. Roy adopted the OPF technique and
was able to achieve 15-fold increase in power output achieving at the same time
stable operation. Control was performed on a fast timescale of a few microse-
conds. Thus OGY method requiring numerical computations could not be ap-
plied. As indicated in the schematic diagram (Fig. 34.8) the choice of a suitable
goal of control can be achieved by adjusting three parameters: the synchroniz-
ing frequency, the wave-form offset, and the width of the control signal. Several
periodic orbits, e.g., period-1, period-4, or period-9 could be stabilized out of the
chaotic regime. It should be stressed here that the laser itself is a higher dimen-
sional system and that successful control did not require any knowledge of its
model – the control task is performed on the basis of measured signal (from
the photodiode) and all “computations” are done in a fast analog way. It seems
that OPF controller is the only implementation alternative here.

Chaotic lasers are one of the deeply investigated chaos-control objects – many
research groups worldwide work on stabilization of chaotic laser using various
techniques. Interested readers should consult [33].
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34.6.3
Chaos-Based Arrhythmia Suppression and Defibrillation

One of the most spectacular applications of chaos-control techniques is arrhyth-
mia removal or defibrillation of the heart beat. Starting from many numerical
experiments concerning control of arrhythmias on heart models research and
exploitation of real measured signals [11, 12] in this domain has reached a stage
where successful approaches have been patented [31, 32] and clinical tests are
under way [7]. In the clinical setup consisted of a quadrupolar electrode catheter
which was inserted via the femoral vain (FV) of the patient under test and posi-
tioned in the lateral right atrium (RA). During atrial fibrillation a pair of elec-
trodes measured electrical activity signals which were digitized and processed in
the computer. Measured time series was further used to calculate the unstable
fixed point and its stable and unstable manifolds and calculate the desired con-
trol pulses. These pulses via the second pair of electrodes were applied to the at-
rium to control the pumping motion towards stable periodic state. The sche-
matic of this setup is shown in Fig. 34.9. The authors [7] report on results of
clinical tests performed on 25 patients. 36% consistent results of control were
obtained [40], and in 24% of cases control was unsuccessful. Chaos control
offers a promising alternative for quenching arrhythmia and especially fibrilla-
tion [34].
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34.7
Conclusions

In classical linear and nonlinear control problems one did not exploit existence
of unstable periodic orbits, sensitive dependence on initial conditions or ergo-
dicity of trajectories on the attractor. Chaos control techniques clearly rely on
these properties. In chaos control, a target for tracking is not limited to constant
vectors in the state space: it often is an unstable periodic orbit of the given sys-
tem. This generally requires only tiny control to arrive at, but technically can be
quite difficult due to the instability of the target. Moreover, in chaos control the
terminal time is infinite to be meaningful and practical, because most nonlinear
dynamical behaviors such as equilibrium states, limit cycles, attractors, and
chaos are asymptotic properties. These are theoretical limitations for chaos con-
trol. There exist also several limitations imposed by electronic implementation
of chaos controllers. These limitations are imposed by the speed of the consid-
ered chaotic system (highest frequency), accuracy of the measurements, errors
introduced by quantization and signal processing algorithms and calculations.

Taking into account these limitations when looking for an implementation of
a controller we must make a trade-off between high speed (analog implementa-
tion without possibilities of pre-specification of the goal, and a trial-and-error
procedure for achieving the desired behavior) and precise knowledge of the or-
bit which is interesting as a goal of the control.

The modified OPF controller works well in many high-frequency systems,
eliminating chaos but without prior knowledge of attainable orbits.

The OGY method is very attractive when accurate knowledge of the goal is
needed (stabilized orbits offer some optimal type of performance [13]) but it is
possible to implement it in very low frequency (slow) systems only.

In this study we did not consider the actuator design problem which depend-
ing on real application might pose specific problems – e.g., application of defi-
brillating signal to the heart might be of paramount importance far above any
of the controller and algorithm design problems.

There are two interesting areas of further research and developments:
1. Hardware implementation of goal (unstable orbit) detection for use with the

modifications of analog OPF method
2. development of specific hardware for use with OGY method
3. implementation of both methods in high-order (possibly hyper-chaotic) systems
4. IC implementations of controllers.

Finally, we should mention that there exist other control schemes, e.g., delayed-
feedback method introduced by Pyragas [19] where certainly the controller is
the cheapest possible (delay line which in some cases might be even a piece of
cable!) – there is however no tuning possibilities whatsoever when it comes to
real implementations. In our opinion such controllers might also find particular
applications but are of little versatility and for this reason we did not look closer
into them.
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35.1
Introduction

The chapter describes some of the nonlinear dynamic phenomena that one can
observe in modern power electronic systems. The unusual character and large
variety of these phenomena stem from the modification of the normal local and
global bifurcations by the piecewise-smooth structure of the pulse-width modu-
lated control systems and from the interplay of these bifurcations with various
forms of border-collision bifurcations. We perform a relatively detailed analysis
of two DC/DC converters with different types of pulse-width modulated control.
The aim is to examine the nature of some of the main bifurcations and to de-
scribe the associated transitions to chaos. Even though engineering practice to-
day may not live up to this standard, we consider analyses of this form to be es-
sential elements of the design of pulse-width modulated control systems.

Power electronic systems are used to convert electrical energy from one form
into another. To ensure a effective and adjustable conversion, the active devices
(thyristors, power transistors, etc.) operate in a switching mode in combination
with passive components such as power diodes, inductors, capacitors, and trans-
formers. By using relatively high switching frequencies, one can reduce the size
and mass of most of the passive components and thereby lower both the costs
and the weights of the systems considerably.

Power electronic systems with switching operation are widely used both in
the industry and in private households [7]. Examples are domestic light dim-
mers, switched-mode power supplies in electronic appliances and personal com-
puters, heating and lighting controls, and electronic ballasts for fluorescent
lamps. Industrial applications include induction heating, battery chargers, trac-
tion regulators in locomotives, solid-state relays and circuit breakers, offline DC
power supplies, uninterruptible power supplies, conditioning for alternative en-
ergy sources, automobile electronics, and electric vehicles [9, 18, 19].

Since electrical sources can be either DC (direct current) or AC (alternating
current) there are four basic types of converters: AC/DC, DC/AC, AC/AC, and
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DC/DC. DC/DC converters are among the most commonly used circuits in
power electronics.

The control of DC/DC converters usually applies one of the two approaches,
namely voltage-mode control or current-mode control [14, 19, 28]. In voltage-mode
control, the output voltage is compared with a reference to generate a control
signal that drives the pulse-width modulator via some typical feedback compen-
sation. For current-mode control, an inner current loop is used in addition to
the voltage feedback loop. The aim of this loop is to force the peak inductor cur-
rent to follow a reference signal which is derived from the output voltage feed-
back loop. The advantage of using current-mode control is often a faster re-
sponse [14].

Operation of the power electronic converters is characterized by a cyclic
switching of the circuit topology. The simplest version of such a converter con-
tains two switches that connect or disconnect the voltage supplies to the load
via an LC filter.

The nonlinearity of the system is directly related to the switching processes
associated with this type of pulse-width modulation.

As mentioned above, power electronic circuits can display an unusual variety
of nonlinear dynamic phenomena. These phenomena include multiple attrac-
tors, abrupt transitions associated with modified period doubling, saddle-node
and torus bifurcations, the interplay between classical bifurcations and border-
collision bifurcations, multiple-choice bifurcations, and new types of direct tran-
sition to chaos and nonsmooth torus destruction.

Pulse-width modulated control systems can be described by piecewise-smooth
dynamical systems. The phase trajectories of such systems are “sewed” together
from separate smooth parts, and one can in general distinguish between two
types of bifurcations of periodic solutions.

The first type is similar to the bifurcations we know for smooth dynamical
systems. These include the local bifurcations (saddle-node, pitchfork, period
doubling, and Neimark-Sacker bifurcations), where a periodic orbit loses its sta-
bility as one of its multipliers (or a pair of multipliers) crosses out through the
unit circle, and the global bifurcations (homo- and heteroclinic bifurcations)
where a connection is established from a saddle and back to the same solution
(or another saddle) along one of its stable directions (see, for example [20]).
However, the bifurcation phenomena are often modified by the non-smooth
character of the system. Period-doubling cascades may be truncated, providing
for a transition to chaos after a finite number of period doublings. And, particu-
larly for piecewise-linear systems, the period doubling and torus bifurcations
may be abrupt such that, for example, the quasiperiodic attractor arises with a
finite amplitude after a torus birth bifurcation.

The second type of bifurcations, referred to as border-collision bifurcations [12,
15, 16, 25–27] are connected with situations where one of the parts of the peri-
odic trajectory becomes tangent to a sewing surface, i.e., a surface that divides
the phase space into domains of different dynamics. Within each such domain
the system is smooth, but the equations of motion change abruptly from one
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domain to the next. This type of bifurcation, which typically involves abrupt jumps
in the multipliers of the orbit, cannot occur in smooth dynamical systems.

A simple type of border-collision bifurcation consists in the continuous trans-
formation of a solution from one type into another with preservation of the cy-
cle period. Here, the solution type is determined by the number of sections
from which the cycle is composed (or “sewed up” in the original Russian litera-
ture [12]). However, more complicated phenomena are also possible, including
new types of direct transitions to chaos and the merging or disappearance of so-
lutions of different types [4–6, 10, 30, 33, 34], transitions from one stable cycle
to another through period doubling, -tripling, -quadrupling, etc., and the appear-
ance of a denumerable set of unstable cycles together with a stable cycle. Bor-
der-collision related bifurcations also include corner collision, sliding and graz-
ing bifurcations [11, 13, 24]. In recent works [29, 32] we have shown that bor-
der-collision bifurcations can lead to the birth of ergodic or resonant tori. More-
over, we have demonstrated that a special type of border-collision bifurcations,
in which a stable periodic orbit arises simultaneously with a quasiperiodic or a
phase-locked invariant torus, can occur in piecewise-smooth systems [29].

The chapter is organized as follows. In Section 35.2 we describe a DC/DC
converter with pulse-width modulated control. The behavior of such a converter
may be represented by a two-dimensional piecewise-smooth set of nonautono-
mous differential equations. We reduce the investigation of this system in
studying the dynamics of a two-dimensional piecewise-smooth mapping. Due to
its simplicity, this mapping allows us to perform detailed analytical and numeri-
cal bifurcation analyses.

In Section 35.3 we present the results of these analyses and study the possi-
ble transitions to chaos for the two-dimensional map. We show that the pulse-
width modulated control systems can display situations where several stable per-
iodic motions with different dynamic characteristics coexist for a wide range of
parameters (see also [8]). These cycles arise in hard transitions, for example
through saddle-node or border-collision bifurcations and, when changing pa-
rameters, they can undergo either a finite or an infinite sequence of period-dou-
bling bifurcations leading to a transition to chaos.

We also give examples of complex dynamical behaviors at border-collision bi-
furcations such as the transition from one stable cycle to another through peri-
od doubling, the sudden jump from a periodic solution to chaos, and the direct
transition from one stable periodic orbit to another with multiple periods.

Along with the period-doubling route and various forms of intermittency tran-
sitions, the formation and subsequent destruction of a two-dimensional torus is
one of the classic routes to chaos in dissipative systems. Before breakdown, the
resonance torus typically loses its smoothness in discrete points through folding
(or winding) of the involved manifolds, and this loss of smoothness then
spreads to the entire torus surface through local (e.g., saddle-node) or global
(i.e., homoclinic or heteroclinic) bifurcations.

The basic theorem for the destruction of a two-dimensional torus in smooth
dynamical systems was proved by Afraimovich and Shilnikov [1], and three possi-
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ble routes for the appearance of chaotic dynamics were described. The generic
character of these processes has since been confirmed numerically as well as ex-
perimentally for wide classes of both flow and discrete time systems [2, 3, 17,
20, 22, 35]. However, the transition to chaos through torus destruction in piece-
wise-smooth systems can display certain modifications of the Afraimovich-Shil-
nikov scenarios.

The purpose of the second part of this chapter is to investigate some of the
mechanisms involved in torus birth and torus destruction in piecewise-smooth
dynamical systems.

As a specific example we used a two-dimensional piecewise-smooth map de-
scribing the behavior of a DC/DC converter with two-level pulse-width modu-
lated control. We first describe a border-collision bifurcation that can lead to the
appearance of quasiperiodicity. We demonstrate how a two-dimensional torus
can arise from a periodic orbit through a bifurcation in which two complex-con-
jugate Floquet multipliers jump abruptly from the inside to the outside of the
unit circle. The torus may be ergodic (quasiperiodic dynamics) or resonant
(phase-locked dynamics). In both cases, however, the diameter of the torus de-
velops approximately linearly with the distance to the bifurcation point as op-
posed to the characteristic parabolic form of the well-known Neimark-Sacker bi-
furcation. Next, we consider the transition between quasiperiodic and phase-
locked invariant tori and show that the involved mechanisms differ distinctly
from the mechanisms known for smooth systems. Finally, we discuss how the
torus is destroyed through a homoclinic bifurcation. This analysis involves the
use of numerical methods that can follow the stable and unstable manifolds for
the various modes.

35.2
DC/DC Converter with Pulse-Width Modulated Control

Let us consider a DC/DC buck converter with pulse-width modulation [18, 21]
as an example of an electronic control system that can exhibit both a period-
doubling route to chaos through smooth bifurcations and a variety of interest-
ing border-collision bifurcations.

Figure 35.1 (a) shows a schematic diagram of the considered DC/DC power
converter. The switch S may be realized, for instance, by means of metal-oxide-
semiconductor field-effect transistors (mosfets) that can operate with more than
50,000 switchings per second. The switching of the mosfet is controlled by a
feedback logic known as a pulse-width modulation of the second kind. As the
switch S opens and closes, the voltage applied to the LC filter varies between
zero and the input voltage. The LC filter smoothens the signal to be applied to
the load resistor RL into a relatively constant voltage of a value lower than that
of the input voltage. It is usually the object to regulate the mean output voltage
to a prescribed value. This can be achieved by controlling the switching process
through a feedback mechanism. A simple method, called voltage-mode control,
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implies that a voltage proportional to the output voltage is compared with a ref-
erence voltage Vref to generate a control voltage vcon. This control voltage is
compared with a sawtooth waveform Vramp to generate the switching signal KF

(Fig. 35.1 (b)). The switch is turned on at the beginning of every ramp period
and is turned off when the ramp voltage exceeds the current value of the con-
trol voltage vcon. The behavior of such a converter is described by a set of two
coupled ordinary differential equations with discontinuous right-hand sides:

dX
dt
� AX � B � KF��� �35�1�

Here

X � x1

x2

! "
� A � 	 R

L 	 1
L

1
C 	 1

CRL

� �
� B �

E0
L

0

! "

with

��t�X� � vcon 	 Vramp� vcon � � Vref 	 
x2� ��Vramp � U0 t�a	 E1�t�a�� ��

The function E1�t�a� is defined as the integer part of its argument. x1 and x2

represent, respectively, the current in the inductance coil and the voltage over
the capacitor of the LC filter. L and C are the inductance and the capacity of the
LC filter, and R is a resistor characterizing the dissipation in the filter induc-
tance coil and the converter. RL is the load resistance, and E0 is the input volt-
age. � is the amplification constant of the corrector, Vref is the reference voltage,
and 
 is the transfer constant of the voltage sensor. U0 determines the ampli-
tude of the ramp signal Vramp and a is the period of this signal.
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a)

b)

Fig. 35.1 Pulse-width modulated controlled DC/DC converter.
(a) Coupling diagram. (b) Time diagrams illustrating the law
of control pulse generation. The switch is turned on at the
beginning of each ramp period and is turned off when the
ramp voltage exceeds the value of the control signal vcon.



The switching function KF takes the values of 1 or 0 depending on �. When
KF � 1 the switch S is turned on (the diode D is nonconducting), and if KF � 0
then the switch is turned off (the diode D is conducting). As mentioned above,
the switch is turned on at the beginning t � �k	 1�a, k � 1� 2� � � � of each ramp
period.

The switching function KF during the kth ramp period �k	 1� a � t � ka,
k � 1� 2� � � � is determined by

KF � 1� �k	 1� a � t � tk�
0� tk � t � ka�

�

Here, tk denotes the instant of time at which the switch is turned off during the
kth ramp period. The value of the function � at the beginning of the ramp peri-
od is �k	1 � �

�
Vref 	 
x2��k	 1�a��	U0.

If �k	1 % 0, then tk � �k	 1�a. In this case the duration of the pulse
�k � tk 	 �k	 1�a in the kth ramp cycle is equal to 0. When �k	1 � 0 and the
equation � � 0 has a solution, then tk is the smallest root of the equation

��t�X� � �
�
Vref 	 
x2�t�

�	U0
�
t�a	 k� 1

� � 0� �k	 1�a � t � ka�

Finally, if ��t�X�t�� � 0 in the whole ramp period, then the pulse duration �k is
equal to the time period a. These different conditions are illustrated in Fig.
35.1 (b) for different time intervals.

In the numerical investigations of the DC/DC converter we have assumed the
following parameter values: R � 13�5 �, L � 0�11 H, C � 10	6 F, RL � 126 �,
U0 � 5 V, Vref � 2�5 V, 
 � 0�5 and a � 1�5� 10	4 s. These parameter values
correspond to the values one can find in typical engineering applications [7, 18].
The amplification and transfer constants of the corrector � � 0 and E0 (in V)
are considered as control parameters.

With the assumed parameter values, the eigenvalues �1 and �2 of the matrix
A:

�1� �2 � 	 1
2

R
L
� 1

CRL

 �
#

��������������������������������������������������������������
1
4

R
L
� 1

CRL

 �2

	 1
LC

1� R
RL

 �5

are real and negative, and the filter circuit does not give rise to any oscillatory
response.

To simplify the analysis let us pass from the variables x1, x2 to the dimen-
sionless variables w1, w2 through the affine transformation

x1 � E0�L
�1 	 �2

�2 � R�L
�1

w1 	 �1 � R�L
�2

w2

 �
�

x2 � E0��LC�
�2 	 �1

w1

�1
	 w2

�2

 �
�

�35�2�
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Substituting (35.2) into Eq. (35.1) and solving with respect to the derivatives we
obtain [8, 30]

dw1

dt
� �1

�
w1 	 KF���

�
�

dw2

dt
� �2

�
w2 	 KF���

�
� �35�3�

By virtue of the linearity of the electronic circuit between the switching events,
the continuous-time system (35.3) may be reduced to the piecewise-smooth two-
dimensional mapping [8, 30]

w1k � ea�1�w1�k	1� 	 1� � ea�1�1	zk��

w2k � ea�2�w2�k	1� 	 1� � ea�2�1	zk��
k � 1� 2� � � �

�	
 �35�4�

The relative pulse duration zk � tk�a	 k� 1 within the time interval
�k	 1� a � t � ka is determined by [8, 30]

zk �
0� �(0) % 0,
z�� ��0� � 0� �(1) � 0,
1� ��0� � 0� �(1) � 0.

�	

Here z� is the smallest root of the equation

��z� � 0� 0 � z � 1

with

��z� � LC�1��1 	 �2�
�
E0

� ��t�X�t��

� 	�1	 w2�k	1��ea�2z 	 �1	 w1�k	1��ea�1z 	 Q
�

z� q	 	� 1�

z � t�a	 k� 1� Q � U0�		 1��RL � R�

E0RL

�

	 � �1��2 measures the ratio of the two real and negative eigenvalues, and
q � QVref�U0 is an expression for the reference voltage Vref .

If the eigenvalues �1, �2 are complex: �1 � �� j, �2 � �	 j, the equations
for the dimensionless variables w1, w2 take the form:

dw1

dt
� �w1 	 w2 	 ��	 �KF���� dw2

dt
� w1 � �w2 	 ��� �KF���

with

� � 	w1 	 w2 � q	Q
�

�
t�a	 E1�t�a��� Q � U0�1	 	��RL � R�


E0RL
� 	 � �� 

�	 
�
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The period T of a periodic mode is an integer multiple of the ramp cycle, i.e.
T � ma, where m � 1� 2� � � �. We will refer to this type of operation as a period-
m cycle.

35.3
Bifurcation Analysis for the DC/DC Converter with One-Level Control

Figure 35.2 shows the domains of existence for different dynamical modes with-
in the parameter plane ���E0� of the dynamical system (35.4). Here k�j are
simply connected domains such that for any point P � k�j, P � ���E0�, there
exists a stable cycle with the period k that varies continuously with the parame-
ters. The index j is introduced to distinguish domains with the same k. Normal
operation takes place in the parameter region 1�1

The domains 2i	1 �1, i � 1� 2� � � � are separated by period-doubling bifurcation
curves. Transverse to these curves are curves along which accumulating period-
doubling cascades occur. Figure 35.3 (a) reproduces the bifurcation diagram ob-
tained for the section

)���E0� 
 30 % � % 100�E0 � 9�. At the point � � ��,
�� � 47�7126 the maximum multiplier of the fixed point (in absolute value)
crosses the unit circle through –1 and a period-2 cycle softly arises (Fig.
35.3 (b)). With further increase of �, a period-doubling sequence leading to chao-
tic dynamics occurs. Besides the period-doubling route to chaos for the period-1
cycle, this diagram also illustrates the formation of a period-3 subharmonic os-
cillation in a saddle-node bifurcation at � � 2��, 2�� � 60�142. Increasing the con-
trol parameter � leads to an accumulating period-doubling sequence ending
with a transition to chaotic dynamics.
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Fig. 35.2 Chart of dynamical modes in the parameter plane
��� E0�. The regions k�j are regions of existence for k-periodic
cycles, the second index serving to distinguish between differ-
ent cycles with the same periodicity. The white regions
Chaos�1 and Chaos�2 denote regions of chaotic dynamics.



The boundaries of some domains k�j are more complicated and typically in-
clude regions where border-collision bifurcations of different types occur, includ-
ing bifurcations leading to a simple change of the solution type, fold and peri-
od-doubling border-collision bifurcations as well as more complex forms of bor-
der-collision bifurcations [30, 33]. If the parameters are varied within such do-
mains, chaotic dynamics can arise via different sequences (usually finite) that
include both smooth and border-collision bifurcations.

An example of such transitions is shown in Fig. 35.4. One can see that when
the parameter � increases, the fixed point first undergoes a smooth period-dou-
bling bifurcation: the maximum multiplier (in absolute value) of the fixed point
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a) b)

Fig. 35.3 (a) Bifurcation diagram showing
the transition to chaos through an accumu-
lating period-doubling cascade. (b) Multi-
plier diagram illustrating the period doubling
of the 1-cycle. Full lines show the real (de-
noted by 1) and dotted lines the imaginary

(denoted by 2 and 3) parts of the two multi-
pliers. As � increases, the complex-conjugate
multipliers of the 1-cycle turn real. In the
point � � �� (�� � 47�7126) the maximum
multiplier of the 1-cycle (in absolute value)
crosses through –1.

a) b)

Fig. 35.4 (a) Bifurcation diagram for E0 � 7
and 40 % � % 75 illustrating the transition to
chaos through a finite sequence of smooth
and border-collision bifurcations. When
passing through �� � 56�19 we observe a
period doubling of the 2-cycle via a border-
collision bifurcation. (b) Multiplier diagram
illustrating the period-doubling border-colli-

sion bifurcation for the period-2 cycle. Full
lines show the real (denoted by 1) and
dotted lines the imaginary (denoted by 2
and 3) parts of the complex conjugate multi-
pliers. As � increases from values � �� to
values � �� the complex multipliers abruptly
become real. The absolute value of one the
real multipliers is greater than unity.



emerges from the unit circuit through 	1. As a result, a period-2 cycle arises
softly from the fixed point, and the fixed point continues to exist as a saddle.

At the bifurcation point � � ��, �� � 56�19, the 2-cycle loses its stability and
transforms into a saddle 2-cycle of another type. The loss of stability for the 2-
cycle is accompanied by the soft appearance of a period-4 cycle. Inspection of
Fig. 35.4 (b) shows how the multipliers of the 2-cycle suddenly jump. When
crossing over the bifurcation point the complex multipliers of the period-2 cycle
abruptly become real, and the stable period-2 focus cycle transforms into a sad-
dle period-2 cycle. With further increase of �, the period of the 4-cycle is again
doubled via a smooth period-doubling bifurcation, but the 8-cycle loses its stabil-
ity through a sudden transition to chaos (see Fig. 35.4 (a)).

It is also possible to find examples of a transition to chaos through a finite se-
quence of border-collision bifurcations. Such a transition is observed at the
boundaries of the domain 6�2. Figure 35.5 displays the results of a bifurcation
analysis calculated in the section

)���E0� 
 24 % � % 30�E0 � 11�8�. Figure
35.5 (a) is the bifurcation diagram and Fig. 35.5 (b) is the multiplier diagram for
the period-3 and period-6 cycles. To better illustrate the bifurcation transitions
we do not include all the branches of the period-3, but only a magnified vision
of one of them. As one can see from the diagram, two border-collision bifurca-
tions precede the birth of the chaotic attractor.

As the parameter � decreases from values � �� to values � ��, the stable peri-
od-3 cycle transforms into a stable period-6 cycle. However, the transition to the
period-6 cycle is associated with the complete disappearance of the period-3 cy-
cle. A detailed analysis of the bifurcation behavior in Fig. 35.5 (a) reveals that
the transition from the period-3 cycle to the period-6 cycle occurs continuously
as in normal border-collision period-doubling bifurcations. When the parameter
� increases, the period-6 cycle collides with the borderline w1 	 	w2 	 Q

�
� q � 0

and disappears as it merges with the period-3 cycle. Similarly, when � decreases,
the period-3 cycle in the point � � ��, �� � 28�18 disappears in consequence of
a violation of the conditions for its existence.
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a) b)

Fig. 35.5 (a) Bifurcation diagram illustrating a direct transi-
tion from a stable period-3 cycle to a period-6 cycle as � is
reduced through the bifurcation point at ��. (b) Variation of
the cycle multipliers. Rather than being destabilized, the peri-
od-3 cycle disappears altogether in this bifurcation.



When crossing the next bifurcation point with decreasing �, the stable 6-cycle
changes its type and becomes unstable in a border-collision bifurcation where a
maximum (in module) multiplier jumps abruptly from the inside to the outside
of the unit circle. As one can see from Fig. 35.5 (a) this loss of stability, when
the period-6 cycle collides with the borderline w1 	 	w2 � q � 0, leads to the ap-
pearance of a chaotic attractor.

35.4
DC/DC Converter with Two-Level Control

As an example of a piecewise-smooth dynamical system that displays a quasi-
periodic route to chaos we shall consider a DC/DC converter with multilevel
pulse-width modulated control [18, 21].

Converters of this type have recently attracted significant interest in the power
industry, and they have been used for many different types of power conversion
in high-power applications. Multilevel converters contain two or more voltage
levels, and a desired output voltage can, therefore, be synthesized with less dis-
tortion and higher efficiency at lower switching frequencies and with lower volt-
age devices [18, 21, 23].

Figure 35.6 (a) shows the coupling diagram for a converter with two voltage
levels [18]. The control system is a variant of the scheme shown in Fig. 35.1 (a),
applicable when two or more input voltage levels are available. The scheme is
implemented by using two ramp signals – V �1�

ramp between 0 and U0�2, and
V �2�

ramp between U0�2 and U0 – both driven by the same clock.
At the beginning of each ramp cycle the sample-and-hold circuit remembers

the value of the corrector output signal ��X� and holds this value during the
whole ramp cycle. In Fig. 35.6 (b) the output voltage of the sample-and-hold cir-
cuit (the control voltage) is denoted as vcon.

If the value of vcon is between 0 and U0�2 (zone 1), it is compared with V �1�
ramp

to generate a pulse-width modulated signal K�1�F that drives the switch S1. If vcon

is between U0�2 and U0 (zone 2), it is compared with V �2�
ramp to generate the sig-

nal K�2�F which drives the second switch S2. If vcon � U0 then the duration of
both the pulses K�1�F and K�2�F is equal to the ramp signal period a. In the case
vcon � 0, the duration of both pulses is equal to 0. The converter output voltage
vout is synthesized from two voltage levels [18, 21], i.e., vout � �K�1�F � K�2�F �E0�2.

The equations of motion for the multilevel converter take a form similar to
(35.1). The difference between the two converters is associated only with the al-
gorithm to form the switching function KF:

KF�t�X� �
�N

s�1

K�s�F �

K�s�F � 1
2N
1� sign

�
�s

��� �s�t�X� � vcon 	 V �s�
ramp� vcon � ��X�����

��X� � �
�
Vref 	 
x2

�
�V �s�

ramp �
U0

N

�
s	 1� t�a	 E1�t�a���
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Here, � � aE1�t�a� � �k	 1�a, k � 1� 2� � � � is the discrete time variable. N � 2
is the number of voltage levels. The function sign equals to �1 or 	1, depend-
ing on the sign of �. The switching function KF reacts to changes in the sign of
the differences between the error signal vcon and any of the two ramp functions
V �1�

ramp or V �2�
ramp. We will again use the input voltage E0 and the amplification

constant of the corrector � as control parameter.
Similarly to the procedure used in Section 35.2, we can pass from the vari-

ables x1� x2 to the variables w1�w2 via the affine transformation (35.2).
The map then takes the form [30, 31]

w1k � ea�1 w1�k	1� 	 sk
N

� �� 1
N sk 	 1� ea�1�1	zk�� �

�

w2k � ea�2 w2�k	1� 	 sk
N

� �� 1
N sk 	 1� ea�2�1	zk�� �

�
k � 1� 2� � � � �

�	
 �35�5�

where the zone number sk and the relative pulse duration zk within the time in-
terval �k	 1� a � tk � ka are determined by

sk � 1� �k	1 % Q/(N�),
N� �k	1 � Q/(N�).

�
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a)

b)

Fig. 35.6 (a) Schematic diagram of the DC–DC buck conver-
ter with two-level control. Here S/H is the sample and hold
unit. (b) Generation of the switching signals S1 and S2 in a
two-level controlled buck converter. This control is based on
pulse-width modulation of the first kind [18]. a denotes the
period of the ramp function.



zk �
0� �k	1 � 0,
N�
Q �k	1 	 sk � 1� 0 %�k	1 % Q/�,
1� �k	1 � Q/�

�	

with the function

�k	1 � w1�k	1� 	 	w2�k	1� � q�

35.5
Bifurcation Analysis for the DC/DC Converter with Two-Level Control

Figure 35.7 presents a chart of the dynamical modes in the plane of control pa-
rameters ���E0�. The domain of stability 1�1 for the fixed point is bounded to
the right by the curve N� of a subcritical Neimark-Sacker bifurcation and from
above by the curve NC

� of the border-collision bifurcation for the birth of a
closed invariant torus (or a closed invariant curve for the discrete map). Hence,
the system displays two different mechanisms of torus formation.

The Neimark-Sacker bifurcation curve N� is intersected by the curve NC
� in

the point P� of codimension two. The domains of periodicity situated between
the lines NC

� and N� represent the resonance tongues. Several of the most
prominent tongues are indicated in Fig. 35.7 by their associated rotation num-
bers (1 :4, 1 :5, 1 :6, 2 :9, 2 :11, 3 :13, and 3 :14). The structure of these tongues
was investigated in considerable detail in some of our previous works [30, 34].

Let us now consider the behavior of the dynamical system (35.5) along the
line NC

� .
Figure 35.8 illustrates the birth of a closed invariant curve through the bor-

der-collision bifurcation. Figure 35.8 (a) is the bifurcation diagram, calculated in
the section

)���E0� 
 9�14 % � % 11�14�E0 � 9�98�, and Fig. 35.8 (b) shows the
variation of the absolute value ��� of the complex-conjugate multipliers
�1�2 � �r ! j�j of the fixed point. When crossing the line NC

� with decreasing �

the stable fixed point changes type and becomes an unstable focus in a border-
collision bifurcation where a pair of complex-conjugate multipliers jump out of
the unit circle. We can see how the loss of stability for the fixed point is accom-
panied by the soft appearance of a quasiperiodic orbit.

The range along the line NC
� where a border-collision transition of the form

fixed point � closed invariant curve takes place (to the right of the point P�) is
riddled with intervals where stable and saddle cycles, located on the closed in-
variant curve, arise from the fixed point. Such intervals are everywhere dense
along the line NC

� . Each of the resonance tongues is supported by finite seg-
ments of the border-collision line NC

� . We suppose, however, that the total
length of all intervals on NC

� where a quasiperiodic orbit arises is finite.
Let us first analyse what happens on the segment of the line NC

� , which sup-
ports the 1 :5 tongue, when moving from the domain 1�1 to the resonance ton-
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gue between points P1 and P2 (see Fig. 35.7). Figure 35.9 (a) displays the bifur-
cation diagram for the section

)���E0� 
 10�35 % � % 12�5�E0 � 10�1
*

. The solid
lines in this figure represent the stable 5-cycle and the dashed lines the saddle
cycle. When the fixed point crosses this border, a pair of complex-conjugate
multipliers of the fixed point jumps out of the unit circle. The variation of the
absolute value of the multipliers with � is shown in Fig. 35.9 (b). As a result of
this bifurcation the fixed point becomes an unstable focus and a closed invar-
iant curve softly arises from it. This curve is the union of the saddle 5-cycle, its
unstable manifold, and the stable period-5 focus. Figure 35.9 (c) shows the
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Fig. 35.7 Chart of the dynamical modes in the parameter
plane ��� E0�. 1�1 is the domain of stability for the fixed
point. N� is the Neimark-Sacker bifurcation boundary. NC

� is a
curve of border-collision bifurcation for the birth of a closed
invariant curve.

a) b)

Fig. 35.8 Birth of the quasiperiodic orbit from the fixed point
in a border-collision bifurcation at ��. (a) Bifurcation diagram.
(b) Variation of the absolute value of the multipliers of the
fixed point. With decreasing � a pair of complex-conjugate
multipliers jump from the inside to the outside of the unit
circle at this bifurcation point.



phase portrait within 1 :5 resonance tongue for � � 9�5 and E0 � 11�8. The
closed invariant curve is not smooth in the points of the period-5 focus. In ac-
cordance with the results obtained in our recent publications [29, 32] we thus
conclude that border-collision bifurcations allow for a direct transition from a
stable focus fixed point into a stable period-5 orbit of focus type. This is, ob-
viously, a form of bifurcation that has no analog in smooth systems.

Let us hereafter turn our attention toward the transition from the mode-lock-
ing to quasiperiodicity and vice versa. As an example, Fig. 35.10 presents the re-
sults of the bifurcation analysis for the section

)���E0� 
 8�0 % � % 10�5�
E0 � 11�8

*
. This section intersects the boundaries of the 1 :5 resonance tongue.

The bifurcation diagram with � as parameter is presented in Fig. 35.10 (a) while
the evolution of the multipliers of the stable and unstable cycles is shown in
Fig. 35.10 (b).

The five times iterated map of (35.5) has five stable fixed points and the same
number of saddle fixed points. As we increase or decrease � the stable and sad-
dle fixed points collide and disappear in border-collision fold bifurcations (see
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a) b)

c)

Fig. 35.9 Birth of a stable closed invariant
curve from the fixed point in a border-colli-
sion bifurcation. (a) Bifurcation diagram.
Solid lines mark points of the stable cycle
and dashed lines show the unstable cycle.
(b) Variation of the absolute value of multi-

pliers for the fixed point. (c) Phase portrait
for � � 9�5 and E0 � 11�8. The closed invar-
iant curve is the union of the unstable mani-
folds of the saddle cycle with the points of
the stable cycle.



Fig. 35.10). In the parameter plane, these bifurcation points define two border-
collision fold bifurcation lines l1 and l2. These lines delineate the 1 :5 tongue of
periodicity (see Fig. 35.7), and the two lines are supported by the curve of birth
of the closed invariant curve NC

� in the codimension-two points P1 and P2, re-
spectively.

In each tongue with the rotation number r 
 q (see Fig. 35.7) there is an at-
tracting closed invariant curve which is typically formed by a saddle-node con-
nection. The unstable manifold of the period-q saddle connects to the period-q
node thus forming a closed attracting curve. For other parameter values, the
closed invariant curve may be associated with saddle and focus cycles [20]. With
change of the parameters this closed invariant curve is destroyed through a
homoclinic bifurcation. Therefore, one does not expect the closed invariant
curve to exist all the way out to the curves l1 and l2. To study this problem in
more detail let us consider the chart of dynamical modes shown in Fig. 35.7
and the bifurcation diagram presented in Fig. 35.10. As before, fp denotes the
unstable fixed point, S is the period-5 saddle and F is the period-5 focus pro-
duced in the border-collision bifurcation.

A sequence of typical phase portraits illustrating the main stages of the de-
struction of the invariant closed curve through a homoclinic bifurcation for the
1 :5 tongue are shown in Fig. 35.11. In the initial state (Fig. 35.9 (c)), the system
displays a closed invariant curve that is the union of the unstable manifold of
the saddle cycle of period-5 and the points of the stable and saddle period-5 cy-
cles. As the parameter � increases, stable and unstable manifolds of the saddle
cycle become tangent to each other, and this leads to the destruction of the
torus and the formation of a non-transversal homoclinic orbit. Figure 35.11 (a)–
(c) displays the phase portrait of the map (35.5) immediately after the “first”
homoclinic tangency. With further increase of �, the stable and unstable mani-
folds of the period-5 saddle cycle intersect transversally to form a homoclinic
structure (Fig. 35.11 (d)). The intersection of the two manifolds implies the exis-
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a) b)

Fig. 35.10 (a) Bifurcation diagram for peri-
od-5 mode-locking window. Solid lines mark
the stable cycle and dashed lines show the
unstable cycle. (b) Multiplier diagram for
stable and unstable period-5 cycles. Solid

lines mark the multipliers of the saddle cy-
cle, dashed and dotted lines show the real
and imaginary parts, respectively, for the
complex-conjugate pair of the multipliers of
the stable cycle.



tence of a Smale horseshoe and, as a consequence, of a dense set of long-peri-
odic orbits.

Figure 35.12 shows the phase portrait after the destruction of closed invariant
curve. Here � � 9�9, E0 � 11�8, and the stable period-5 cycle coexists with quasi-
periodic oscillations, the trajectory of which is designated as C in the figure.
The basins of attraction of these states are separated by the stable manifolds of
the 5-saddle. A magnified part of the phase portrait, outlined by the rectangle
in Fig. 35.12 (a), is shown in Fig. 35.12 (b). Hysteretic transitions from periodic
to quasiperiodic oscillations and back are likely to occur in this parameter re-
gion.
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a) b)

c) d)

Fig. 35.11 Destruction of the closed invar-
iant curve through a homoclinic bifurcation.
(a) Phase portrait of the map (35.5) immedi-
ately after the first homoclinic tangency. (b)
is a magnified part of (a), and (c) is a mag-
nified part of (b). The stable manifolds (MS

�

and MS
	) to the saddle point are drawn as

thick lines, and the unstable manifolds (MU
�

and MU
	) as thin lines. F is the stable peri-

od-5 focus. Parameter values are E0 � 11�8
and � � 9�8424. (d) Homoclinic structure at
E0 � 11�8 and � � 9�85.



35.6
Conclusions

The purpose of this chapter was to illustrate some of the complex dynamic phe-
nomena that can arise in modern pulse-width modulated control systems. The
mathematical analysis was presented in sufficient detail to allow engineers to
perform similar analyses in the design of practical control systems.

By virtue of abrupt changes in circuit topology associated with the switching
operation, pulse-width modulated control systems belong to a class of piece-
wise-smooth dynamical systems. This implies that they can exhibit a variety of
complex behaviors that have no analogy in the dynamics of smooth systems.
Many of these behaviors, such as truncated period-doubling cascades, period-tri-
pling, -quadrupling, etc., bifurcations, and various forms of direct transitions to
chaos are already documented in the literature. In the present chapter we dem-
onstrated how a period-3 node, rather than being destabilized into a period-3
saddle, can disappear completely in a period-doubling bifurcation. We also
showed how a focus fixed point can bifurcate directly into a period-5 focus cy-
cle.

Similar phenomena occur in other types of piecewise-smooth systems such
as, for instance, mechanical systems with impacts and stick-slip friction or eco-
nomic and managerial systems with intervention and decision thresholds. The
classic scenarios for torus destruction described by Afraimovich and Shilnikov
may also display modifications for piecewise-smooth systems.

As specific examples, we have considered two DC/DC power electronic con-
verters with pulse-width modulated control. The normal operation mode for this
class of control systems is the regime of period-1 mode operation. Different
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a) b)

Fig. 35.12 Phase portrait of the map after the closed invariant
curve is destroyed. Here the stable period-5 cycle F coexists
with the quasiperiodic orbit C. The basins of attraction of per-
iodic and quasiperiodic orbits are separated by the stable
manifold of the period-5 saddle cycle. E0 � 11�8 and � � 9�9.



types of the feedback correctors may be used in order to obtain a faster re-
sponse and a more accurate control. However, in practice to choose the type of
feedback corrector, the parameters of the converter, and the kind of pulse-width
modulation that can guarantee the desired operating mode with the proper dy-
namic characteristics is a difficult problem. This becomes even more compli-
cated, of course, by the fact that under realistic conditions of operation, smaller
or larger parameter changes will always take place. Such variations often lead to
the loss of stability of the period-1 operating mode and to the appearance of
complex dynamical behaviors, including subharmonic, quasiperiodic, or chaotic
oscillations.

Moreover, pulse modulated-control systems can display situations where sev-
eral stable periodic motions with different dynamic characteristics coexist within
a wide range of parameters. These cycles typically arise in hard transitions, for
example through saddle-node or fold border-collision bifurcations and with
changing parameters they can undergo either a finite or an infinite sequence of
period-doubling bifurcations, leading to the transition to chaos. As a result, we
have parameter domains wherein, alongside with stable cycles, there are coexist-
ing modes of chaotic or a quasiperiodic oscillations (see, e.g., Figs. 35.2 and
35.7). Under such conditions the action of external noise, even of low intensity,
can induce a sudden transition from one dynamic state to another and, in par-
ticular, from regular to chaotic dynamics. Understanding these phenomena is
extremely important for the design, prediction, and control dynamics of larger
power electronic systems.

The first example we considered was a simple DC/DC converter with one-lev-
el pulse-width modulated control. The mathematical model of this converter
was represented as a two-dimensional piecewise-smooth set of nonautonomous
differential equations.

The first step in our investigation was to reduce the system to a two-dimen-
sional piecewise-smooth mapping (35.4). Due to its simplicity, the mapping
(35.4) allowed us to perform a detailed analytical and numerical bifurcation
analysis. We showed, how the pulse-width modulated control system can exhibit
both a period-doubling route to chaos through smooth bifurcations and a variety
of interesting border-collision bifurcations.

Our second example was a DC/DC buck converter with two-level pulse-width
modulated control. This system allowed us to describe scenarios for the transi-
tion to quasiperiodicity through border-collision bifurcations and to examine dif-
ferent examples of torus destruction.

Torus birth bifurcations in piecewise-smooth systems resembles the well-
known Neimark-Sacker bifurcations in several respects. However, rather than
through a continuous crossing of a pair of complex-conjugate multipliers of the
fixed point through the unit circle, the border-collision bifurcation involves a
jump of the multipliers from the inside to the outside of the unit circle. More-
over, by contrast to the parabolic growth in amplitude of the quasiperiodic oscil-
lations characterizing a Neimark-Sacker bifurcation, we observe a linear growth
in amplitude as the system moves away from the bifurcation point. The torus
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may be ergodic or resonant. As mentioned above, we have also observed that
the stable cycle on the resonance torus can be born as a focus rather than as a
node, as it is the case for smooth systems.
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Takashi Hikihara and Kohei Yamasue

36.1
Introduction

The success of controlling chaos by Ott, Grebogi, and Yorke [1] has highly moti-
vated many researchers to develop new methods for stabilizing unstable peri-
odic orbits (UPOs) embedded in chaotic oscillations or vibrations. The time-de-
layed feedback control (TDFC) was proposed as one of the methods for control-
ling chaos in continuous dynamical systems by Pyragas [2]. This chapter focuses
on this method from the viewpoint of transient dynamics based on the global
phase structure of the system under control. Moreover, the possibility of applica-
tion to engineering systems is also explained based on the authors’ research re-
sults [3–9].

In this one and half decades, there were two trends of researches related to
TDFC. The theoretical stability analyses of UPOs under the control have been
one of the highly important topics [10–15]. The excellent efforts summarized in
the preceding chapters were made to establish the reliable corroboration of the
control performance. In the same period, the performance of TDFC was experi-
mentally demonstrated in diverse research fields including electronic circuits
[16, 17], laser systems [18], chemical systems [19], and gas-charge systems [20].
They seemed the first significant phases of technical and theoretical discussions
of TDFC. Since the middle 1990s, one of the authors has also tried to know the
ability of TDFC experimentally and numerically [3, 4]. Through the experiments,
remaining questions were found on the transient behavior after the onset of con-
trol and the domain of attraction for target orbits in parameter and initial function
space of a difference-differential equation. Just pointed out the importance of the
domain and the global dynamics as rested problems [21]. Moreover, the robustness
of stabilization was also the substantial topics in mechanical pendulum [3]. These
persistent problems have been rested in front of us, the early enthusiastic interests
on the development and analysis of TDFC being past.

In this chapter, the fundamental explanations are excluded. The readers can
check them in the preceding chapters. The detail mathematical definitions are
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also out of scope in this chapter. The approaches to the above-mentioned prob-
lems and the applications to nanoengineering are the main topics as a keystone
of future researches.

36.2
Transient Dynamics of Transient Behavior

36.2.1
Magnetoelastic Beam and Experimental Setup

The magnetoelastic beam is well known that a chaotic vibration inherently ap-
pears in the system [22]. Here, TDFC is applied to stabilize UPOs embedded in
the chaos. The experimental system was set to confirm the ability of TDFC as
shown in Fig. 36.1 [3]. The time-delayed feedback signal consists of the gained
difference between the memorized output and the present output. The method
does not request the full set of state variables. In the experimental system, the
velocity of displacement is adopted. The control signal is added to the forced si-
nusoidal excitation. TDFC can stabilize an UPO embedded in the chaotic attrac-
tor under the appropriate setting of time delay that coincides with the period of
the UPO. Here we stabilized target UPOs whose period coincide with an inte-
ger multiplication of the forced period [23]. Once an UPO is stabilized by
TDFC, the control input disappears because of the coincidence of the present
state with the delayed state. In experiments, the time delay does not strictly ad-
justed to coincide with the forced period [4]. Of course, there remains the non-
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Fig. 36.1 Magnetoelastic system and control
diagram of TDFC. The control signal is in-
duced by the detected displacement and
memorized one in a computer. The time de-
lay is fixed at the period of sinusoidal force

of magnetic shaker. The sinusoidal signal
with the TDFC signal is amplified and sup-
plied to the magnetic shaker as a voltage
signal. Then the sign of control block is re-
versed.



zero control signal after the stabilization. While this does not mean the control-
ling chaos in a strict sense, it seems the robustness of TDFC to the parameter
mismatch of time delay. This feature should strongly depend on the global
structure of the configuration space related to the change of time delay. At the
same time, through the experiments, we found the following questions; how
the delay plays a role during transient state, what decides the length of the tran-
sient state, and how large the basin of the target UPO under control. In this
chapter, we are going to discuss them according to our research results in the
Duffing system with TDFC.

36.2.2
Transient Behavior

Different UPOs were experimentally stabilized under TDFC. It was, however,
difficult to predict which solution was stabilized at the onset of control. When
TDFC is activated, the time developed solution appears in the infinite-dimen-
sional phase space until the control input disappears. The transient behavior is
therefore affected by the infinite-dimensional global phase structure not easy to
describe.

Figure 36.2 is the space–time expansion of the state space, which is adopted
in order to show the feature of the dynamics in the infinite-dimensional space
in [5]. The method was introduced by Arecchi, Giacomelli et al. [24, 25] to un-
derstand the time-delay dynamics as spatiotemporal dynamics. Figure 36.3 (i)
and (ii) shows the space–time expansion of experimental data obtained in the
magnetoelastic system with TDFC. The experimentalists have had the similar
experiences in which the dynamics under control showed various transient be-
havior until settling to a stable state. In some cases, after the state seemed to
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Fig. 36.2 Spatiotemporal expansion of state space. The experi-
mentally obtained time series is divided into the phase seg-
ment. The discrete segments depict the temporal develop-
ment of states and the segment of the finite space [5].



converge to a target periodic orbit, it showed the divergence again as shown in
Fig. 36.3. The difference of stable and unstable states can be found in the spa-
tial waveform. A spatial node appears in the case of the unstable orbit under
control as shown in Fig. 36.3 (ii).

The experimental results give us an image of state transitions in infinite-di-
mensional state space as propagation of discrete waves in the expanded spatio-
temporal state space. The results also explain that stable and unstable solutions
possibly coexist in systems under TDFC. Moreover, it suggests that there are
periodic orbits which cannot be stabilized by TDFC. The experiences had been
proved by the ‘odd number condition’ [10, 12, 13]. The condition is useful to
know the ability of TDFC. From the viewpoint of dynamics, much interests are
found in the transient behavior after the onset of TDFC. In this chapter, our
discussions focus on the transient dynamics under TDFC.
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Fig. 36.3 Space-time expansion of periodic behaviors in the
system with TDFC: (i) stable orbit and (ii) unstable one [5].
The contour implies the change of phase as a temporary con-
tinuous spatial variable.

Discrete time �

(c)
(i) stable

Discrete time �

(c)
(ii) unstable



36.3
Initial Function and Domain of Attraction

The domain of attraction for various ordinary differential equation systems has
been discussed on the space of initial values and parameters. Once the values
are given, the trajectory is uniquely determined in the deterministic dynamical
system. The domain of attraction has provided an important information related
to the robustness for initial values. However, in the system with delay, the do-
main of attraction should be considered in the infinite-dimensional function
space. In particular, the dynamical behavior of the system with TDFC substan-
tially depends on the initial function due to the delay at the onset of control.
The initial function is determined as a segment of trajectory of the original
chaotic trajectory. Figure 36.4 depicts a method for examining the domain of at-
traction in the discrete spatiotemporal state space.

The experimental system in Fig. 36.1 can be described by the following two
well Duffing’s equations with control input. That is,

d
dt

x
y

 �
� y

	�y�t� � �x�t� 	 	x�t�3 � A cos�t� u�t�
 �

�36�1�

u�t� � K�y�t	 �� 	 y�t�� �36�2�

Here we assume that the control is activated at t � t0. Then,

x�t0� � xt0 � y�t0� � yt0 � �36�3�

36.3 Initial Function and Domain of Attraction 797

Fig. 36.4 Initial function space and disturbances [6]. The initial
function is defined in (a) as a segment in t � �t0 	 �� t0� of a chaotic
trajectory backwardly developed from the onset time of control
t � t0. The disturbance is given as shown in (b). The disturbance is
artificially given as a Gaussian-like function.



y�t0� � y�t0 � ��� � � 	�� 0� �36�4�

are satisfied. As mentioned above, the initial function is selected from a seg-
ment of the chaotic trajectory generated by u�t� � 0 from the initial value
�x�0�� y�0�� � �1�0� 0�.1� For simplicity, the angular frequency � is set at unity.
�� �, 	, and A are fixed at 0�16, 1�0, 1�0 and 0�27, respectively. The time delay �

is adjusted to period of the target UPOs embedded in the chaotic attractor. Fig-
ure 36.5 reveals unstable period 2� orbits embedded in the original chaotic at-
tractor. 1I and 1I

�
denote inversely unstable periodic orbits of the target. 1D is a

directly unstable periodic embedded in the chaotic attractor. 1I and 1I
�

can be
stabilized by TDFC and change to stable periodic orbits. On the other hand, 1D
cannot be stabilized due to “the odd number condition.”

The control signal converges to null when the system is stabilized at one of
the target orbits. As a result of this convergence, the controlled system with
time delay degenerates to the original two-dimensional system without time de-
lay. The domain of attraction for target orbits is characterized by the infinite di-
mensional space under remarkable control input. That is, the estimation of the
domain goes beyond the scope of linearization in the neighborhood of the origi-
nal UPOs.

Figure 36.6 shows the classification of stabilized orbits on the onset time and
feedback gain parameter plane [6]. The target UPOs can be stabilized through
TDFC. There are, however, many other stable orbits, which have longer period
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Fig. 36.5 Unstable period 2� orbits embedded in original
chaotic attractor. 1I and 1I� denote inversely unstable periodic
orbits of the target, which are stabilized under sufficient feed-
back gain. 1D is a directly unstable periodic embedded in
chaotic attractor.

1) The numerical results in the following sec-
tion are independent of the parameter set-
tings and the adopted algorithm of calcula-

tion. Therefore, the discussion in this section
shows the typical feature of TDFC.



and coexist with the targets. The previous experiment also showed that the con-
trol input could not always achieve the convergence to each UPO [4]. In order
to understand the global dynamics behind this situation different external dis-
turbances were given to the initial function as shown in Fig. 36.4. Since the per-
iod of these coexisting orbits does not coincide with 2�, the control signal u�t�
remains after the stabilization. Therefore, solutions are different from the target
UPOs embedded in the original chaotic attractor. In other words, controlling
chaos is one of the cases in which coexisting solutions are stabilized. At the pa-
rameter denoted by the arrow �K� t0� � �1�1� 0�94�� 18��, the domain of attrac-
tion due to the functional disturbance is obtained as in Fig. 36.7 (a). The bound-
ary between two coexisting solutions is smooth. In the case the solution can be
selected by the deformation of the initial function by control input. On the
other hand, at the parameter �K� t0� � �0�75� 0�8�� 18��, the domain of attrac-
tion becomes as shown in Fig. 36.7 (b). Figure 36.7 (c) is the enlargement of a
rectangle region in Fig. 36.7 (b). The results show that the domain of attraction
is too complicated to control the convergence to each target orbit. We can thus
understand that the structure of domain strongly governs the transient behavior
after the onset of control.
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Fig. 36.6 Classification of stabilized orbits in the initial func-
tiion space at ���A� � �0�16� 0�27�. Dark and light regions
correspond to each target orbit shown in Fig. 36.5.



36.4
Persistence of Chaos

In this section, the global phase structure of the two-well Duffing system is dis-
cussed under TDFC. In the previous section, the coexistence of stable solutions
under TDFC was confirmed through the numerical estimation of domain of at-
traction in each period-2� inversely unstable orbit. The complicated structure in
domain of attraction suggested strong dependence of the transient dynamics on
global structure in the infinite dimensional phase space.

A key to understanding the controlled dynamics is to investigate dynamical
structures, which play a governing role in the global dynamics of the controlled
system. The structure is described by a one-dimensional global unstable mani-
fold, which provides substantial information on the global phase structure in
function space [7].
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Fig. 36.7 Domain of attraction in two-well Duffing system
under TDFC at (�, A)�(0.16, 0.27). The domain is obtained
around the initial condition pointed by arrows in Fig. 36.6.

(a) (K, t0)� (1.1, 0.94�+ 18�)

(b) (K, t0)� (0.75, 0.8�+ 18�) (c) Enlargement of the rectangle region in (b)



The global dynamics of the two-well Duffing system is characterized by the
presence of the directly unstable periodic orbit 1D [22, 23]. A homoclinic inter-
section is confirmed in the cross section induced by stroboscopic mapping with
period 2�. A chaotic invariant set, therefore, exists in the original Duffing sys-
tem. The closure of the unstable manifold coincides with the chaotic attractor.
The chaotic attractor includes the target UPOs and 1D simultaneously.

The manifold is shown in Fig. 36.8. It is the unstable manifold of 1D pro-
jected on a two-dimensional stroboscopic plane. In Fig. 36.8 (a) and (b), the tar-
get orbits are unstable and the chaotic attractor remain, as shown by gray stro-
boscopic points. In Fig. 36.8 (c) and (d) the targets are stable and stroboscopic
points show transient behavior before the convergence to target orbits. The no-
tation of target is changed to the stable orbits 1S and 1S

�
, because of their stabil-

ity change. Each arrow in Fig. 36.8 (c) and (d) indicates the stroboscopic point at
which the control is activated, respectively.

Once the control input is activated under K � 0, the original dynamics is per-
turbed by the control input. It implies the system changes from the original
two-dimensional system to the corresponding infinite dimensional one due to
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(a) K�0 (b) K�0.3

(c) K�0.75 (d) K�1.1

Fig. 36.8 Persistence of chaos and transient behavior based
on unstable manifold [7].



the presence of delayed input. Figure 36.8 explains that the global phase struc-
ture itself is still governed by the unstable manifold of 1D, which persistently
exists and keeps a unique characteristic multiplier greater than unity under
TDFC because of the odd number condition.

In Fig. 36.8 (b), for small feedback gain of Eq. (36.2) the target orbit is still
unstable in the controlled system and the chaotic attractor remains. The un-
stable manifold inherits the global stretch and fold structure as the original
chaotic attractor shown in Fig. 36.8 (a). Both branches of the manifold once de-
velop in opposite directions to each other, but are folded and back to 1D again.
It should be noted that the unstable manifold is the projection from the infi-
nite-dimensional function space to the original two-dimensional stroboscopic
plane. As the feedback gain is further increased, the two target orbits become
stable. However, the stretch and fold structure of the unstable manifold is kept
in Fig. 36.8 (c). By considering the temporal evolution, it implies that the phase
space inherits the characteristics that produce the chaotic dynamics for K � 0
and K � 0�3, while the original chaotic attractor is destroyed because of the sta-
bility change of the target orbits for K � 0�75. Since the chaotic dynamics re-
mains in the controlled system, the trajectories wander irregularly between 1S
and 1S

�
along the unstable manifold. The characteristics can be confirmed even

after the target orbits become stable by TDFC. Figure 36.9 shows the corre-
sponding temporal change of displacement x and control input u. The displace-
ment irregularly goes back and forth between two stable orbits under control.
After the many times transition, it eventually converges to 1S, although the
quick convergence to a target orbit is an important performance of TDFC from
the viewpoint of control.
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Fig. 36.9 Transient behavior (a) displacement and (b) control
input after the onset of control.

a)

b)



The further increase of feedback gain brings the global bifurcations which
completely break the homoclinic intersection appeared in original system. The
simple structure of the unstable manifold for K � 1�1 shows the disappearance
of the original chaotic invariant set and the quick convergence to the target or-
bits embedded in chaotic attractor.

In this section, the transient dynamics under TDFC has been discussed based
on the global structure in the infinite dimensional phase space. The coexistence
of UPOs which can be stabilized by TDFC gives the possibility to make the
transient behavior wanders between them unexpectedly. At the same time, the
persistence of transient chaotic behavior governs the performance of TDFC even
in practical applications. From the engineering point of view, the transient dy-
namics is one of the most important characteristics, which decides the perfor-
mance of the control method. This is particularly important, because the engi-
neering systems are frequently exposed to disturbance such as noise and re-
peated changes of system parameters. We will note this point in the next sec-
tion in an application to nanoengineering system.

36.5
Application of TDFC to Nanoengineering

Recently, nanoscience and nanoengineering are one of the hot research fields.
Here we explain an example of applications of TDFC in development of atomic
force microscopy having much improved performance.

36.5.1
Dynamic Force Microscopy and its Dynamics

The atomic force microscopy (AFM) [26] is nowadays widely accepted as a tool for
probing nanostructures [27]. In particular, the dynamic force microscopy (DFM)
[28, 29] has been developed as a flagship operating mode of the AFM for these
two decades [30]. In the DFM, a microcantilever vibrating at the resonance fre-
quency is utilized as a force sensor to detect the interaction force between the
tip manufactured at the free end and a sample surface facing the tip. The topology
of the sample surface is imaged by raster scan of the surface with keeping the vi-
bration or the resonance frequency of the microcantilever constant.

In the experimental field, the researchers had recognized that there exist non-
linear oscillations including chaos in the response of AFM measurement in the
late 1990s [31] and, recently, it was proved in experiments [32, 33]. The resulting
oscillation modes possibly reduce the force sensitivity due to undesirable sub-
harmonics and widely spread frequency spectrum, which are neglected in the
standard configuration of the system. For the chaotic oscillation, the operating
range of the DFM may be also limited by the nonperiodic and irregular motion
of the microcantilever. It is, therefore, significant to develop control techniques
to microcantilever oscillations for improving the performance of DFM. In this
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context, some research groups have already proposed application of control tech-
niques to restrict the oscillation [34–36].

A schematic diagram of a DFM is shown in Fig. 36.10. A microcantilever vi-
brating at its resonance frequency is a force sensor in the DFM and detects the
variation of tip–sample interaction force as a shift of the resonance frequency.
Since the interaction force depends on the mean tip–sample distance, the shift
of the resonance frequency corresponds to the variation of mean tip–sample dis-
tance. The topography of a sample surface is therefore traced by raster scan of
the surface by keeping the shift of resonance frequency constant. The constant
shift of resonance frequency, or constant mean tip–sample distance, is achieved
by adjusting the height of sample surface during the raster scan with a position-
ing device, such as tube scanners. The time series of signal during controlling
the positioning device gives topography of the sample surface. The DFM has
two major operating modes called AM–DFM [28] and FM–DFM [29], in which
the variation of amplitude and frequency is detected, respectively, to estimate
the shift of resonance frequency.

When the tip–sample interaction force is approximated by the Lennard–Jones
potential, the first mode vibration of a microcantilever controlled by a scalar sig-
nal u�t� is described by the following equation [35]:

d
dt

x
y

 �
�

y

	x 	 d

��� x�2 �
�6d

30��� x�8 � ��� cos�t	 �y�

�� � � bu� �36�5�

where x and y denote the displacement and the velocity of tip, respectively. b de-
notes a two-dimensional constant vector concerning the coupling between the
control input and the state variables. The system consists of a cantilever with a
nonlinear potential function, similar to magnetoelastic beam. � is the equilib-
rium position of tip without any other force except gravity. � and � correspond
to the amplitude and the frequency of the external sinusoidal force, which is
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Fig. 36.10 Schematic diagram of dynamic mode atomic force microscopy.



provided to the microcantilever with the damping coefficient �, respectively. �
denotes a constant related to the diameter of each molecule organizing the tip
and the sample. d is a constant for normalization and set at 4�27. Finally, � is a
small parameter. In [34, 35], the existence of chaos is proved by Melnikov’s
method in Eq. (36.5) without control input. The chaos follows the scenario of
period-doubling cascade [37].

Figure 36.11 shows a chaotic attractor reported in [37] and target unstable per-
iodic orbit embedded in it. The period of the target is adjusted to 2� which
equals to the period of external driving force. If the target orbit originating from
the resonant orbit is stabilized, the possible region for measurement will be en-
larged. In addition, the quick damping of the transient behavior is expected to
be suppressed to increase the scanning rate of AM–DFM.

Hereafter the following coefficients are investigated according to numerical
results in [37]. The damping coefficient � is set at 0�4 and � at 1�0. � � 0�3,
� � 0�1, � � 1�2, and � � 20 are given. � is adjusted at 2���.

36.5.2
Application of TDFC

Recently, experimental studies by Jamitzky et al. and Hu et al. demonstrated
chaotic vibrations of microcantilever in the actual AM–DFMs [32, 33]. Here, we
numerically show that the time-delayed feedback control has a possibility to
eliminate the chaotic oscillation based on Eq. (36.5). We have already numeri-
cally confirmed the possibility of the stabilization of the tapping mode chaos
which Hu and Raman reported [9]. However, there are dynamical differences
between these two chaotic phenomena. We, here, concentrate on the chaos
which is caused by the bistable phase structure.
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Fig. 36.11 Chaotic attractor reported in [37] and target un-
stable periodic orbit embedded in it. The periodic of the tar-
get is 2� which equals to the period of external driving force.



Here, TDFC is applied to stabilize chaotic vibrations to keep the sensitivity of
measurement by AM–DFM. Around the parameter region in which chaos ap-
pears, the measured topography of material surface loses the sensitivity by dy-
namic noise [33]. The applied control signal is given by

u � K�y�t	 �� 	 y�t�� �36�6�

as a difference between the current output and the past one, where � denotes
the time delay corresponding to the target orbit and K the feedback gain. Equa-
tion (36.6) implies a scalar control signal derived between the current time t
and the past time t	 �.

Figure 36.12 shows a numerical result of the stabilization of chaos in AM–DFM.
The feedback gain K is adjusted at 0�2. After the onset of TDFC, the chaotic behav-
ior of the tip displacement is stabilized as shown in Fig. 36.12 (a). After the tran-
sient state, the control input becomes negligible. It implies that the vibration be-
haves depending on the dynamics between the tip and the material surface.

36.5.3
Extension of Operating Range

TDFC is able to extend the operating range of AM–DFM. This is confirmed by
Fig. 36.13. The figure shows two different toned parameter ranges. The black
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(a) Displacement of cantilever

(b) Control input

Fig. 36.12 Stabilization of target unstable periodic orbit em-
bedded in chaotic attractor using TDFC [8].



area displays a parameter range where the target period-2� orbit is unstable if
control is not applied. It has been reported that this black area is not appropri-
ate for the operation of AM–DFM due to the possibility of period-doubling bi-
furcation and the route to chaos. The gray area shows the area where the con-
trol method can keep the target period-2� orbit stable. As we can see, the gray
area completely covers the black unstable area. Even in the black area, the sta-
bility of the target orbit under TDFC is completely established. Therefore, it is
concluded that the control method for stabilizing target unstable orbit can elimi-
nate the appearance of period-doubling bifurcation and subsequent chaotic os-
cillation. In other words, the operating range of AM–DFM is extended by apply-
ing the control method to microcantilever. Of course, there is a limitation of the
parameter range, which is shown by white area. It is caused by the saddle-node
bifurcation which makes the target orbit disappear in the region.

We should note that influence of surface scan on the transient dynamics of
cantilever is not taken into account here. However, the transient dynamics of
the cantilever is much important to improve DFM performance in addition to
the stability of the target orbit under TDFC. This is because the dynamics of
cantilever can show a chaotic transient state if the original chaotic dynamics
persists in the controlled system as observed in the two-well Duffing system.
One may face irregular and long transient behavior under control, since the
tip–sample distance is repeatedly changed due to surface topography. We there-
fore emphasize that transient dynamics of the system under TDFC is one of
the most important characteristics to be investigated for the future step to engi-
neering application of TDFC.
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Fig. 36.13 Operating range of DFM under TDFC [8].



36.6
Conclusions

In this chapter, we summarized the transient dynamics and the global phase
structure which appeared in the Duffing system under TDFC and the applica-
tions to engineering system. First, it was shown that the domain of attraction in
the initial function space had the complicated feature related to the coexistence
of stable solutions under control. TDFC has a potential to stabilize the target or-
bits embedded in chaotic attractors. At the same time, there is also a potential
to create multiple steady states by control. Therefore, the domain of attraction
for target orbits is the most important characteristics to show the ability and ro-
bustness of the control method.

Second, it was clarified that the transient dynamics after the onset of TDFC
is governed by the global phase structure in the infinite dimensional phase
space. In particular the unstable manifold of the saddle, which has the same
period as the target orbits, governs the transient behavior of the controlled sys-
tem. The theoretical approach which ensure the local stability of the target or-
bits could not give any information about the transient behavior especially in
the case of controlling chaos. We clearly showed how the time delay works to
the global phase structure by the unstable manifold.

Finally, we showed the application of TDFC to a nanoengineering system.
The family of atomic force microscopes are flag-ship devices in nanoscience
and nanoengineering. The measurement is deeply affected by the interaction
force between the tip and the material surface. We numerically confirmed that
the unexpected nonlinear behavior of tip can be stabilized by TDFC. The appli-
cation requests the quick transient behavior toward the convergence in the dy-
namics of cantilever. The elimination of the transient motion gives the system
further sensitivity and quick scanning characteristics [8, 9].
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